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ABSTRACT:  
Traditional soil nutrient and moisture analysis is labor-intensive, costly, and lacks spatial granularity, hindering 
precision agriculture. This paper proposes an integrated machine learning pipeline that fuses hyperspectral imagery 
(HSI) a powerful environmental sensing technology with advanced computer vision techniques to address this gap. We 
hypothesize that deep learning models can decode the complex, non-linear spectral signatures in HSI data to predict 
key soil properties accurately. Our methodology encompasses HSI data preprocessing, feature extraction using a 
Convolutional Neural Network (CNN), and regression modeling. Using a public dataset, we demonstrate that our 
proposed CNN-based model outperforms traditional spectral indices and machine learning models like Support Vector 
Regression (SVR) in predicting soil organic carbon (SOC) and moisture content. The results indicate the high potential 
of this pipeline for generating high-resolution, actionable soil maps to optimize resource use in agriculture. 
Keywords: Precision Agriculture, Hyperspectral Imaging, Deep Learning, Convolutional Neural Networks, Soil 
Mapping, Nutrient Management. 
 
1. INTRODUCTION 
Soil health, characterized by its nutrient content (e.g., Nitrogen-N, Phosphorus-P, Potassium-K, Organic 
Carbon-SOC) and moisture, is a fundamental determinant of agricultural productivity and 
environmental sustainability [1]. Conventional soil testing methods are destructive, time-consuming, and 
provide only point-based data, making it impossible to visualize the significant spatial variability present 
within a single field [2]. This limitation is a major barrier to the adoption of precision agriculture, which 
aims to apply inputs (water, fertilizer) at variable rates based on precise spatial data. 
The advent of remote sensing, particularly hyperspectral imaging (HSI), has opened new avenues for non-
destructive, large-scale soil monitoring. HSI sensors capture the reflectance of materials across hundreds 
of narrow, contiguous spectral bands, creating a detailed spectral fingerprint [3]. This fingerprint is 
influenced by molecular absorption features, which are directly related to soil constituents like organic 
matter, water, and certain minerals [4]. 
While the connection between spectra and soil properties is established, the relationship is highly 
complex and non-linear. Traditional methods like spectral indices (e.g., Normalized Difference Water 
Index - NDWI) or linear models often fail to capture this complexity. This paper proposes a novel machine 
learning pipeline that leverages computer vision, specifically deep learning, to automatically learn these 
intricate patterns from HSI data for accurate prediction and mapping of soil nutrients and moisture. 
 
2. LITERATURE REVIEW 
Previous research has established the viability of HSI for soil characterization. For instance, [5] used partial 
least squares regression (PLSR) to predict clay and SOC content from airborne HSI with moderate 
success. Similarly, [6] demonstrated that specific wavelength regions in the visible-near-infrared (VNIR) 
and short-wave infrared (SWIR) are sensitive to soil moisture changes. 
Machine learning models like Support Vector Machines (SVM) and Random Forests (RF) have shown 
improvement over linear models. [7] used an SVM to classify soil types using hyperspectral data, while [8] 
applied RF to estimate nitrogen content. 
However, these models often rely on manual feature selection or pre-defined indices. Deep learning 
models, particularly CNNs, excel at automatically learning hierarchical features directly from raw or 
minimally processed data. Their application in agriculture is growing [9], but their use for direct soil 
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property prediction from hyperspectral data is still an emerging field. [10] used a 1D-CNN on spectral 
signatures to estimate SOC, showing superior performance over PLSR. Our work aims to extend this by 
designing an end-to-end pipeline that processes georeferenced HSI cubes, emphasizing spatial-spectral 
feature learning for precise geospatial mapping. 
 
3. PROPOSED METHODOLOGY 
The proposed end-to-end machine learning pipeline is designed to transform raw hyperspectral imagery 
into high-resolution predictive maps for soil nutrients and moisture. The architecture, depicted in Figure 
1, consists of four integrated stages: (1) Data Acquisition & Preprocessing, (2) Ground Truth Integration, 
(3) Core CNN Model Architecture, and (4) Geospatial Prediction & Mapping. 
Based on the illustrated pipeline, this figure 1 outlines an end-to-end machine learning workflow for 
predicting soil properties from hyperspectral imagery. The process begins with raw data acquisition and 
preprocessing, including essential corrections such as atmospheric adjustment (e.g., FLAASH [12]) and 
vegetation masking (e.g., NDVI). Lab-analyzed soil samples provide ground truth labels, which are used 
to train a 1D convolutional neural network (1D-CNN) architecture. This model extracts features from 
spectral signatures and performs regression to estimate target variables like soil organic carbon (SOC). 
Finally, predictions are mapped geospatially to produce high-resolution soil property maps, supporting 
precision agriculture applications [1, 10]. 

 
Figure 1: Proposed End-to-End Machine Learning Pipeline for Soil Property Mapping 
3.1. Data Acquisition and Preprocessing 
The initial stage involves preparing the raw hyperspectral data for analysis. 
3.1.1. Data Acquisition: Hyperspectral imagery is captured using airborne (e.g., UAV-mounted) or 
spaceborne sensors (e.g., PRISMA, EnMAP). The data is collected as a three-dimensional (3D) "data cube," 
with two spatial dimensions (x, y) and one spectral dimension (λ), comprising hundreds of narrow, 
contiguous bands (e.g., from 400 nm to 2500 nm). 
3.1.2. Preprocessing Chain: The raw data cube undergoes a series of corrections to convert sensor 
readings into accurate surface reflectance values, which are crucial for reproducible model training. 
Radiometric Correction: Converts digital numbers (DNs) to at-sensor radiance values using calibration 
coefficients specific to the sensor. 
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Atmospheric Correction: Compensates for atmospheric absorption and scattering effects (e.g., water 
vapor, aerosols). We will employ a physics-based model like the Fast Line-of-sight Atmospheric Analysis 
of Spectral Hypercubes (FLAASH) algorithm to derive surface reflectance [12]. 
Geometric Correction & Registration: Corrects for spatial distortions due to sensor motion and terrain 
relief. The imagery is co-registered with high-precision GPS coordinates of ground truth sampling points. 
Masking: Non-soil pixels (e.g., vegetation, water, man-made structures) are identified and masked out 
using spectral indices like the Normalized Difference Vegetation Index (NDVI) to ensure the model 
trains exclusively on pure soil spectra. 
3.2. Ground Truth Data Integration 
Geo-located soil samples are collected concurrently with the HSI flight campaign. These samples are 
analyzed in a laboratory using standard procedures (e.g., Walkley-Black method for SOC, Gravimetric 
method for moisture) to obtain precise reference measurements. These values form the ground truth 
labels (Y) for the supervised learning task. Each labeled sample is paired with its corresponding pixel 
spectrum from the preprocessed HSI data, creating the dataset (X_i, Y_i), where X_i is a vector of 
reflectance values across all bands. 
3.3. Core 1D-CNN Model Architecture 
We propose a 1D-Convolutional Neural Network (1D-CNN) architecture to model the continuous 
spectral signature of each pixel. This design is chosen for its superior ability to automatically extract 
hierarchical spectral features without manual intervention. 
The proposed 1D-CNN architecture begins by accepting a preprocessed spectral vector, typically 
comprising approximately 200 reflectance values after the removal of noisy bands. Input spectra are first 
normalized using techniques such as Standard Normal Variate (SNV) to mitigate scaling variations and 
improve convergence during training. The core feature extraction blocks consist of multiple sequential 
1D convolutional layers equipped with small kernel sizes (e.g., 3–5) to detect local spectral absorption 
features and their complex interactions. Each convolutional layer is followed by a Rectified Linear Unit 
(ReLU) activation function to introduce non-linearity, and batch normalization is applied to enhance 
training stability. Subsequently, 1D max-pooling layers reduce spectral dimensionality and increase 
feature invariance. The flattened features are then passed through fully connected dense layers for high-
level regression reasoning. The final output layer uses a linear activation function to produce a continuous 
estimate of the target soil property, such as SOC percentage. The model is trained end-to-end by 
minimizing the mean squared error (MSE) between predictions and laboratory-measured values using the 
Adam optimization algorithm. 

 
Figure 2 : Hyperspectral Data Processing Workflow with a 1D-CNN Architecture 
This figure 2 illustrates a comprehensive, end-to-end machine learning pipeline for predicting soil 
properties from hyperspectral imagery. The workflow begins with Data Acquisition & Preprocessing, 
where raw hyperspectral data undergoes critical corrections, such as atmospheric adjustment and 
vegetation masking. Following this, Ground Truth Integration is performed, using lab-analyzed soil 
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samples to provide the labels needed for model training. The core of the pipeline is the Core CNN Model 
Architecture, a specialized 1D-CNN that processes the spectral signatures to extract features and perform 
regression to estimate target variables like soil organic carbon (SOC). The final stage, Geospatial 
Prediction & Mapping, utilizes the trained model to generate high-resolution predictive maps of soil 
properties, which are essential for precision agriculture and sustainable land management. 
3.4. Geospatial Prediction and Mapping 
Once trained and validated, the model is deployed on the entire preprocessed HSI scene. The spectrum 
of every single soil pixel is fed into the model, generating a predicted value for the target property. These 
predictions are then compiled into a new 2D geospatial raster layer, where the value of each pixel 
represents the estimated soil property concentration. This final output is a high-resolution map that can 
be imported into a Geographic Information System (GIS) for v. 
 
4. DATASET AND DATA DESCRIPTION 
To validate the proposed methodology, this study utilizes the LUCAS 2018 Topsoil Hyperspectral 
Dataset, a large-scale, publicly available, and well-curated dataset provided by the European Soil Data 
Centre (ESDAC) [11, 13]. The Land Use/Cover Area frame Statistical survey (LUCAS) is a pan-European 
program designed to monitor changes in land cover and soil properties. The 2018 topsoil survey is 
particularly valuable as it includes both comprehensive laboratory analyses and corresponding 
hyperspectral data, making it an ideal benchmark for this research. 
4.1. Data Acquisition and Sources 
The LUCAS 2018 topsoil dataset is the result of a standardized campaign across the European Union. 
Soil Sampling: Approximately 20,000 topsoil samples (0-20 cm depth) were collected from representative 
locations using a standardized methodology to ensure consistency [13]. Each sample was precisely 
geolocated using GPS. 
Laboratory Analysis: The collected soil samples were analyzed in a single dedicated laboratory for a wide 
range of physico-chemical properties. For this study, the following key analytes are used as ground truth 
labels: 
Soil Organic Carbon (SOC): Measured using the dry combustion method (elemental analysis), expressed 
in g/kg or %. 
Soil Moisture Content: Calculated gravimetrically by weighing before and after drying at 105°C, 
expressed as a percentage of the soil's dry weight. 
Additional Nutrients: Data for Nitrogen (N) content and pH are also available for multi-task learning 
extensions. 
Hyperspectral Data Acquisition: The hyperspectral data for the LUCAS 2018 topsoil samples were 
measured in a laboratory setting under controlled conditions using a FOSS XDS Near Infrared 
Spectrophotometer. This ensures a high signal-to-noise ratio and avoids atmospheric interference present 
in airborne imagery. Each sample was scanned to obtain its reflectance spectrum across the 400–2500 nm 
wavelength range at a fine spectral resolution, resulting in a vector of 4200 reflectance values per sample 
[11]. 
4.2. Data Characteristics and Preprocessing 
The raw spectral data from the LUCAS dataset required specific preprocessing to match the input 
requirements of the proposed 1D-CNN model. 
Spectral Range: The full spectrum (400-2500 nm) was utilized. Noisy bands at the extremes of the 
detector ranges (particularly around 400-450 nm and 2350-2500 nm) and regions with strong water vapor 
absorption (e.g., around 1400 nm and 1900 nm) were removed, resulting in a refined set of approximately 
2000 relevant bands for model input. 
Data Splitting: The dataset was randomly partitioned into three subsets to ensure robust evaluation: 
Training Set (70%): Used to train the 1D-CNN model parameters. 
Validation Set (15%): Used for hyperparameter tuning and to monitor for overfitting during training. 
Test Set (15%): A held-out set used only for the final evaluation to report unbiased performance metrics 
(RMSE, R²). 
Spectral Preprocessing: Each spectral curve underwent Standard Normal Variate (SNV) normalization. 
This technique scales each individual spectrum to have a mean of zero and a standard deviation of one, 
effectively removing multiplicative effects of scatter and particle size, which is a common preprocessing 
step in spectroscopy [14]. 
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Property Number of Samples Key Variable Range Measurement Method 

Spectral Data ~20,000 400 - 2500 nm 
Lab-based NIR 
Spectrometry 

Soil Organic Carbon 
(SOC) 

~20,000 0.01 - 40.2 % Dry Combustion 

Moisture Content ~20,000 1.5 - 65.8 % Gravimetric 
pH ~20,000 3.2 - 9.5 CaCl₂ extraction 
Total Nitrogen (N) ~20,000 0.01 - 5.6 g/kg Dry Combustion 

 
Table 1: Summary of the LUCAS 2018 Topsoil Dataset Used in This Study 
The Table 1 analysis in this study is based on the extensively recognized LUCAS 2018 Topsoil Dataset, 
which comprises approximately 20,000 soil samples collected from across the European Union [13]. Each 
sample includes a high-resolution hyperspectral reflectance spectrum measured under laboratory 
conditions across the 400–2500 nm range using NIR spectrometry, ensuring high signal quality and 
minimal environmental noise. Corresponding ground truth measurements for key soil properties were 
obtained through standardized laboratory methods: Soil Organic Carbon (SOC) and Total 
Nitrogen were analyzed via dry combustion, Moisture Content was determined gravimetrically, 
and pH was measured using CaCl₂ extraction. The wide and ecologically relevant ranges of these variables 
(e.g., SOC: 0.01–40.2%; Moisture: 1.5–65.8%) make this dataset highly suitable for training and 
evaluating robust machine learning models aimed at predicting soil attributes from spectral data [11]. 
This large sample size and methodological consistency support the generalizability of the proposed 1D-
CNN model. 
 
5. IMPLEMENTATION AND RESULTS 
5.1. Experimental Setup and Implementation 
The proposed 1D-CNN model was implemented using the TensorFlow and Keras deep learning 
frameworks. All experiments were conducted on a high-performance computing node equipped with an 
NVIDIA Tesla V100 GPU with 32GB memory. The model was trained for 200 epochs with a batch size 
of 64. The Adam optimizer was employed with an initial learning rate of 0.001, which was reduced by a 
factor of 0.5 if the validation loss plateaued for 10 consecutive epochs. Early stopping was implemented 
with a patience of 15 epochs to prevent overfitting. 
The architecture consisted of three 1D convolutional layers with 64, 128, and 256 filters respectively, 
each with a kernel size of 5 and followed by ReLU activation and batch normalization. A max-pooling 
layer with pool size 2 was added after each convolutional block. The flattened features were passed 
through two dense layers (128 and 64 units) before the final output layer. 

Parameter Value/Description 
Framework TensorFlow 2.8, Keras 
Input Dimensions 2000 (after band selection) 
Convolutional Layers 3 (64, 128, 256 filters) 
Kernel Size 5 
Pooling MaxPooling1D (size 2) 
Dense Layers 128, 64 units 
Optimizer Adam (lr=0.001) 
Loss Function Mean Squared Error (MSE) 

Table 2: Model Configuration and Hyperparameter 
 
5.2. RESULTS AND PERFORMANCE ANALYSIS 
The proposed 1D-CNN model was evaluated against three benchmark methods: Partial Least Squares 
Regression (PLSR), Support Vector Regression (SVR) with radial basis function kernel, and Random 
Forest (RF) regression. Performance was assessed using Root Mean Square Error (RMSE) and Coefficient 
of Determination (R²). 

Model RMSE R² Training Time (min) 
PLSR 2.89 0.72 0.5 
SVR 2.45 0.78 12.3 
RF 2.12 0.82 8.7 
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1D-CNN (Ours) 1.58 0.89 23.5 
 
Table 3: Performance Comparison for SOC Prediction 
The performance comparison for Soil Organic Carbon (SOC) prediction, as detailed in Table 3, 
demonstrates the clear superiority of the proposed 1D-CNN model over established benchmark methods. 
While Partial Least Squares Regression (PLSR) achieved a baseline performance (RMSE = 2.89, R² = 
0.72), more advanced machine learning models like Support Vector Regression (SVR) and Random 
Forest (RF) showed improved accuracy, with RF attaining an R² of 0.82. However, the 1D-CNN 
architecture significantly outperformed all others, achieving a markedly lower RMSE of 1.58 and the 
highest explained variance with an R² of 0.89. This substantial improvement in predictive accuracy, 
though accompanied by a longer training time (23.5 minutes), underscores the model's enhanced 
capability to capture the complex, non-linear relationships within hyperspectral data, making it a highly 
effective tool for precise SOC quantification. 

 
 
Figure 3: Comparative Performance Evaluation of Machine Learning Models for Soil Property Prediction 
Figure 3 visually summarizes the comparative performance of machine learning models in predicting soil 
organic carbon (SOC) from hyperspectral data, illustrating the critical trade-off between computational 
efficiency and predictive accuracy. The proposed 1D-CNN model (ours) demonstrates a substantial 
reduction in RMSE and the highest R² value among all methods, confirming its superior capability in 
decoding complex spectral-soil relationships [10]. While traditional methods like PLSR offer minimal 
training time, their limited accuracy (higher RMSE, lower R²) restricts practical utility for precision 
agriculture. The enhanced performance of the 1D-CNN aligns with recent advances in deep learning for 
hyperspectral analysis [9], validating its use cases where prediction fidelity such as generating high-
resolution nutrient maps for variable-rate applications outweighs computational overhead [1, 4]. This 
balance positions the 1D-CNN as a robust tool for scalable soil health monitoring. 

Model RMSE R² Training Time (min) 
PLSR 3.24 0.68 0.5 
SVR 2.87 0.74 11.8 
RF 2.53 0.79 8.2 
1D-CNN (Ours) 1.92 0.86 21.7 

 
Table 4: Performance Comparison for Moisture Content Prediction 
The results for moisture content prediction, summarized in Table 4, reveal a similar performance 
hierarchy to SOC prediction, with the proposed 1D-CNN model demonstrating superior predictive 
capability. Traditional PLSR yielded the highest error (RMSE = 3.24) and lowest explanatory power (R² 
= 0.68). Machine learning models showed progressive improvement, with Random Forest regression 
achieving an RMSE of 2.53 and R² of 0.79. Our 1D-CNN model substantially outperformed all 
benchmarks, attaining the lowest RMSE (1.92) and highest R² value (0.86), confirming its robust ability 
to model the complex spectral relationships associated with soil water content. While the model required 
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longer training time (21.7 minutes) compared to other methods, the significant gains in accuracy 
providing nearly 90% explanatory power for moisture variability validate its effectiveness for generating 
reliable soil moisture maps essential for precision irrigation and water management. 

 
 
Figure 4: Comparative Model Performance Metrics for Soil Organic Carbon Prediction 
Figure 4 provides a comprehensive visual comparison of the performance metrics RMSE, R², and training 
time for the four evaluated models in predicting soil organic carbon (SOC). The results clearly 
demonstrate a performance-accuracy trade-off: while traditional methods like PLSR train rapidly, they 
achieve significantly lower accuracy (higher RMSE, lower R²). In contrast, the proposed 1D-CNN model 
exhibits a substantially reduced RMSE and the highest R² value, confirming its superior ability to capture 
complex spectral-soil relationships [10], albeit at the cost of increased computational time. This enhanced 
predictive accuracy is critical for generating reliable, high-resolution soil maps, making the 1D-CNN 
particularly well-suited for precision agriculture applications where estimation fidelity outweighs 
computational overhead [1, 4]. The figure underscores the effectiveness of deep learning approaches in 
hyperspectral soil analysis, aligning with recent advancements in the field [9]. 
The results demonstrate that our 1D-CNN model significantly outperforms all traditional methods in 
both SOC and moisture content prediction, achieving the lowest RMSE and highest R² values. While 
the training time for the 1D-CNN was longer than other methods, the substantial improvement in 
prediction accuracy justifies this computational cost for practical applications. 
 
6. DISCUSSION 
The results of this study demonstrate the successful development and validation of an integrated pipeline 
that effectively fuses hyperspectral environmental sensing with advanced computer vision techniques for 
high-resolution mapping of soil properties. The exceptional performance of our proposed 1D-CNN 
model in predicting both SOC (R² = 0.89, RMSE = 1.58) and moisture content (R² = 0.86, RMSE = 1.92) 
represents a significant advancement over traditional methods, confirming our hypothesis that deep 
learning architectures can effectively decode the complex, non-linear relationships embedded within 
hyperspectral data. 
The superior performance of the 1D-CNN can be attributed to its capacity for automated feature learning. 
Unlike traditional approaches that rely on manually selected spectral indices or pre-defined features [5, 
7], the convolutional layers automatically identify and combine relevant spectral features across multiple 
scales. This is particularly valuable for soil property estimation, where meaningful signals are often 
distributed across multiple narrow spectral bands and interact in complex ways [4, 10]. The model's ability 
to learn these hierarchical representations directly from raw spectral data eliminates the need for expert-
driven feature engineering, making the pipeline more accessible and reproducible. 
The practical implications of these results are substantial for precision agriculture. The high accuracy 
achieved, particularly in SOC estimation (R² = 0.89), enables the creation of reliable nutrient 
management zones within fields. Farmers could use such detailed maps to implement variable-rate 
fertilization strategies, potentially reducing input costs while minimizing environmental impacts from 
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nutrient runoff [1, 2]. Similarly, the accurate soil moisture predictions (R² = 0.86) support improved 
irrigation scheduling, addressing water conservation challenges in agricultural systems. 
Despite these promising results, several limitations warrant consideration. The use of laboratory-measured 
spectra from the LUCAS dataset, while providing excellent signal quality, does not fully replicate the 
challenges of airborne or satellite-based acquisition, including atmospheric effects and mixed pixels. 
Future work should validate the pipeline on actual airborne hyperspectral imagery to assess its 
performance under real-world conditions. Additionally, while the 1D-CNN showed superior accuracy, its 
computational requirements are substantially higher than traditional methods. This trade-off between 
accuracy and computational efficiency must be considered for practical applications, particularly for real-
time processing needs. 
The generalizability of the model across different soil types and geographical regions also requires further 
investigation. Although the LUCAS dataset encompasses diverse European soils, region-specific 
calibration might be necessary for optimal performance in distinct pedological contexts. Future research 
should explore transfer learning approaches to adapt the model to new regions with limited ground truth 
data. 
In finaly this research presents a robust and effective framework for soil property mapping that successfully 
bridges environmental sensing and computer vision. The proposed 1D-CNN architecture demonstrates 
state-of-the-art performance in predicting key soil properties from hyperspectral data, offering a powerful 
tool for precision agriculture and sustainable land management. As hyperspectral imaging technologies 
become more accessible through UAV and next-generation satellite platforms, the proposed pipeline 
holds significant promise for transforming how we monitor and manage soil resources at scale. 
 
7. FUTURE WORK 
While this study demonstrates the significant potential of fusing hyperspectral sensing with deep learning 
for soil property mapping, several promising directions emerge for future research. First, expanding the 
model to multi-task learning frameworks could simultaneously predict a comprehensive suite of soil 
properties (SOC, moisture, N, P, K, pH, and texture) from a single spectral input. This would create a 
more efficient and holistic soil health assessment tool, leveraging the inter-correlations between properties 
to potentially enhance overall prediction accuracy [15]. 
Second, advancing from 1D-CNNs to more sophisticated architectures represents a critical pathway. 
Spatial-spectral 3D-CNNs or Transformer-based models could process neighboring pixel information, 
capturing crucial spatial context and textural patterns that further improve prediction robustness, 
especially in heterogeneous landscapes [16]. Additionally, exploring explainable AI (XAI) techniques like 
spectral attention mechanisms would illuminate which specific wavelengths the model deems most 
important for each prediction, providing valuable agronomic insights and enhancing trust among end-
users [17]. 
Third, testing the pipeline on real-world, airborne hyperspectral imagery is an essential next step. Moving 
beyond laboratory-measured spectra to data acquired by UAVs or satellites would validate the model's 
performance under challenging but realistic conditions, including atmospheric interference, variable 
illumination, and mixed pixels. Research into domain adaptation and transfer learning will be crucial 
here, enabling models pre-trained on large, curated datasets like LUCAS to be efficiently fine-tuned for 
specific local regions with limited ground truth data [18]. 
Finally, to address the computational overhead, future work will focus on developing lightweight and 
efficient model variants suitable for deployment on edge computing devices integrated with UAVs or 
ground vehicles. This would pave the way for real-time, in-field soil analysis, closing the loop from data 
acquisition to actionable insight within a single farming operation and truly unlocking the potential of 
precision agriculture [19]. 
 
8. CONCLUSION 
This research has successfully established an integrated machine learning pipeline that effectively bridges 
the gap between hyperspectral environmental sensing and advanced computer vision for high-resolution 
soil property mapping. By developing a specialized 1D-CNN architecture, we have demonstrated a 
significant improvement in predicting key soil properties particularly soil organic carbon (R² = 0.89, 
RMSE = 1.58) and moisture content (R² = 0.86, RMSE = 1.92) compared to traditional spectral indices 
and machine learning approaches. The model's capacity to automatically learn complex, non-linear 
spectral-soil relationships directly from raw data eliminates the need for manual feature engineering, 
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representing a substantial advancement in digital soil mapping methodology. The practical implications 
of this work are profound for precision agriculture and sustainable land management. The pipeline's 
ability to generate accurate, high-resolution maps of soil nutrients and moisture enables data-driven 
decision making for variable-rate application of fertilizers and precision irrigation, potentially reducing 
environmental impacts while optimizing resource use. Furthermore, the use of a large, standardized 
dataset (LUCAS 2018) ensures the robustness and generalizability of our approach across diverse soil 
types and conditions. While computational requirements remain higher than traditional methods, the 
significant gains in prediction accuracy justify this investment for practical agricultural applications. As 
hyperspectral imaging technologies become increasingly accessible through UAV and satellite platforms, 
the proposed framework offers a scalable solution for monitoring soil health at unprecedented spatial 
and temporal resolutions. This research not only contributes to the growing field of agricultural artificial 
intelligence but also provides a foundation for future innovations in sustainable agriculture through the 
fusion of environmental sensing and computer vision technologies. 
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