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Abstract: This research presents an Al-enhanced blockchain framework for advancing transparency, efficiency, and
accountability in waste management and resource recovery within the circular economy. The study integrates four key
algorithms—Random Forest (RF), Convolutional Neural Network (CNN), K-Means Clustering, and Reinforcement
Learning (RL)—to address different stages of the waste lifecycle, while blockchain ensures immutable data recording and
stakeholder trust. A hybrid dataset comprising municipal waste logs, loT bin images, and simulated blockchain
transactions was used for evaluation. Experimental results demonstrate the effectiveness of the proposed framework. The
RF model was found to have an accuracy of 91.2 percent in terms of predicting the potential of recycling and the CNN
was found to have a classification accuracy of 95.4 percent in predicting plastic, glass, metal and organic waste. The K-
Means clustering brought out a silhouette score of 0.87 which essentially categorized the waste streams into high-value,
medium-value and low-value waste streams. Compared to baseline routing, RP minimized the path by 14 percent and fuel
expenditure was lowered by nine percent and recovery efficiency was 92.6 percent. Application of blockchain also
guaranteed minimal latency ( 1.8s/transaction) and a CPS (150 TPS). The results emphasize that Al with the use of
blockchain would provide even higher benefits than separate strategies and would result in the creation of transparent and
sustainable waste management systems. This framework offers a pathway to scale to offer suprasystemic support to circular
economy practices and actual urban sustainability projects.
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I. INTRODUCTION

The shift to the circular economy has become a burning issue in order to cope with worldwide problems of
the resources exhaustion, environment destruction, and the growing level of waste production. The cycle
economy focuses on resource efficiency, reusing, and recycling, unlike the conventional linear linear thinking
of take- make- disposal model which does not ensure resources are produced and consumed sustainably [1].
At the core of the same shift is the evolution of open, effective and responsible waste management and
resource recovery systems that can allow materials to be adequately returned into the economy. Nevertheless,
current systems can be characterized by the loss of traceability, slow information exchange among the
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stakeholders, and ineffective monitoring protocols, all of which impair the idea of the circle economy
realizations [2]. Over the last several years, blockchain technology has become known as a valuable tool in the
aspects of being able to offer immutable records to updates in the supply chain, decentralized trusts, and
enhanced traceability. As far as waste management is concerned, blockchain could be used to trace every part
of waste lifecycle i.e. collection and segregation all the way up to recycling and recovery of resources to hold
accountable multiple stakeholders, e.g. municipalities, recyclers, and industries. However, blockchain is not
enough to manage the issues faced by categorizing waste, anticipating resources worth and ensuring optimality
of recovery methods. Here, artificial intelligence (Al) undergoes transformative action [3]. Machine learning
and computer vision are representative of Al-ridden tools capable of assisting in identifying waste, proper
prediction of the potential of recycling, and the optimization of decision-making in resource recovery. Fused
with the help of blockchain to develop a safe data infrastructure, Al can establish a compound structure
guaranteeing waste-to-resource transformation and creating dependence alongside acting revelations. This
framework can encourage sustainability with the help of smart contracts but decrease the information
asymmetry among the stakeholders. The current study, thus, offers an Al-improved blockchain-based
infrastructure that is aimed at ensuring transparency, traceability, and effectiveness in terms of waste
management and resources harvesting. The combination of the power of the blockchain and Al capabilities
enables this study to enhance the transition to a circular economy as well as the tendency to engage resources
in sustainable use.

II. RELATED WORKS

The meeting of artificial intelligence (Al), blockchain, and the need to follow the principles of the circular
economy has received a considerable amount of scholarly focus in recent years, with researchers exploring the
aspects of sustainable energy, supply-chain, production, and recycling. Some researchers have emphasised the
significance of the multi-criteria decision-making (MCDM) and optimization strategies in order to sponsor
sustainability. Indicatively, Mizrak and Sahin [15] introduced the concept of elementary spherical fuzzy based
model of MCDM to forecast investment plans in harnessing renewable energies in airports and how a
sophisticated decision-making tool can reward resources in a difficult operational scenario. On the same note,
Mohamed and Munda [16] marked the transformative nature of smart grid technologies in sustainable
planning of energy, and data suggested that digital and intelligent infrastructures play a primary role in
assisting urban transformation to cleaner systems. A similar literature has examined how Al can be integrated
into industrial systems and structure of the built environment. Muhammad et al. [17] established the
presentation of a systematic review of the Al-based technologies in sustainable building, determining the
obstacles to interoperability, transparency, and governance. Polo Andrés et al. [18] went a step further and
investigated the understanding of immune-inspired adaptive supply chains, where the trends of mathematical
modeling can be used to assist in producing robust and viable networks. Applying to a more expanded socio-
technical perspective, Rehman and Umar [19] subject of Industry 5.0 to contributing environmental, social,
and governance (ESG) objectives as another impetus of focusing on optimizing corporate sustainability
through the use of emerging technologies.

Digital twins and Al models have also been discussed in the framework of the circular economy. A review of
digital twins in circular manufacturing conducted by Sajadiech and Noh [20] revealed that in the
manufacturing process, real-time and simulation may be effective in reducing resource consumption.
Complementing this, Shah et al. [21] developed a framework for assessing Al potential in the circular
bioeconomy, identifying use cases in waste valorization and resource recovery. Streimikiené et al. [22] further
reinforced the integration of AI and Industry 4.0 technologies in supply chains using a multi-criteria decision-
making perspective, highlighting improvements in sustainability performance through optimized logistics and
production planning. The recycling sector, particularly for critical materials such as batteries, has also gained
scholarly interest. Subin et al. [23] surveyed advancements in Al applications for battery recycling, showing
that machine learning models can improve material recovery efficiency and reduce environmental risks.
Teixeira et al. [24] offered a broader perspective on intelligent supply chain management, presenting a
systematic review of Al contributions to demand forecasting, decision support, and operational efficiency.
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However, challenges of digital transformation remain, especially for small and medium enterprises. Thanh-
Nhat-Lai and Son-Tung [25] identified barriers leading to the “digital dead zone” in shipping SMEs, suggesting
that limited dynamic capabilities restrict the adoption of smart technologies.

Finally, sustainability at the manufacturing level has been examined through carbon footprint management.
Yiiksel Yurtay [26] showed how Industry 4.0 technologies integrated with ERP systems can enable real-time
monitoring and reduction of carbon emissions in manufacturing processes. Taken together, these studies
demonstrate the growing role of Al, blockchain, and digital twins in advancing sustainability across diverse
sectors. Yet, while decision-making models [15], smart grids [16], and Al-powered applications [17, 21, 23]
provide strong foundations, few studies integrate these technologies into blockchain-based circular economy
frameworks for waste management and resource recovery. This gap underscores the novelty of developing Al-
enhanced blockchain systems that combine predictive intelligence with transparency, supporting the
transition toward sustainable and circular resource utilization.

1. METHODS AND MATERIALS

Data

The data utilized in this research was obtained from secondary and simulated sources relevant to waste
management and resource recovery under the circular economy model. These data were records taken on
municipal solid waste systems, recycling plants as well as industrial waste recovery operations [4]. Some of the
attributes encompassed in the data were the type of waste, the weight, source, time of collection, cost of
recycling, material recovery value and the identity of the stakeholders. Also, simulated dataset lo- Waste bin
was created to include real-time images of waste classification to enable the Al model to be trained. The
blockchain logs of transactions were also developed to show executions of smart contracts with rewards on
waste segregation and recycles [5]. A combination of such datasets led to a comprehensive ground of the
implementation of an Al-enhanced blockchain structure.

Algorithms

Random Forest (RF), Convolutional Neural Network (CNN), K-Means Clustering, and Reinforcement
Learning (RL) were four algorithms that were used to analyze and optimize the waste management and
resource recovery. Each was chosen based on how it was related to the classification, prediction, optimization,
and decision-making of the circular economy context [6].

1. Random Forest (RF)

Random Forest is a classification and prediction forecasting algorithm applied to learn by using an ensemble
algorithm. RF was used in this study to estimate the possibility of a recycling of a waste depending on its
material type and level of contamination and the cost of recovering it. The algorithm is based on building
several individual decision trees and their outputs are combined to select the best fit on prediction. The
decision trees each votes on a class and a majority of the votes is how the final prediction will be decided. RF
is resistant to noisy data and it escapes overfitting because it is an ensemble method [7]. In waste management,
it helps the stakeholders to make proper projections on whether to recycle, reuse or dispose a material hence
increases resource recovery efficiency.

“Input: Training dataset D, number of
trees N
Fori=1toN:

- Draw bootstrap sample Di from D

- Train decision tree Ti on Di

- Record predictions from Ti
Output: Majority vote of all Ti as final
prediction”

2. Convolutional Neural Network (CNN)
CNNss are deep learning techniques that are very useful in image recognition. The CNNss in this context were
used to separate the tags in the waste images taken using the IoT-enabled smart bins based on tags plastic,
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glass, metal, and organic. The CNNs are defined by convolutional layers, which determine spatial features by
default, pooling layers, which compress the dimensional size, and fully connected layers, which make such
classifications. They can discern intricate patterns and thus they are the best to aid in the separation between
recyclable and non-recyclable waste materials [8]. The CNN was trained on labeled image sets and hence it
was capable of achieving the classification of waste in real time. This allowed the blockchain network to
establish classification outcomes as irreversible operations, which guaranteed the transparency of waste
sorting procedures.

“Input: Labeled waste images
Initialize weights of convolutional filters
For each epoch:

- Convolve input images with filters

- Apply activation function (ReL.U)

- Apply pooling to reduce dimensions

- Flatten feature maps

- Pass through fully connected layers

- Output predicted waste category
Output: Classified waste category”

3. K-Means Clustering

Clustering of K— Means is another unsupervised learning algorithm applied in clustering data points based
on their feature similarities. In this study, K-Means was used to separate waste streams using the material
characteristics of density, the cost of recovery, and level of contamination. Each data point is put in the closest
centroid by the algorithm which re-calculates centroid by centroid before coming up with a solution. Recyclers
can streamline numbers of waste processing mechanisms, organize resources where they are needed, and lower
processing cost by sorting waste into separate collections [9]. The approach also brings greater transparency,
as the waste batches that can be defined into every cluster will be validated in blockchain, which implies that
there is negligence in resources recovery processes. Suring accountability in resource recovery operations.

“Input: Dataset X, number of clusters k
Initialize k random centroids
Repeat until convergence:

- Assign each data point xi to nearest
centroid

- Update centroids as mean of assigned
points
Output: Clustered groups of waste”

4. Reinforcement Learning (RL)

Reinforcement Learning refers to a decision-making algorithm in which an agent is trained to act in an
environment to seek rewards and maximize the cumulative returns. The RL was used in this study to maximize
the path of waste collection and recycling incentives. The waste management system is the agent that can
engage with the environment, react to it (city map and recycling plants), and update its strategy, the sentinel
system is given feedback (reward or penalty). As an example, more efficient collection routes, which waste
fuel, do not give significant bonuses, whereas any delay or ineffective recycling phase will involve penalties
[10]. RL is a guarantee of head-on decision-making and incentive of sustainable practices because all actions
and rewards are registered in blockchain.

“Initialize Q-table with state-action pairs
For each episode:
- Observe current state s
- Choose action a using policy (e.g., &-
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greedy)

- Perform action a, observe reward r and
new state s'

- Update Q(s, a) = Q(s, a) + « [r +y max
Q(s', a') - Q(s, a)]
Output: Optimal policy for waste

management”

Tables

Table 1: Sample Dataset Attributes
Waste Waste Weight Contamination Recycling Recovery Stakeholder
ID Type (kg) (%) Cost ($) Value ($)
WO001 Plastic 2.5 5 1.2 2.8 Recycler A
W002 | Glass 3.1 2 1.5 32 Recycler B
W003 | Metal 1.8 7 2.0 4.5 Recycler C
WO004 | Organic | 4.2 12 0.8 1.0 Composting

IV. RESULTS AND ANALYSIS

4.1 Experimental Setup

The introduced blockchain with Al add-ons was tested with the help of a set of experiments that were aimed
to assess its performance levels in terms of waste classification, prediction of its recycling, waste streams
grouping, and waste collection strategy optimization [11]. The experiments were carried out in a simulated
environment representing a smart city waste management system.
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Figure 1: “Al-Driven Circular Economy of Enhancing Sustainability and Efficiency in Industrial Operations”

Hardware and Software:
e System: Intel Core 19 (3.5 GHz), 32GB RAM, NVIDIA RTX 3080 GPU.
e Tools: Python 3.11, TensorFlow, PyTorch, Scikit-learn, Hyperledger Fabric blockchain.
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e Dataset: A hybrid dataset combining real-world secondary data (waste collection logs from municipal
authorities) and synthetic IoT bin image data (plastic, glass, organic, metal waste categories).
e Blockchain: Implemented as a permissioned consortium blockchain connecting municipalities,
recyclers, and industries.
e Smart contracts: Written to record classification outputs, predictions, incentives, and route
optimizations.
4.2 Experiment Design
The experiments were divided into four main tasks, corresponding to the algorithms:
1. Random Forest (RF) — Prediction of recyclability potential (binary: recyclable vs. non-recyclable).
2. Convolutional Neural Network (CNN) — Image-based classification of waste categories.
3. K-Means Clustering — Grouping waste streams by material similarity and contamination level.
4. Reinforcement Learning (RL) — Route optimization for waste collection trucks and incentive
management.
Each algorithm was trained/tested on 70/30 train-test splits, and blockchain was used to store outputs, track
data provenance, and execute smart contracts.
4.3 Evaluation Metrics
To evaluate the performance of the framework, the following metrics were used:
e Accuracy: Correct predictions/classifications relative to total samples.
Precision & Recall: Evaluating classification correctness and completeness.
F1-Score: Harmonic mean of precision and recall.
Processing Time: Computational efficiency.
Resource Recovery Efficiency (RRE): Percentage of recoverable material actually retrieved.
Blockchain Latency: Time to record and confirm transactions.

y
A
= Matertal oentification
5: wad Sastiog
<oty piitge iln

| g e {" -,: Frecom Opinmisntine
| e O
@ e e

(&)< ==

Waste Rexysling

Quality Comsrwl sns taapection

‘7'$’?’iz')

oy '\\":_r
o= [T ——
T

e

Figure 2: “Smart waste management”

4.4 Results

4.4.1 Random Forest (Recyclability Prediction)

RF was trained on structured data (waste weight, contamination %, recycling cost, etc.). The model achieved
91.2% accuracy in predicting recyclability [12]. Notably, it performed better on low-contamination waste and
struggled slightly with mixed materials.

35


http://www.theaspd.com/ijes.php

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 24s, 2025
https://www.theaspd.com/ijes.php

Table 1: Random Forest Results

Metric Value (%)
Accuracy 91.2
Precision 89.6
Recall 92.5
F1-Score 91.0

4.4.2 CNN (Waste Image Classification)

The CNN was trained on 20,000 synthetic and real waste images. It achieved the highest accuracy across all
algorithms, with 95.4% accuracy in categorizing plastic, glass, metal, and organic waste [13]. Misclassifications
occurred primarily between plastic and glass bottles due to transparency similarities.

Table 2: CNN Classification Results

Waste Category Precision (%) Recall (%) F1-Score (%)
Plastic 94.8 95.1 95.0
Glass 96.2 95.5 95.8
Metal 95.6 96.8 96.2
Organic 94.0 97.0 95.5
Overall 95.4 96.1 95.7

4.4.3 K-Means (Waste Stream Clustering)

K-Means grouped waste into clusters based on contamination levels, recovery value, and recycling cost. The
algorithm identified 3 main clusters: high-value recyclable waste, medium-contamination recyclable waste,
and non-recyclable waste [14]. Accuracy of clustering (measured using silhouette score) was 0.87, indicating
strong separation.
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Figure 3: “Al-Driven Circular Economy of Enhancing Sustainability and Efficiency in Industrial Operations”

Table 3: K-Means Clustering Results

Cluster | Dominant Avg. Avg.  Recovery | Cluster Utility
ID Waste Type Contamination Value ($/kg)

(%)
Cl1 Metal, Glass 32 4.1 High value
C2 Plastic 7.8 2.5 Medium value
C3 Organic 11.5 1.0 Low value

4.4.4 Reinforcement Learning (Route Optimization)

The RL agent optimized collection routes to minimize fuel consumption and maximize resource recovery.
Compared to a baseline Dijkstra routing approach, RL reduced route length by 14% and fuel costs by 11%.
Incentive distribution was also dynamically optimized based on recycling participation.

Table 4: RL Route Optimization Results

Metric Baseline (Dijkstra) RL-Optimized
Avg. Route Length (km) 18.2 15.6

Fuel Cost ($ per trip) 325 28.8
Collection Time (min) 95 82

Recovery Efficiency (%) 87.5 92.6

4.4.5 Blockchain Performance Metrics
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The blockchain implementation demonstrated low latency (1.8s/transaction) and high throughput (150
TPS), ensuring scalability. Smart contracts successfully recorded waste classifications, recyclability predictions,
and incentive disbursements.
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Figure 4: “A Framework for Assessing the Potential of Artificial Intelligence in the Circular Bioeconomy”

Table 5: Blockchain Performance Metrics

Parameter Value
Latency (s per tx) 1.8
Throughput (tx/s) 150

Avg. Smart Contract Gas 0.003

Storage Efficiency (%) 96.5

4.5 Comparative Analysis with Related Work

Compared to Existing Blockchain-only Models: Prior works focused solely on blockchain for
traceability, achieving transparency but lacking predictive insights. Our framework improved
resource recovery efficiency by 9-12% due to Al integration.

Compared to Al-only Models: Studies that applied CNNs for waste classification achieved similar
accuracy (~94%), but they lacked data trust and accountability. By recording Al outputs on
blockchain, our framework eliminated tampering risks.

Compared to Hybrid IoT-Blockchain Approaches: Earlier [oT-blockchain frameworks suffered
from latency issues (>3s/transaction). Our optimized consortium blockchain achieved 1.8s latency,
enabling near real-time recording.

Overall Improvement: The integration of Al and blockchain allowed not only accurate predictions
and classifications but also ensured transparent accountability and stakeholder trust, which is critical
for circular economy adoption.

4.6 DISCUSSION
The experimental results highlight several key contributions:
1.

CNN Dominance in Waste Segregation: The CNN significantly outperformed traditional vision
methods, providing real-time, high-accuracy waste categorization. This directly enhances recycling
efficiency.

Predictive Power of RF: By predicting recyclability potential with 91.2% accuracy, the RF model
supports decision-making for recyclers and municipalities, ensuring better allocation of resources.
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3. Clustering Benefits from K-Means: Clustering waste streams into high/medium/low value
categories provided actionable insights into strategic resource allocation for recyclers.

4. Optimization via RL: Reinforcement Learning proved critical in minimizing operational costs while
maximizing recovery efficiency, demonstrating strong potential for scalable deployment in urban
waste management.

5. Blockchain as a Trust Backbone: Unlike prior work, this framework does not treat blockchain as an
add-on but as the trust infrastructure, ensuring all Al-driven insights are tamper-proof, transparent,
and auditable.

Opverall, the experiments validate that AI-enhanced blockchain frameworks outperform existing approaches
in accuracy, efficiency, transparency, and accountability, thus accelerating circular economy adoption.

V. CONCLUSION

This research set out to design and evaluate an Al-enhanced blockchain framework aimed at driving
transparency, efficiency, and sustainability in waste management and resource recovery, thereby advancing
the goals of the circular economy. The integration of Al algorithms with blockchain technology proved to be
a powerful combination, addressing both the intelligence gap in waste classification and prediction, and the
trust gap in stakeholder accountability. Random Forest facilitated accurate recyclability predictions, while
CNN achieved high performance in real-time waste classification from IoT-enabled systems. K-Means
clustering provided meaningful grouping of waste streams for better resource allocation, and Reinforcement
Learning demonstrated substantial improvements in optimizing collection routes and incentive mechanisms.
Blockchain served as the trust backbone, recording all outputs as immutable transactions and ensuring
transparency, auditability, and stakeholder confidence.

Experimental results confirmed that the framework achieved superior outcomes compared to existing Al-only
or blockchain-only models, with improvements in accuracy, efficiency, and recovery rates, as well as lower
latency and higher throughput in blockchain operations. By bridging technological silos, this research
contributes a holistic model for sustainable urban waste management, while also extending applicability to
supply chains, manufacturing, and other circular economy domains. Future directions include integrating
digital twins for real-time simulation, expanding datasets to capture diverse waste streams, and deploying the
framework in real-world pilot projects. Ultimately, the study demonstrates that Al-enhanced blockchain
systems can significantly accelerate the global transition to a circular, resource-efficient economy, aligning
technological innovation with environmental and societal imperatives.
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