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Abstract—This work presents an adaptive event triggered control scheme for a class of uncertain nonlinear system 
with unmeasurable states. Controlling strategy presented in this work mainly includes the designing of a nonlinear 
state estimator to estimate the system states followed by the designing of an event triggered control mechanism for a 
networked control system. The proposed scheme ensures the uniform ultimate boundedness (UUB) of system variables 
along with prescribed performance of the closed loop system and at the same time ensuring the optimum sharing of the 
network resources. An output recurrent wavelet neural network (ORWNN) is used to approximate the nonlinear 
uncertainties of the system. Numerical simulation is carried out to illustrate theoretical developments. 
Keywords—Networked Control System (NCS), Event Triggered Control, Zeno Behavior Output Recurrent Wavelet 
Neural Network (ORWNN) State Nonlinear Observer  
 
1. INTRODUCTION  
Networked Control System (NCS) can be viewed as a typical case of distributed system composed of control 
system components such as plant, actuator, controller, and sensors which are connected through a 
communication channel for closed loop configuration. In networked control system, various closed loop 
signals are transmitted from one component to another in the form of information packets through the 
communication channel [1]. One of the profound advantages of networked control systems is the 
establishment of a distributed closed loop which allows the tele control of systems like unmanned arial 
vehicles, mining robots and others over a communication channel. However, practical communication 
channel is associated with issues like limited bandwidth, delay, packet loss, channel noise or the 
complicacies generated by a particular communication protocol used, these network imperfections often 
degrade the system performance and sometimes even makes the system unstable. In networked control 
scheme, classical control strategy is augmented with mechanisms like event triggering, use of predictor to 
compensate the network imperfections. In networked control system, event triggered scheme has been to 
be a highly effective methodology for the appropriate utilization of the network resources. This scheme 
allows the availability of network resources for data transmission only on the violation of some predesigned 
event triggering mechanisms [1-7]. 
Various control methodologies existing in the literature require an accurate mathematical model of the real 
time system to ensure the effective controlling of that system. These control schemes require effective 
cancellation of the nonlinear system dynamics. However, development of analytical models of such 
nonlinear phenomenon     is a non-trivial task as the basic laws of physics cannot explain these nonlinearities 
with a desired level of accuracy. Nonparametric experimental modelling has been proved to be an effective 
way to model out such complexities. This flexible approach allows the use of universal approximators like 
neural networks, wavelet networks to approximation of nonlinear trends presents in the system. 
Augmentation of controllers with these approximators and making them learn by suitably adjusting their 
weights with the help of update laws has relaxed the model dependency constraint to a large extent [10-19]. 
There exist several approximator architectures with different features and capabilities. Output recurrent 
architecture has been proved to be an effective architecture, in comparison to conventional feedforward 
architectures, it offers the advantages of improved temporal dynamism due to the inclusion of feedback 
mechanism. Wavelet functions based approximators have been proved to be highly efficacious 
approximators due to their systematic construction methodology and unique identification capabilities 
[13].    
The existence of observer designing schemes has greatly streamlined the designing of state feedback 
controllers for the systems where system states are not available for construction of control term. Observer 



International Journal of Environmental Sciences   
ISSN: 2229-7359 
 Vol. 11 No. 7, 2025  
https://www.theaspd.com/ijes.php 
 
 

2468 

 

is a control component used to get an estimate of the internal states of system through its output. The 
vitality of this component can be analyzed by considering the situations of physical systems where system 
states are not accessible due to sensor faults, unavailability of sensors or unavailability of sensor installation 
locations. Various design approaches starting from observer design for linear control systems and extending 
up to observer design for nonlinear systems with uncertain dynamics have been cited in the literature [14-
17].  
This works presents an adaptive observer-based event triggered control scheme for a class of uncertain 
nonlinear systems.  The main contribution of this paper are as follows  
a. Firstly, an output recurrent wavelet neural network based adaptive Luenberger observer is developed for 
effective estimation of the system states using the system output. 
b. Adaptive observer is located at the plant site and there is continuous access to system output. This allows 
the continuous update of observer dynamics and weights of the wavelet neural network. State estimates 
from the observer are subsequently used for designing event triggering controller. 
c.   Output of the wavelet estimator is also transmitted to the controller along with the system states. 
Information transmission is carried out at discrete triggering instants. 
d. Triggering mechanisms are designed to ensure effective exploration of event triggering mechanism and 
system performance within the allowable limits.        
e. Zeno free behavior of the proposed event triggered control scheme is ensured by establishing the fact 
that there exist a finite lower limit of inter-execution time.             
The rest of the paper is constituted as follows: Section 2 presents the framework of the system preliminaries 
in terms of mathematical model of the nonlinear system, proposed strategy is applicable to nonlinear 
systems which can be represented in this form. This section also details the output recurrent wavelet 
network and its characteristics. Section 3 describes the designing concepts of adaptive observer. Section 4 
develops the event triggered control mechanism. Starting from the designing of baseline controller and 
subsequent transformation of this control scheme into event triggered form is described in section 4.         
This section also addresses issues like avoidance of Zeno behaviour. Section 5 illustrates the validity of 
theoretical development with the help of a simulation study whereas section 6 concludes the paper. 
2. PRELIMINARY  
2.1. System Formulation 
Consider the following class of strict feedback nonlinear uncertain systems [18] 

{
 
 

 
 

𝑥̇1 = 𝑥2
𝑥̇2 = 𝑥3

⋮
𝑥̇𝑛 = 𝑓(𝑥) + 𝑢

𝑦 = [𝑐1 … 𝑐𝑛][𝑥1 … 𝑥𝑛]𝑇

                           (1) 

where 𝑥 = [𝑥1 … 𝑥𝑛]𝑇 ∈ 𝑅𝑛 represents system states, 𝑢 ∈ 𝑅 and 𝑦 ∈ 𝑅 are control input and system 
output respectively. Nonlinear term 𝑓(𝑥): 𝑅𝑛 → 𝑅 represents the system uncertainty and 𝑐𝑖; 𝑖 = 1,… , 𝑛 
are the elements of matrix 𝐶 defined below. All the system states are unmeasurable; however, the output 
is available for measurement. 
System (1) can be expressed in following state-space form 

{
𝑥̇ = 𝐴𝑥 + 𝐵(𝑓(𝑥) + 𝑢)

𝑦 = 𝐶𝑥
                                        (2) 

where  

𝐴 =  

[
 
 
 
 
0 1 … 0 0
0 0 1 … 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 0 1
0 ⋯ 0 0 0]

 
 
 
 

𝑛𝑋𝑛

; 𝐵 = [

0
0
⋮
1

]

𝑛𝑋1

𝐶 = [𝑐1 … 𝑐𝑛]1𝑋𝑛 

     The objective of this paper is to design an adaptive event triggered control scheme for the uncertain 
nonlinear system of the form (1) with unknown system states. An adaptive observer is designed to estimate 
the unknown states. Control term so designed must steer the system states towards the desired trajectory 
so that the resulting error dynamics converges to a compact set containing origin.    
Following assumptions are considered for the system (1) [18 - 20] 
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Assumption 1: Nonlinear function 𝑓(𝑥(𝑡))  satisfies the condition of Lipschitz continuity i.e.   following 
inequality is satisfied on every compact set 𝛺𝑥 ⊂ 𝑅

𝑛  
‖𝑓(𝑥(𝑡)) − 𝑓(𝑥(𝑡𝑘)) ‖ ≤ 𝐿‖𝑥𝑖(𝑡) − 𝑥𝑖(𝑡𝑘)‖                                               (3)                
where 𝐿 > 0 is the Lipschitz constant. 
Assumption 2: Desired trajectory 𝑦𝑑(𝑡) ∈ 𝑅 and its derivatives up to 𝑛𝑡ℎ order {𝑦𝑑(𝑡), 𝑦𝑑̇(𝑡), 𝑦𝑑̈(𝑡), … } 
are bounded and known. 

Also, |𝑦
𝑖

𝑑(𝑡1) − 𝑦
𝑖

𝑑(𝑡2)| ≤  𝜎 ∈ 𝐿∞, ∀𝑡1, 𝑡2 ∈ 𝑅
+, 𝑖 = 1,… , 𝑛 

Assumption 3: Triple  (𝐴, 𝐵, 𝐶) is an controllable --observable triple. 
Assumption 4: There exists a positive definite symmetric (PDS) matrix 𝑃  such that the following equality 
holds 
𝐵𝑇𝑃 = 𝐶                                                                 (4) 
Assumption 5: Let there exist observer gain matrix 𝑚 such that the matrix (𝐴 −𝑚𝐶) is Hurwitz stable. 
Thus, there exists an arbitrary positive definite matrix 𝑄 such that positive definite matrix 𝑃 is the unique 
solution of the equation 
(𝐴 −𝑚𝐶)𝑇𝑃 + 𝑃(𝐴 −𝑚𝐶) = −𝑄                       (5) 
Assumption 6: Let there exist controller gain matrix 𝐾 such that the matrix (𝐴 − 𝐵𝐾) is Hurwitz stable. 
Thus, there exists an arbitrary positive definite matrix 𝑄1  such that positive definite matrix 𝑃1  is the 
unique solution of the equation 
(𝐴 − 𝐵𝐾)𝑇𝑃1 + 𝑃1(𝐴 − 𝐵𝐾) = −𝑄1                       (6)         
Remark 1 Design matrices 𝑃 and 𝑃1 should be selected such that Assumptions 3 and 4 are satisfied.  
Lemma 1. For any matrices 𝑋 and 𝑌, following inequality holds 

𝑋𝑇𝑌 + 𝑌𝑇𝑋 ≤ 𝜀𝑋𝑇𝑋 +
1

𝜀
𝑌𝑇𝑌                                 (7) 

where 𝜀 > 0 
2.2. Output Recurrent Wavelet Neural Network (ORWNN) 
Insertion of recurrency traits such as output recurrency in the classical feedforward structure of function 
approximators results in the inclusion of feedback link from output layer to input layer. This mechanism 
allows the feedback of network output to input side so as to serve as an additional input component. 
Recurrency offers several advantages over conventional feedforward architecture such as improved 
dynamic characterization, better contextual recognition, efficient pattern recognition. These features have 
enhanced the applicability of recurrent architecture [13].  
Wavelet families have displayed a promising potential in the realm of function approximation due to their 
characteristics of orthonormality and multiresolution analysis. Orthonormality allows unique function 
representation whereas multiresolution analysis allows a systematic approach for constructing an 
approximation framework. Thus, wavelet network can be viewed as a parsimonious approximation 
structure in which each wavelet approximates a unique attribute of the function to be approximated. 
Any square integrable nonlinear function 𝑓(𝑥) ∈ 𝐿2(𝑅)   defined on any compact set of system 
states 𝛺𝑥 ⊂ 𝑅

𝑛 can be approximated by using output recurrent wavelet neural network as 

𝑓(𝑥) = ∑ 𝛼𝐽0,𝑘
𝐾𝐽𝑜
𝑘=1,2,…

∏ 𝜑𝐽0,𝑘(𝑥𝑖)
𝑛
𝑖=1 𝜑𝐽0,𝑘 (𝑓(𝑥)) + ∑ ∑ 𝛽𝑗,𝑘∏ 𝜓𝑗,𝑘(𝑥𝑖) 𝜓𝑗,𝑘 (𝑓(𝑥))

𝑛
𝑖=1

𝐾𝑗
𝑘=1,2…

𝐽
𝑗=𝐽0,

  

𝑓(𝑥) = ∑ 𝛼𝐽0,𝑘
𝐾𝐽𝑜
𝑘=1,2,… 𝜑𝐽0,𝑘(𝑥

′) + ∑ ∑ 𝛽𝑗,𝑘𝜓𝑗,𝑘(𝑥
′)

𝐾𝑗
𝑘=1,2…

𝐽
𝑗=𝐽0,

                              (8)   

In vector matrix form (7) can be represented as              
  𝑓(𝑥) = 𝛼𝑇𝜑(𝑥′) + 𝛽𝑇𝜓(𝑥′)                                   (9) 
where  𝑥′ = [𝑥1, 𝑥2, … , 𝑥𝑛, 𝑓(𝑥)]𝑇  is the input vector, 𝜑𝐽0,𝑘(𝑥

′) and 𝜓𝑗,𝑘(𝑥
′) are the vectors of 

scaling and wavelet functions with 𝛼  and 𝛽 as the weight vectors of these functions respectively. Functions 
may be taken from an appropriate wavelet family satisfying the norms of multiresolution analysis. Also, 
𝑗 ∈ 𝑍 and  𝑘 ∈ 𝑍 are wavelet parameters namely dilates and translates. From analytical point of view, these 
translates and dilates should extend over the entire temporal and spectral range of the function. This 
approach often results in an uncountable number of wavelet functions in (4) which is not feasible for 
constructing a practical network. However, universal approximation theorem and the norm of 
multiresolution analysis provides a pragmatic way to construct a parsimonious wavelet network structure. 
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Lemma 2: There exist finite number of dilates 𝑗 with some coarsest and finest values 𝐽0 and  𝐽 respectively 
along with finite translates 𝑘 at each dilation level such that a network constructed with these values can 
approximate and function 𝑓(𝑥) ∈ 𝐿2(𝑅)  defined on a compact set 𝛺𝑥 ⊂ 𝑅

𝑛 with arbitrary precision.    
Thus, there exist some optimal value of weight vectors  𝛼∗  and 𝛽∗ such that          
𝑓(𝑥) = 𝛼∗𝑇𝜑(𝑥′) + 𝛽∗𝑇𝜓(𝑥′) + 𝜀.                        (10) 
where 0 < 𝜖 < |𝜖𝑚| 
With 𝛼∗  and 𝛽∗ as the estimates of 𝛼∗  and 𝛽∗, wavelet network estimation of the function 𝑓(𝑥) can be 
expressed as  
𝑓(𝑥) = 𝛼̂𝑇𝜑(𝑥′) + 𝛽̂𝑇𝜓(𝑥′)                                 (11) 
Optimal weight vectors are now selected as 

[𝛼∗, 𝛽∗]𝑇 =
arg𝑚𝑖𝑛

[𝛼̂ 𝛽̂]𝑇∈ 𝛺
 { 𝑠𝑢𝑝
𝑥∈ 𝛺𝑥

|𝑓(𝑥) − 𝑓(𝑥)|}          (12)    

where  𝛺  and  𝛺𝑥 are compact sets of weights and state variables respectively.    
Thus, estimation error can be defined as 
 𝑓(𝑥) =  𝑓(𝑥) − 𝑓(𝑥) = 𝛼̃𝑇𝜑(𝑥′) + 𝛽̃𝑇𝜓(𝑥′) + 𝜖                                              (13) 
where  𝛼̃𝑇 =  𝛼∗𝑇 − 𝛼̂𝑇 and 𝛽̃𝑇 = 𝛽∗𝑇 − 𝛽̂𝑇  
Corollary: With properly designed update laws, weight parameters can be steered towards their optimum 
values and weight estimation error can be reduced to arbitrarily small value and function estimation error 
can be confined to a compact set such that |𝑓(𝑥)| < 𝑓𝑚 for  𝛺𝑥 ⊂ 𝑅

𝑛.  
 
3. OBSERVER DESIGN AND ANALYSIS   
3.1. Observer Design 
  This section describes the designing aspects of a Luenberger adaptive nonlinear observer for the state 
estimation of the system (2) under the assumptions 1-6. For the system of form (2), required observer can 
be modelled as [15] 

{
𝑥̇ = 𝐴𝑥 + 𝐵(𝑓(𝑥̂) + 𝑢) +𝑚(𝑦 − 𝑦̂)

𝑦̂ = 𝐶𝑥
                 (14)   

where 𝑥 = [𝑥1, … , 𝑥𝑛]
𝑇  ∈ 𝑅𝑛  are the estimates of the system states, 𝑦̂  is the estimate of system 

output,𝑚 = [𝑚1 𝑚2 … 𝑚𝑛]𝑇 is the observer gain matrix and 𝑓(𝑥̂) is the wavelet network estimate 
of the uncertain term 𝑓(𝑥) . As the function arguments are not available, their estimates are used in 
wavelet approximator as the input terms. Equation (14) can be expressed as 

{
𝑥̇ = 𝐴𝑥 + 𝐵(𝑓(𝑥̂) + 𝑢) +𝑚𝐶(𝑥 − 𝑥)

𝑦̂ = 𝐶𝑥
              (15) 

Defining the observer estimation error as  
𝑥̃ = 𝑥 − 𝑥  = [𝑥1 − 𝑥1 𝑥2 − 𝑥2 … 𝑥𝑛 − 𝑥𝑛]

𝑇                   (16) 
Differentiation of the error terms (16) results in the following error dynamics  

𝑥̇̃ = (𝐴 −𝑚𝐶)𝑥̃ + 𝐵 (𝑓(𝑥) − 𝑓(𝑥))                    (17)  

For an efficient observer design, the error dynamics (17) must settle down rapidly to a residual set 
containing origin. Next subsection presents the convergence analysis of observer error dynamics.   
3.2. Convergence Analysis 
To analyze the convergence, consider the Lyapunov function of the form 

𝑉1 =
1

2
𝑥̃𝑇𝑃𝑥̃ +

1

2
(𝛼̃𝑇𝛼̃ + 𝛽̃𝑇𝛽̃)                           (18)                       

where 𝑃  is a positive definite symmetric matrix of appropriate dimensions. 
Differentiating (18) along the system trajectories and making appropriate substitutions using (15) 

𝑉̇1 =
1

2
{𝑥̇̃𝑇𝑃𝑥̃ + 𝑥̃𝑇𝑃𝑥̇̃} + (𝛼̃𝑇 𝛼̇̃ + 𝛽̃𝑇 𝛽̇̃)         (19) 

𝑉̇1 =
1

2
{{(𝐴 −𝑚𝐶)𝑥̃ + 𝐵 (𝑓(𝑥) − 𝑓(𝑥̂))}

𝑇
𝑃𝑥̃ + 𝑥̃𝑇𝑃 {(𝐴 −𝑚𝐶)𝑥̃ + 𝐵 (𝑓(𝑥) − 𝑓(𝑥))}} + (𝛼̃𝑇 𝛼̇̃ +

𝛽̃𝑇 𝛽̇̃)    
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𝑉̇1 =
1

2
{{(𝐴 −𝑚𝐶)𝑥̃ + 𝐵 (𝑓(𝑥) − 𝑓(𝑥̂))}

𝑇
𝑃𝑥̃ + 𝑥̃𝑇𝑃 {(𝐴 −𝑚𝐶)𝑥̃ + 𝐵 (𝑓(𝑥) − 𝑓(𝑥))}} + (𝛼̃𝑇 𝛼̇̃ +

 𝛽̃𝑇 𝛽̇̃)    

𝑉̇1 =
1

2
{𝑥̃𝑇 {(𝐴 − 𝑚𝐶)𝑇𝑃 + 𝑃(𝐴 −𝑚𝐶)}𝑥̃ + (𝑓(𝑥) − 𝑓(𝑥))

𝑇
𝐵𝑇𝑃𝑥̃ + 𝑥̃𝑇𝑃𝐵(𝑓(𝑥) − 𝑓(𝑥)) +

(𝑓(𝑥) − 𝑓(𝑥̂))
𝑇
𝐵𝑇𝑃𝑥̃ + 𝑥̃𝑇𝑃𝐵 (𝑓(𝑥) − 𝑓(𝑥̂))} + (𝛼̃𝑇 𝛼̇̃ + 𝛽̃𝑇 𝛽̇̃)                                  (20) 

Here the term (𝑓(𝑥) − 𝑓(𝑥̂)) (14) represents the wavelet estimation error for nonlinear term 𝑓(𝑥) so 

above equation becomes 

𝑉̇1 =
1

2
{𝑥̃𝑇 {(𝐴 − 𝑚𝐶)𝑇𝑃 + 𝑃(𝐴 −𝑚𝐶)}𝑥̃ + (𝑓(𝑥) − 𝑓(𝑥))

𝑇
𝐵𝑇𝑃𝑥̃ + 𝑥̃𝑇𝑃𝐵(𝑓(𝑥) − 𝑓(𝑥)) +

(𝛼̃𝑇𝜑(𝑥′) + 𝛽̃𝑇𝜓(𝑥′) + 𝜖)
𝑇
𝐵𝑇𝑃𝑥̃ + 𝑥̃𝑇𝑃𝐵(𝛼̃𝑇𝜑(𝑥′) + 𝛽̃𝑇𝜓(𝑥′) + 𝜖)} + (𝛼̃𝑇 𝛼̇̃ + 𝛽̃𝑇 𝛽̇̃)                                     

Applying the conditions stated in assumption 4, 

𝑉̇1 =
1

2
{𝑥̃𝑇 {(𝐴 − 𝑚𝐶)𝑇𝑃 + 𝑃(𝐴 −𝑚𝐶)}𝑥̃ + (𝑓(𝑥) − 𝑓(𝑥))

𝑇
𝐵𝑇𝑃𝑥̃ + 𝑥̃𝑇𝑃𝐵(𝑓(𝑥) − 𝑓(𝑥)) +

(𝛼̃𝑇𝜑(𝑥′) + 𝛽̃𝑇𝜓(𝑥′))
𝑇
𝑦̃ + 𝑦̃𝑇 (𝛼̃𝑇𝜑(𝑥′) + 𝛽̃𝑇𝜓(𝑥′)) + 𝜖𝑇𝐵𝑇𝑃𝑥̃ + 𝑥̃𝑇𝑃𝐵𝜖} + (𝛼̃𝑇 𝛼̇̃ + 𝛽̃𝑇 𝛽̇̃)   

With the update laws of the form  
 

{
𝛼̇̃  =   − 𝜑(𝑥′)𝑦̃𝑇

𝛽̇̃  =  − 𝜓(𝑥′)𝑦̃𝑇
                                                      (21) 

above equation becomes 

𝑉̇1 =
1

2
{𝑥̃𝑇 {(𝐴 − 𝑚𝐶)𝑇𝑃 + 𝑃(𝐴 −𝑚𝐶)}𝑥̃ + (𝑓(𝑥) − 𝑓(𝑥))

𝑇
𝐵𝑇𝑃𝑥̃ + 𝑥̃𝑇𝑃𝐵(𝑓(𝑥) − 𝑓(𝑥)) +

𝜖𝑇𝐵𝑇𝑃𝑥̃ + 𝑥̃𝑇𝑃𝐵𝜖}  

Applying Leema 1 to above equation 

𝑉̇1 =
1

2
{𝑥̃𝑇 {(𝐴 − 𝑚𝐶)𝑇𝑃 + 𝑃(𝐴 −𝑚𝐶)}𝑥̃ + 𝜀1 (𝑓(𝑥) − 𝑓(𝑥))

𝑇
𝐵𝑇𝐵(𝑓(𝑥) − 𝑓(𝑥)) +

1

𝜀1
 𝑥̃𝑇𝑃𝑃𝑥̃} +

1

2
(𝜀2𝑥̃

𝑇𝑃𝐵𝐵𝑇𝑃𝑥̃ +
1

𝜀2
𝜖𝑇𝜖)   

𝑉̇1 ≤
1

2
{𝑥̃𝑇 {(𝐴 − 𝑚𝐶)𝑇𝑃 + 𝑃(𝐴 −𝑚𝐶)}𝑥̃ + 𝜀1‖𝑓(𝑥) − 𝑓(𝑥)‖

2 +
1

𝜀1
 𝑥̃𝑇𝑃2𝑥̃} +

1

2
(𝜀2𝑥̃

𝑇𝑃𝐵𝐵𝑇𝑃𝑥̃ +
1

𝜀2
𝜖𝑇𝜖)   

Applying assumption 1 

𝑉̇1 ≤
1

2
{−𝑥̃𝑇𝑄𝑥̃ + 𝜀1𝐿1

2‖𝑥 − 𝑥‖2 +
1

𝜀1
 𝑥̃𝑇𝑃2} +

1

2
(𝜀2𝑥̃

𝑇𝑃𝐵𝐵𝑇𝑃𝑥̃ +
1

𝜀2
𝜖𝑇𝜖)   

𝑉̇ ≤
1

2
{−𝑥̃𝑇𝑄𝑥̃ + 𝑥̃𝑇𝜀1𝐿1

2𝐼𝑥̃   +
1

𝜀1
 𝑥̃𝑇𝑃2𝑥̃} +

1

2
(𝜀2𝑥̃

𝑇𝑃2𝑥̃ +
1

𝜀2
𝜖𝑇𝜖)  

𝑉̇1 ≤
1

2
𝑥̃𝑇 {−𝑄 + 𝜀1𝐿1

2𝐼 +
1

𝜀1
 𝑃2 + 𝜀2𝑃

2} 𝑥̃ +
1

2

1

𝜀2
𝜖𝑇𝜖                                

𝑉̇1 ≤
1

2
𝑥̃𝑇 {−𝜆𝑚𝑖𝑛(𝑄) + 𝜀1𝐿1

2  + (
1

𝜀1
+ 𝜀2) 𝜆𝑚𝑎𝑥

2 (𝑃)} 𝑥̃ +
1

2

1

𝜀2
|𝜖𝑚|

2                  (22) 

where 𝜆𝑚𝑖𝑛(𝑄)  and 𝜆𝑚𝑎𝑥(𝑃)  are minimum and maximum eigen values of the matrices 𝑄  and 𝑃 
respectively. 
Thus 𝑉̇1 is negative outside a compact set defined as 

𝛺𝑥̃ = {𝑥̃| ‖𝑥̃‖ ≤

1

𝜀2
|𝜖𝑚|

2

{𝜆𝑚𝑖𝑛(𝑄)− 𝜀1𝐿1
2−(

1

𝜀1
+𝜀2) 𝜆𝑚𝑎𝑥

2 (𝑃)}
}                                  (23)                                                                                   

By appropriately selecting the values of parameters, defined set can be made arbitrarily small. 
 Next section describes the designing of event triggered control policy using the observer state estimates 
and analysis of closed loop system performance. 
4. EVENT TRIGGERING CONTROL POLICY 
4.1. Baseline Controller Design   
With the desired trajectory 𝑦𝑑(𝑡) satisfying assumption 2, tracking error vector for the system of form (1) 
can be defined as 
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𝑒 = [𝑒1 𝑒2 … 𝑒𝑛]𝑇                                         (24) 
where 

{

𝑒1 = 𝑥1 − 𝑦𝑑
𝑒2  = 𝑥2 − 𝑦𝑑̇

⋮ 

𝑒𝑛 = 𝑥𝑛 − 𝑦
𝑛−1

𝑑

                                    (25) 

         
Following dynamics results from the differentiation of error variables  

{

𝑒1̇ = 𝑒2
𝑒2̇ = 𝑒3

⋮

𝑒𝑛̇ = 𝑓(𝑥) + 𝑢 − 𝑦
𝑛

𝑑

                                                                (26) 

Tracking error dynamics can be expressed as 

𝑒̇ = 𝐴𝑒 + 𝐵 {𝑓(𝑥) + 𝑢 − 𝑦
𝑛

𝑑}                                (27) 

Formulation of a state feedback control term for the stabilization of (3) requires the error terms 𝑒 (24) and 
nonlinear system dynamics 𝑓(𝑥) to be known. However, as the system states are not available and 𝑓(𝑥) is 
uncertain system dynamics, control law is framed by considering the observer state estimates 𝑥 (15) and 
wavelet approximation of the uncertain dynamics 𝑓(𝑥̂) (11). With the estimated state variables, control 
law can be framed as 

𝑢 = −𝐾𝑒̂ − 𝑓(𝑥) + 𝑦
𝑛

𝑑                                        (28) 
where 
𝑒̂ = [𝑒̂1, 𝑒̂2, … , 𝑒̂𝑛]

𝑇 is the observer tracking error vector, its elements are defined as   

𝑒̂𝑖 = 𝑥  − 𝑦
𝑖−1

𝑑   ; 𝑖 = 1,… , 𝑛     
𝐾 = [𝑘1 𝑘2 … 𝑘𝑛−1 1] is the gain vector with 𝑘𝑖 < 0, 𝑖 = 1,… , 𝑛 − 1.  
Substitution of the control term (27) in (26) and subsequent rearrangement of the terms result in following 
equation 
𝑒̇ = 𝐴𝑒 + 𝐵{𝑓(𝑥) + 𝐾𝑒 − 𝐾𝑒 − 𝐾𝑒̂ − 𝑓(𝑥̂)} = (𝐴 − 𝐵𝐾)𝑒 + 𝐵{𝑓(𝑥) + 𝐾𝑒 − 𝐾𝑒̂ − 𝑓(𝑥̂)} =  (𝐴 −

𝐵𝐾)𝑒 + 𝐵{𝐾𝑥̃ +  𝑓(𝑥) + 𝑓(𝑥) − 𝑓(𝑥) − 𝑓(𝑥̂)} =   (𝐴 − 𝐵𝐾)𝑒 + 𝐵{𝐾𝑥̃ +  𝑓(𝑥) − 𝑓(𝑥) + 𝑓(𝑥) −

 𝑓(𝑥̂)}                                                                             (29) 
Closed loop error dynamics so generated (29) should settle down to a residual set containing origin. To 
analyze the convergence of closed loop signals with observer (14) and controller scheme (28), consider the 
following Lyapunov function 

𝑉2 =
1

2
𝑒𝑇𝑃1𝑒                                                       (30) 

Differentiation of the above equation and substitution of (29) results in 

𝑉̇2 =
1

2
{𝑒𝑇(𝐴 − 𝐵𝐾)𝑇𝑃1𝑒 + 𝑒

𝑇𝑃1(𝐴 − 𝐵𝐾)𝑒} + 
1

2
{𝑥̃𝑇𝐾𝑇𝐵𝑇𝑃1𝑒 + 𝑒

𝑇𝑃1𝐵𝐾𝑥̃} +
1

2
{(𝑓(𝑥) −

𝑓(𝑥))𝑇𝐵𝑇𝑃1𝑒 + 𝑒
𝑇𝑃1𝐵(𝑓(𝑥) − 𝑓(𝑥))} +

1

2
{(𝑓(𝑥) − 𝑓(𝑥̂))𝑇𝐵𝑇𝑃1𝑒 + 𝑒

𝑇𝑃1𝐵(𝑓(𝑥) − 𝑓(𝑥̂))}  

       (31)                                                           
Applying Leema 1 to above equation 

𝑉̇2 ≤ 
1

2
𝑒𝑇 {(𝐴 − 𝐵𝐾)𝑇𝑃1 + 𝑃1(𝐴 − 𝐵𝐾)}𝑒 +

1

2
{ 𝜀3𝑒

𝑇𝑃1𝑃1𝑒 +
1

𝜀3
 𝑥̃𝑇𝐾𝑇𝐵𝑇𝐵𝐾𝑥̃} +

1

2
{𝜀4𝑒

𝑇𝑃1𝑃1𝑒 +

1

𝜀4
(𝑓(𝑥) − 𝑓(𝑥))𝑇𝐵𝑇𝐵(𝑓(𝑥) − 𝑓(𝑥))} +

1

2
{𝜀5𝑒

𝑇𝑃1𝑃1𝑒 +
1

𝜀5
(𝑓(𝑥) − 𝑓(𝑥̂))𝑇𝐵𝑇𝐵(𝑓(𝑥) − 𝑓(𝑥))  }    

𝑉̇2 ≤
1

2
𝑒𝑇 {(𝐴 − 𝐵𝐾)𝑇𝑃1 + 𝑃1(𝐴 − 𝐵𝐾)}𝑒 +

1

2
{ 𝜀3𝑒

𝑇𝑃1𝑃1𝑒 + 𝜀4𝑒
𝑇𝑃1𝑃1𝑒 + 𝜀5𝑒

𝑇𝑃1𝑃1𝑒} +
1

2
 
1

𝜀3
 𝑥̃𝑇𝐾𝑇𝐵𝑇𝐵𝐾𝑥̃ +

1

2

1

𝜀4
‖(𝑓(𝑥) − 𝑓(𝑥))‖2 +

1

2

1

𝜀5
‖(𝑓(𝑥) − 𝑓(𝑥̂))  ‖

2
     

𝑉̇2 ≤
1

2
𝑒𝑇 {(𝐴 − 𝐵𝐾)𝑇𝑃1 + 𝑃1(𝐴 − 𝐵𝐾)}𝑒 +

1

2
𝑒𝑇{ (𝜀3 + 𝜀4 + 𝜀5)𝑃1

2}𝑒 +
1

2
 
1

𝜀3
〈𝑥̃𝑇𝐾𝑇𝐵𝑇 , 𝐵𝐾𝑥̃〉   +

1

2

1

𝜀4
‖(𝑓(𝑥) − 𝑓(𝑥))‖2 +

1

2

1

𝜀5
‖(𝑓(𝑥) − 𝑓(𝑥̂))  ‖

2
                                  (32) 

In above equation, the term 〈𝑥̃𝑇𝐾𝑇𝐵𝑇 , 𝐵𝐾𝑥̃〉  is positive semidefinite i.e. 〈𝑥̃𝑇𝐾𝑇𝐵𝑇 , 𝐵𝐾𝑥̃〉 ≥ 0 . 
Nonexistence of this term implies the existence of the following set 
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𝛺1 = { 𝑥̃𝑖, 𝑖 = 1, . . , 𝑛| 〈𝑥̃
𝑇𝐾𝑇𝐵𝑇 , 𝐵𝐾𝑥̃〉 = 0}      (33) 

Existence of this set does not impose any constraint on the controllability or observability norms secondly 
using Young’s inequality this term can be expressed as   
〈𝑥̃𝑇𝐾𝑇𝐵𝑇 , 𝐵𝐾𝑥̃〉 ≤ {∑ 𝑘𝑖𝑥𝑖

𝑛
𝑖=1 }2 ≤ {∑ 𝑘𝑖

2𝑛
𝑖=1 𝑥̃𝑖

2 + 2∑ ∑ 𝑘𝑖𝑘𝑗 |𝑥̃𝑖| |𝑥̃𝑗|
𝑛
𝑗+1

𝑛−1
𝑖=1 } ≤ ∑ 𝑘𝑖

2𝑛
𝑖=1 𝑥̃𝑖

2 +

 ∑ {𝑘𝑖
2𝑥̃𝑖

2{∑ 𝜇𝑖𝑗
𝑛
𝑗=𝑖+1 } + ∑  

1

𝜇𝑖𝑗
𝑘𝑗
2𝑥̃𝑗

2𝑛
𝑗=𝑖+1  }𝑛−1

𝑖=1     

where 𝜇𝑖𝑗 > 0 

〈𝑥̃𝑇𝐾𝑇𝐵𝑇 , 𝐵𝐾𝑥̃〉 ≤  ∑ {𝑥̃𝑖
𝑇 {𝑘𝑖

2(1 + ∑ 𝜇𝑖𝑗
𝑛
𝑗=𝑖+1 + ∑  

1

𝜇𝑗𝑖
)𝑖

𝑗=1
𝑖>1

} 𝑥̃𝑖}
𝑛
𝑖=1                   (34) 

Due to inequality (34), corollary of lemma2 and assumption 2, equation (32) results in  

 𝑉̇2 ≤
1

2
𝑒𝑇 {(𝐴 − 𝐵𝐾)𝑇𝑃1 + 𝑃1(𝐴 − 𝐵𝐾)}𝑒 +

1

2
𝑒𝑇{ (𝜀3 + 𝜀4 + 𝜀5)𝑃1

2}𝑒 +
1

2
 
1

𝜀3
∑ {𝑥̃𝑖

𝑇 {𝑘𝑖
2(1 +𝑛

𝑖=1

∑ 𝜇𝑖𝑗
𝑛
𝑗=𝑖+1 + ∑  

1

𝜇𝑗𝑖
)𝑖

𝑗=1
𝑖>1
𝑖≠𝑗

} 𝑥̃𝑖} +
1

2

1

𝜀4
𝑥̃𝑇𝐿2

2𝐼𝑥̃ +
1

2

1

𝜀5
𝑓𝑚
2         

Considering assumption 5,  

𝑉̇2 ≤ −
1

2
𝑒𝑇 𝑄1𝑒 +

1

2
𝑒𝑇{ (𝜀3 + 𝜀4 + 𝜀5)𝑃1

2}𝑒 +
1

2
 
1

𝜀3
∑ {𝑥̃𝑖

𝑇𝜌𝑥̃𝑖}
𝑛
𝑖=1  +

1

2

1

𝜀4
𝑥̃𝑇𝐿2

2𝐼𝑥̃ +
1

2

1

𝜀5
𝑓𝑚
2  

𝑉̇2 ≤
1

2
𝑒𝑇{−𝜆𝑚𝑖𝑛(𝑄1) + (𝜀3 + 𝜀4 + 𝜀5) 𝜆𝑚𝑎𝑥

2 (𝑃1)}𝑒 + +
1

2

1

𝜀5
𝑓𝑚  
2 + 𝑥̃𝑇(

1

2

1

𝜀4
𝐿2
2𝐼 +

1

2
 
1

𝜀3
𝜌𝐼) 𝑥̃  (34)                                                         

where 𝜆𝑚𝑖𝑛(𝑄1) and 𝜆𝑚𝑎𝑥(𝑃1) are minimum and maximum eigen values of the matrices 𝑄1  and 𝑃1 
respectively and  

𝜌 = {𝑘𝑖
2(1 + ∑ 𝜇𝑖𝑗

𝑛
𝑗=𝑖+1 + ∑  

1

𝜇𝑗𝑖
)𝑖

𝑗=1
𝑖>1
𝑖≠𝑗

}            (36) 

Appearance of the observer error term in (35) requires the redefining of observer and controller Lyapunov 
functions. This redefinition will allow the separate analysis of controller and observer signals and smooth 
establishment of stability norms. Considering the complete Lyapunov function as the combination of (18) 
and (30) 
𝑉 = 𝑉1 +  𝑉2 = 𝑉𝑎 + 𝑉𝑏                                       (37) 
with  

𝑉̇𝑎 = 
1

2
𝑥̃𝑇 {−𝜆𝑚𝑖𝑛(𝑄) + 𝜀1𝐿1

2 + (
1

𝜀1
+ 𝜀2) 𝜆𝑚𝑎𝑥

2 (𝑃) +
1

𝜀4
𝐿2
2 + 

1

𝜀3
𝜌} 𝑥̃ +

1

2

1

𝜀2
|𝜖𝑚|

2 (38) 

and  

𝑉̇𝑏 = 
1

2
𝑒𝑇{−𝜆𝑚𝑖𝑛(𝑄1) + (𝜀3 + 𝜀4 + 𝜀5 )𝜆𝑚𝑎𝑥

2 (𝑃1)}𝑒 +
1

2

1

𝜀5
𝑓𝑚  
2                  (39) 

Negativeness of (38) and (39) allows the establishment of separate converging residual sets for observer 
estimation error (17) and controller tracking error (27).   Considering the derivative of (37) 

  𝑉̇ =  
1

2
𝑥̃𝑇 {−𝜆𝑚𝑖𝑛(𝑄) + 𝜀1𝐿1

2 + (
1

𝜀1
+ 𝜀2) 𝜆𝑚𝑎𝑥

2 (𝑃) +
1

𝜀4
𝐿2
2 + 

1

𝜀3
𝜌} 𝑥̃ +

1

2

1

𝜀2
|𝜖𝑚|

2 +

 
1

2
𝑒𝑇{−𝜆𝑚𝑖𝑛(𝑄1) + (𝜀3 + 𝜀4 + 𝜀5 )𝜆𝑚𝑎𝑥

2 (𝑃1)}𝑒 +
1

2

1

𝜀5
𝑓𝑚  
2                                                              (40) 

Above equation allows the redefining of (23) and defining of following convergence sets   

𝛺𝑥̃ = {𝑥̃| ‖𝑥̃‖ ≤

1

𝜀2
|𝜖𝑚|

2

{𝜆𝑚𝑖𝑛(𝑄)− 𝜀1𝐿1
2−(

1

𝜀1
+𝜀2) 𝜆𝑚𝑎𝑥

2 (𝑃)}− 
1

2

1

𝜀4
𝐿2
2−

1

2
 
1

𝜀3
𝜌
}         (41) 

and  

 𝛺𝑒 = {𝑒| ‖𝑒‖ ≤

1

𝜀5
𝑓𝑚  
2

{𝜆𝑚𝑖𝑛(𝑄1)− (𝜀3+𝜀4+𝜀5) 𝜆𝑚𝑎𝑥
2 (𝑃1)}

}                                              (42) 

With the definition of above sets, the terms 𝑉̇𝑎 and 𝑉̇𝑏 and hence 𝑉̇ are negative when the error terms  𝑥̃ 
and 𝑒 are outside the residual sets (41) and (42) respectively.        
4.2. Event Triggered Control Design    
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This section describes the transformation of controller term (28) into event triggered form. Event triggered 
control scheme has been proved highly effective in the case of control on the network. Under the 
conditions of limited network resources and multiple control loops sharing a communication channel, 
this strategy often allows the optimal sharing of network resources. 
In the event triggering scheme, control policy is updated at some nonuniformly spaced time instants 
known as triggering instants. These triggering instants are governed by some appropriately designed 
triggering mechanisms which ensure the system performance to be within some prescribed performance 
limits. Violation of these delimiting conditions reflects the considerable detuning of system variables and 
requires the updation of control term by invoking a triggering instant. This scheme also reduces the 
computational complexity of the controller as controller computations are performed at discrete instants 
only [1,7].               
Event triggered form of the control term (28) can be defined as 

𝑣(𝑡) = 𝑢(𝑡𝑘) = −𝐾𝑒̂(𝑡𝑘) − 𝑓(𝑥̂(𝑡𝑘)) + 𝑦
𝑛

𝑑(𝑡𝑘)                                                             (43)   
where the terms are the values of the variables in (28) at some instant 𝑡 = 𝑡𝑘. Time instant, 𝑡𝑘 , 𝑘 ∈ 𝑍 is 
the current triggering instant i.e. the instant at which control term is updated. Considering 𝑡𝑘+1 as the 
next triggering instant, the control term 𝑣(𝑡) (43) is held constant for the duration  ∆𝑡 = 𝑡𝑘+1 − 𝑡𝑘  
known as inter execution time. To control the inter-execution time following triggering mechanisms are 
considered 

(𝑒̂(𝑡) − 𝑒̂(𝑡𝑘))
𝑇
(𝑒̂(𝑡) − 𝑒̂(𝑡𝑘)) ≤ 𝑚1                                                                                  (44) 

((𝑓(𝑥̂ (𝑡)) − 𝑓(𝑥̂(𝑡𝑘)))
𝑇

((𝑓(𝑥 (𝑡)) − 𝑓(𝑥̂(𝑡𝑘))) ≤ 𝑚2                                             (45) 

where 𝑚𝑖 < 0, 𝑖 = 1,2are the threshold values reflecting the limit of permissible deviations for various 
control components, whenever the deviation exceeds the threshold value updation is carried out. Thus, 
the next update instant can be defined as 

 𝑡𝑘+1 = 𝑖𝑛𝑓 {𝑖𝑛𝑓 {𝑡 ≥ 𝑡𝑘; (𝑒̂(𝑡) − 𝑒̂(𝑡𝑘))
𝑇
(𝑒̂(𝑡) − 𝑒̂(𝑡𝑘)) ≥ 𝑚1 } , 𝑖𝑛𝑓 {𝑡 ≥ 𝑡𝑘; (𝑓(𝑥̂ (𝑡)) −

 𝑓(𝑥̂(𝑡𝑘))
𝑇
(𝑓(𝑥̂ (𝑡)) − 𝑓(𝑥̂(𝑡𝑘)) ≥ 𝑚2 }}                                                    (46)  

Next subsection details the convergence of closed loop with event triggered control.  
4.3. Convergence Analysis with Event Triggered Control     
In this section, convergence of the closed loop system under the action of event triggered control scheme 
is analyzed. It is carried out by examining the convergence of Lyapunov function (30) due to control term 
(43). The analysis is carried out at an instant 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1). 
Under the effect of event triggered control scheme (43), the error dynamics (29) becomes   

𝑒̇ =  (𝐴 − 𝐵𝐾)𝑒(𝑡) + 𝐵 {𝐾𝑥̃(𝑡) + 𝐾 (𝑒̂(𝑡) − 𝑒̂(𝑡𝑘)) + 𝑓(𝑥(𝑡)) − 𝑓(𝑥 (𝑡)) + 𝑓(𝑥 (𝑡)) − 𝑓(𝑥̂ (𝑡)) +

𝑓(𝑥̂ (𝑡)) − 𝑓(𝑥̂(𝑡𝑘)) − (𝑦
𝑛

𝑑(𝑡) − 𝑦
𝑛

𝑑(𝑡𝑘)}                                          (47) 

As compared to (29), (47) contains some additional dynamics invoked due to event triggering control 
term. These terms may result in degeneration of the system up to a certain extent. Proposed event 
triggering mechanisms not only minimize the degenerative effect but also reduces the number of triggering 
instants.  
Reconsidering the equation (30)                           

𝑉2(t) =
1

2
𝑒𝑇(𝑡)𝑃1𝑒(𝑡)                                        (48) 

Differentiation of (48) and subsequent substitution of (47) leads to following analytical developments  

𝑉̇2 =
1

2
{𝑒𝑇(𝑡)(𝐴 − 𝐵𝐾)𝑇𝑃1𝑒(𝑡) + 𝑒

𝑇(𝑡)𝑃1(𝐴 − 𝐵𝐾)𝑒(𝑡)} + 
1

2
{𝑥̃𝑇(𝑡)𝐾𝑇𝐵𝑇𝑃1𝑒(𝑡) +

 𝑒𝑇(𝑡)𝑃1𝐵𝐾𝑥̃(𝑡)} +
1

2
{ (𝑒̂(𝑡) − 𝑒̂(𝑡𝑘))

𝑇
𝐾𝑇𝐵𝑇𝑃1𝑒(𝑡) + 𝑒

𝑇(𝑡)𝑃1𝐵𝐾 (𝑒̂(𝑡) − 𝑒̂(𝑡𝑘))} +
1

2
{(𝑓(𝑥(𝑡)) −

𝑓(𝑥 (𝑡)))
𝑇
𝐵𝑇𝑃1𝑒(𝑡) + 𝑒

𝑇(𝑡)𝑃1𝐵 (𝑓(𝑥(𝑡)) − 𝑓(𝑥 (𝑡)))} +
1

2
{(𝑓(𝑥 (𝑡)) − 𝑓(𝑥̂ (𝑡)))

𝑇
𝐵𝑇𝑃1𝑒(𝑡) +

𝑒𝑇(𝑡)𝑃1𝐵 (𝑓(𝑥 (𝑡)) − 𝑓(𝑥̂ (𝑡)))} + 
1

2
{(𝑓(𝑥̂ (𝑡)) − 𝑓(𝑥(𝑡𝑘))

𝑇
𝐵𝑇𝑃1𝑒(𝑡) + 𝑒

𝑇(𝑡)𝑃1𝐵 (𝑓(𝑥̂ (𝑡)) −
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 𝑓(𝑥̂(𝑡𝑘))} − 
1

2
{(𝑦
𝑛

𝑑(𝑡) − 𝑦
𝑛

𝑑(𝑡𝑘))
𝑇
𝐵𝑇𝑃1𝑒(𝑡) + 𝑒

𝑇(𝑡)𝑃1𝐵 (𝑦
𝑛

𝑑(𝑡) − 𝑦
𝑛

𝑑(𝑡𝑘))}                           

  (49) 

𝑉̇2 ≤ 
1

2
𝑒𝑇 (𝑡){(𝐴 − 𝐵𝐾)𝑇𝑃1 + 𝑃1(𝐴 − 𝐵𝐾)}𝑒(𝑡) +

1

2
{ 𝜀3𝑒

𝑇(𝑡)𝑃1𝑃1𝑒(𝑡) +
1

𝜀3
 𝑥̃𝑇(𝑡)𝐾𝑇𝐵𝑇𝐵𝐾𝑥̃(𝑡) } +

1

2
{ 𝜀6𝑒

𝑇(𝑡)𝑃1𝑃1𝑒(𝑡) +
1

𝜀6
 (𝑒̂(𝑡) − 𝑒̂(𝑡𝑘))

𝑇
(𝑡)𝐾𝑇𝐵𝑇𝐵𝐾(𝑒̂(𝑡) − 𝑒̂(𝑡𝑘)) } +

1

2
{𝜀4𝑒

𝑇𝑃1𝑃1𝑒 +

1

𝜀4
(𝑓(𝑥(𝑡)) − 𝑓(𝑥 (𝑡)))

𝑇
𝐵𝑇𝐵 (𝑓(𝑥 (𝑡)) − 𝑓(𝑥 (𝑡)))} +

1

2
{𝜀7𝑒

𝑇(𝑡)𝑃1𝑃1𝑒(𝑡) +
1

𝜀7
(𝑓(𝑥 (𝑡)) −

𝑓(𝑥̂ (𝑡)))
𝑇
𝐵𝑇𝐵 (𝑓(𝑥 (𝑡)) − 𝑓(𝑥 (𝑡𝑘)))} +

1

2
{𝜀8𝑒

𝑇(𝑡)𝑃1𝑃1𝑒(𝑡) +
1

𝜀8
(𝑓(𝑥̂ (𝑡)) −

 𝑓(𝑥̂(𝑡𝑘))
𝑇
𝐵𝑇𝐵 (𝑓(𝑥̂ (𝑡)) − 𝑓(𝑥̂(𝑡𝑘))  } − 

1

2
{𝜀9𝑒

𝑇(𝑡)𝑃1𝑃1𝑒(𝑡) +
1

𝜀9
(𝑦
𝑛

𝑑(𝑡) −

𝑦
𝑛

𝑑(𝑡𝑘))
𝑇
𝐵𝑇𝐵 (𝑦

𝑛

𝑑(𝑡) − 𝑦
𝑛

𝑑(𝑡𝑘))  }     

𝑉̇2 ≤
1

2
𝑒𝑇(𝑡){(𝐴 − 𝐵𝐾)𝑇𝑃1 + 𝑃1(𝐴 − 𝐵𝐾)}𝑒(𝑡) +

1

2
𝑒𝑇(𝑡){ (𝜀3 + 𝜀4 + 𝜀6 + 𝜀5 + 𝜀8 + 𝜀9)𝑃1

2}𝑒(𝑡) +
1

2
 
1

𝜀3
〈𝑥̃𝑇(𝑡)𝐾𝑇𝐵𝑇 , 𝐵𝐾𝑥̃ (𝑡)〉   +

1

2
 
1

𝜀6
〈(𝑒̂(𝑡) − 𝑒̂(𝑡𝑘))

𝑇
𝐾𝑇𝐵𝑇 , 𝐵𝐾(𝑒̂(𝑡) − 𝑒̂(𝑡𝑘))〉 +

1

2

1

𝜀4
‖(𝑓(𝑥(𝑡)) −

𝑓(𝑥 (𝑡)))‖
2
+
1

2

1

𝜀5
‖(𝑓(𝑥 (𝑡)) − 𝑓(𝑥 (𝑡))) ‖

2
+
1

2

1

𝜀8
‖(𝑓(𝑥̂ (𝑡)) − 𝑓(𝑥̂(𝑡𝑘)) ‖

2
+
1

2

1

𝜀9
‖(𝑦

𝑛

𝑑(𝑡) −

𝑦
𝑛

𝑑(𝑡𝑘)) ‖
2
            

𝑉̇2 ≤
1

2
𝑒𝑇 {(𝐴 − 𝐵𝐾)𝑇𝑃1 + 𝑃1(𝐴 − 𝐵𝐾)}𝑒 +

1

2
𝑒𝑇(𝑡){ (𝜀3 + 𝜀4 + 𝜀6 + 𝜀5 + 𝜀8 + 𝜀9)𝑃1

2}𝑒(𝑡) +
1

2
 
1

𝜀3
∑ {𝑥̃𝑖

𝑇𝜌𝑥̃𝑖}
𝑛
𝑖=1 +

1

2
 
1

𝜀3
∑ {(𝑒̂(𝑡) − 𝑒̂(𝑡𝑘))

𝑇
𝜌(𝑒̂(𝑡) − 𝑒̂(𝑡𝑘))}

𝑛
𝑖=1 +

1

2

1

𝜀4
𝑥̃𝑇𝐿2

2𝐼𝑥̃ +
1

2

1

𝜀5
𝑓𝑚  
2 +

 
1

2

1

𝜀8
‖(𝑓(𝑥̂ (𝑡)) − 𝑓(𝑥(𝑡𝑘)) ‖

2
+
1

2

1

𝜀9
‖(𝑦

𝑛

𝑑(𝑡) − 𝑦
𝑛

𝑑(𝑡𝑘)) ‖
2
   

𝑉̇2 ≤
1

2
𝑒𝑇{−𝜆𝑚𝑖𝑛(𝑄1) + (𝜀3 + 𝜀4 + 𝜀6 + 𝜀5 + 𝜀8 + 𝜀9) 𝜆𝑚𝑎𝑥

2 (𝑃1)}𝑒 + +
1

2

1

𝜀5
𝑓𝑚  
2 + 𝑥̃𝑇(

1

2

1

𝜀4
𝐿2
2𝐼 +

1

2
 
1

𝜀3
𝜌𝐼) 𝑥̃  + 

1

2
 
1

𝜀3
(𝑒̂(𝑡) − 𝑒̂(𝑡𝑘))

𝑇
𝜌𝐼 (𝑒̂(𝑡) − 𝑒̂(𝑡𝑘)) + 

1

2

1

𝜀8
‖(𝑓(𝑥̂ (𝑡)) − 𝑓(𝑥̂(𝑡𝑘)) ‖

2
+

1

2

1

𝜀9
‖(𝑦

𝑛

𝑑(𝑡) − 𝑦
𝑛

𝑑(𝑡𝑘)) ‖
2
  

𝑉̇2 ≤
1

2
𝑒𝑇{−𝜆𝑚𝑖𝑛(𝑄1) + (𝜀3 + 𝜀4 + 𝜀6 + 𝜀5 + 𝜀8 + 𝜀9) 𝜆𝑚𝑎𝑥

2 (𝑃1)}𝑒 + +
1

2

1

𝜀5
𝑓𝑚  
2 + 𝑥̃𝑇(

1

2

1

𝜀4
𝐿2
2𝐼 +

1

2
 
1

𝜀3
𝜌𝐼) 𝑥̃  + 

1

2
 
1

𝜀3
𝜌𝑚1

2 + 
1

2

1

𝜀8
𝑚2

2 +
1

2

1

𝜀9
𝜎2    (50) 

Thus, 𝑉̇ is negative outside the compact sets defined as    

𝛺𝑥̃ = {𝑥̃| ‖𝑥̃‖ ≤

1

𝜀2
|𝜖𝑚|

2

{𝜆𝑚𝑖𝑛(𝑄)− 𝜀1𝐿1
2−(

1

𝜀1
+𝜀2) 𝜆𝑚𝑎𝑥

2 (𝑃)}− 
1

2

1

𝜀4
𝐿2
2−

1

2
 
1

𝜀3
𝜌
}                                   (51) 

and  

𝛺𝑒 = {𝑒| ‖𝑒‖ ≤

1

𝜀5
𝑓𝑚  
2 + 

1

𝜀3
𝜌𝑚1

2+ 
1

𝜀8
𝑚2

2+
1

𝜀9
𝜎2

{𝜆𝑚𝑖𝑛(𝑄1)− (𝜀3+𝜀4+𝜀6+𝜀5+𝜀8+𝜀9) 𝜆𝑚𝑎𝑥
2 (𝑃1)}

}                                                                                        

(52) 
Thus, for the networked closed loop system containing the dynamics (1) with controllable – observable 
triple (𝐴 𝐵 𝐶)  and Lipschitz continuous uncertain nonlinearities, adaptive observer and event 
triggering control scheme (14) and (43) ensures the ultimate upper boundedness of the closed loop 
dynamics with error variables approaching to residual sets (51) and (52).    
Also, the boundedness of closed loop signals implies that 𝑉̇ ∈ 𝐿∞  which means Lyapunov function 𝑉 is 
bounded and does not contain any discontinuity, so    
{𝑉(𝑡)|𝑉(𝑡) ∈ 𝐶; 𝑉(𝑡) ≤ 𝑉(0)} ; ∀𝑡 ∈  [0,∞)                                                                    (53) 
This mathematical development can be viewed as an extension of the convergence analysis resulting in 
residual sets (41) and (42). The effect of event triggering can be observed by comparing the sets (41) and 
(51) and (42) and (52) respectively. Comparison reveals that observer dynamics is not affected by the event 
triggering and the convergence set is preserved. However, in the case of controller the effect of event 
triggering is reflected by the additional terms appearing in (52). These terms are mainly controlled by the 
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threshold values of the triggering mechanisms (44) and (45). The effect of these terms can be viewed as 
the enlargement of the residual set thereby causing a deterioration in system performance, higher 
threshold values result in larger sets. However, as proved in subsequent section, higher threshold values 
may result in lesser switching instants and thus there is a tradeoff between system performance and 
triggering instants. By properly selecting the threshold limits an acceptable system performance with an 
appropriate number of triggering instants can be achieved. 
      Next section analyses the admissibility issues of the event triggering schemes under the constraints 
imposed by issues like Zeno Behavior. 
4.4. Admissibility with Event Triggered Control     
Zeno behavior refers to an infinite number of triggering instants within a finite time duration. Zeno 
behavior often imposes pragmatic constraints on the effective implementation of event control scheme 
and are required to be excluded. To avoid the piling of triggering instants it is required to ensure that 
there exists a finite positive lower bound for inter execution time [1].  
Consider the triggering mechanisms described in (44) and (45) 

 ∆𝑒̂(𝑡) =  (𝑒̂(𝑡) − 𝑒̂(𝑡𝑘))
𝑇
(𝑒̂(𝑡) − 𝑒̂(𝑡𝑘))                    (54)  

∆𝑓(𝑡) = (𝑓(𝑥̂ (𝑡)) − 𝑓(𝑥(𝑡𝑘))
𝑇
(𝑓(𝑥̂ (𝑡)) − 𝑓(𝑥̂(𝑡𝑘))                                                (55) 

Differentiation of (54) and (55) and application of Lemma 1 results in  

∆𝑒̇̂ (𝑡) =   𝜀10(𝑒̂(𝑡) − 𝑒̂(𝑡𝑘))
𝑇
(𝑒̂(𝑡) − 𝑒̂(𝑡𝑘)) + 

1

𝜀10
  (𝑒̇̂(𝑡))

𝑇
(𝑒̇̂ (𝑡))                          (56)  

∆𝑓̇(𝑡) =  𝜀11  (𝑓(𝑥̂ (𝑡)) − 𝑓(𝑥̂(𝑡𝑘))
𝑇
(𝑓(𝑥̂ (𝑡)) − 𝑓(𝑥(𝑡𝑘)) + 

1

𝜀11
   (𝑓̇(𝑥̂ (𝑡)))

𝑇
(𝑓̇(𝑥 (𝑡))) (55) 

∆𝑒̇̂ (𝑡) =  𝜀10‖(𝑒̂(𝑡) − 𝑒̂(𝑡𝑘))‖
2
+ 

1

𝜀10
 ‖𝑒̇̂ (𝑡)‖

2
  

∆𝑓̇(𝑡) =  𝜀11 ‖(𝑓(𝑥̂ (𝑡)) − 𝑓(𝑥̂(𝑡𝑘))‖
2
+ 

1

𝜀11
 ‖𝑓̇(𝑥̂ (𝑡))‖

2
                                    (57) 

As all the closed loop signals, update laws and wavelet basis are bounded and continuous it implies that   

𝑒̇̂ (𝑡)  ∈ 𝐿∞  ,  𝑓̇(𝑥 (𝑡)) ∈  𝐿∞                               (58)               
It means there exist positive constants  𝜌1 and 𝜌2 such that  

‖𝑒̇̂ (𝑡)‖
2
≤ 𝜌1 ; ‖𝑓̇(𝑥 (𝑡))‖

2
≤ 𝜌2                    (59) 

with  

∆𝑒̇̂ (𝑡) ≤  𝜀10𝑚1 + 
1

𝜀10
 𝜌1                                    (60) 

∆𝑓̇(𝑡) ≤  𝜀11𝑚2 + 
1

𝜀11
 𝜌2

2                                  (61) 

Above equations implies that both the dynamics require finite time to make transition from zero to 
threshold value and thus ensures the presence of a finite time bound in both the cases. Integrating the 
above dynamics  

∫ ∆𝑒̇̂ (𝑡)
𝑡

𝑡𝑘
𝑑𝑡 ≤  ∫ (𝜀10𝑚1 + 

1

𝜀10
 𝜌1)

𝑡

𝑡𝑘
𝑑𝑡         (62) 

∫ ∆𝑓̇(𝑡)
𝑡

𝑡𝑘
𝑑𝑡 ≤  ∫ (𝜀11𝑚2 + 

1

𝜀11
 𝜌2)

𝑡

𝑡𝑘
𝑑𝑡          (63) 

Considering the limiting cases   

𝑚1 = (𝜀10𝑚1 + 
1

𝜀10
 𝜌1) (𝑡1 − 𝑡𝑘)             (64) 

𝑚2 = (𝜀11𝑚2 + 
1

𝜀11
 𝜌2) (𝑡2 − 𝑡𝑘)             (65) 

As the constants  𝑚1, (𝜀10𝑚1 + 
1

𝜀10
 𝜌1) ,𝑚2, (𝜀11𝑚2 + 

1

𝜀11
 𝜌2)  > 0 , it indicates that  

𝑡1  >  𝑡𝑘  and 𝑡2  >  𝑡𝑘  with 
𝑡𝑘+1  ≥  𝑖𝑛𝑓(𝑡1, 𝑡2)                                               (66) 
Thus, Zeno behavior is successfully avoided.  
Equation (64) and (65) clearly reflect the positive monotonic relation between the threshold value and 
next triggering instant and thus substantiate the conclusions drawn in previous subsection.  
Remark 2. Equation (57) poses the requirement of continuously differentiable wavelet basis for the 
construction of wavelet network. Norms of Lipschitz continuity is used for the selection of wavelets and 
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the wavelet basis functions with vanishing moments 𝑝 ≥ 3 are selected for the construction of wavelet 
network [36].  
Next section illustrates the simulation study carried out to validate the effectiveness of the control scheme.  
5. SIMULATION 
Following system dynamics is considered to conduct the simulation   

{

𝑥̇1 = 𝑥2
𝑥̇2 =  𝑓(𝑥) + 𝑢
𝑦 =  𝑥1 + 𝑥2

                                                                                                                         (67) 

where 𝑓(𝑥) = 0.5 sin(𝑥2
2) + 0.75𝑥1

2(1 − 𝑥2) is the uncertain nonlinear dynamics. System belongs to the 
class of strict feedback systems (1) with unknown system states and satisfies all the assumptions specified. 
Vector matrix notation for the system is  

{
𝑥̇ = 𝐴𝑥 + 𝐵(𝑓 + 𝑢)

𝑦 = 𝐶𝑥
                                                                                                                 (68) 

where  

𝐴 =  [
0 1
0 0

] ;  𝐵 = [
0
1
]  ; 𝐶 =  [1 1]  

Firstly, an observer is designed for the estimation of system states, observer dynamics (14) is implemented 
with following settings  
Initial condition are  𝑥(0) = [0.3 0]𝑇 
 Observer gain is taken as   𝑚 = [12.54 2.56]𝑇  
Observer is augmented with an output recurrent wavelet network for the estimation of the system 
uncertainty. Wavelet network is constructed by using Daubechies wavelet (db4) with n = 2, coarsest and 
finest resolution levels are selected as 2 and 3 respectively. Number of translates at coarsest resolution level 
are taken as 4 and translates are doubled every time when resolution is incremented by1. Also, vanishing 
moments of Daubechies wavelet (db4) is 𝑝 = 4  and it satisfies the required conditions of smoothness as 
demanded by (57). Weights of the wavelet network are adjusted using tunning laws (21) and initial setting 
is taken as zero.   
Secondly, an event triggered state feedback law is formulated using (43) to ensure the effective tracking 
performance of the system (1) configured in closed loop. Control scheme utilizes the observer state 
estimates (15) and wavelet network output (11) for framing of control term. Data transmission from 
observer to controller is carried out at non-regularly spaced instants controlled by triggering mechanisms. 
Controller implementation is performed with following parameter settings 
Initial condition: 𝑥(0) = [0.3 0]𝑇 ; gain settings: 𝐾 = [10.67 1]𝑇  ; desired trajectory:  𝑦𝑑 = sin (𝑡) 
; event triggering thresholds: 𝑚1 = 0.75 , 𝑚2 = 0.95     
Results of the simulations conducted are shown in figures 1,2,3 and 4. Figures clearly reveals the efficacy 
of the proposed event triggered observer – controller scheme. Figures 1 and 2 display the estimation ability 
of the observer formulated. As clear from the figures, observer effectively estimate the system states and 
the estimation error converges to small neighborhood of origin. Convergence time and rms values of the 
state estimation errors are  
Table I 
Estimation Error Attributes 
 

Estimation Eror Convergence 
time 

RMS value 

𝑥1 − 𝑥1 0.1 sec 0.0071 
𝑥2 − 𝑥2 5.1 sec 4.04 𝑋 10−4 

The data also accounts for the accurate and rapid approximation capability of the wavelet network used 
for the estimation of the system uncertainty. 
Figure 3 shows the tracking performance of the system with event triggered control. Even with event 
triggered control scheme the system state closely tracks the desired trajectory with tracking error 
bounded within the permissible limits of  
[−0.15 0.15]  with rms value of the order of  0.0608. Figure 4 displays the event triggered control 
policy evolved with the control law (43). Control policy seems feasible and acceptable from the point of 
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view of event triggered norms and performance of the closed loop system. Control term is free from eno 
behaviour with minimum and maximum value of inter-execution time equal to 0.2 sec and   1.2 sec 
respectively. On an average there are 6 triggering instants over a span of  
2 sec. These attributes seem feasible from pragmatic point of view and thus the proposed scheme 
demonstrates an effective performance in terms of control on the network.     
 
6. CONCLUSION 
An event triggered control algorithm is presented for a class of strict feedback nonlinear system with 
unmeasured states and uncertain nonlinear dynamics. An adaptive observer is framed for the estimation 
of the system states. Observer location has been chosen at the sensor site as it allows the continuous 
evolution of the observer estimates without using network resources. An output recurrent wavelet neural 
network is constructed by using orthonormal wavelets is used for estimation of nonlinearity.   It is 
augmented with the conventional observer to ensure effective estimation of system states under the 
conditions of unknown dynamics. Event triggered scheme allows the effective sharing of network 
resources and at the same time reduces the information release instants of the sensor / observer and 
computational complexity of the controller. Analytical proofs have been             developed to testify the 
uniform ultimate boundedness of closed loop signals and Zeno free behavior of the control term. Finally, 
a simulation study is conducted to validate the effectiveness of observer – controller scheme. Simulation 
results illustrate the Zeno free control policy with controller and observer error dynamics bounded within 
the permissible limits. 
 

 
Fig. 1. System performance a. System state 𝑥1 b. Observer estimation 𝑥1 c, Estimation error 𝑥1 − 𝑥1   
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Fig. 2. a. System state 𝑥2 b. Observer estimation 𝑥2 c. Estimation error 𝑥2 − 𝑥2 

 
Fig. 3. a. Trajectory followed by state variable 𝑥1 and desired trajectory 𝑦𝑑  b. Tracking error 𝑥1 − 𝑦𝑑      
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Fig. 4.  a. Control Effort b. Zoom of control effort 
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