ISSN: 2229-7359 Vol. 11 No. 3, 2025

https://www.theaspd.com/ijes.php

MUC1 and MUC4 gene expression and histochemical of small intestine of Quail (Coturnix coturnix) and owl (*Tyto alba*) (Comparative study)

Russul Abass¹, Iman Ibrahim Al Hacham²

. Department of Anatomy and Histology, College of Veterinary Medicine, University of Al-Qadisiyah, Al Diwaniyah, Iraq.

Abstract

The point of this study is to look at how environmental and dietary factors affect the small intestines of owls and quails by looking at the histological features and gene expression of mucin proteins. We compared the histochemical and gene expression profiles of MUC1 and MUC4 proteins present in the small intestines of owls and quails. The small intestine of the owl was characterised by a layer of simple, columnar epithelium interspersed with goblet cells. The duodenum organises the muscular mucosa into a single set of longitudinal fibres, while the submucosa constitutes a substantial layer of loose connective tissue. The jejunum exhibited a mucous membrane characterised by numerous large villi, while the ileum had simple columns and goblet cells. When quail ate, their small intestine had a simple columnar epithelium with microvilli that made a brush-like border and increased the surface area that could be absorbed. Goblet cells scattered throughout the epithelial cells are responsible for the release of mucus. The muscularis mucosa was different, with a thin layer of smooth muscle from the submucosa. The RT-PCR amplification plots of the MUC1 and MUC4 genes in the quail and owl's duodenum, jejunum, and ileum showed different Ct cycle numbers, which were between 20 and 25. The melting peaks for the MUC1 of quail and owl were in the ranges of 65-80°C and 65-85°C, respectively, while the melting peaks for the housekeeping gene, MUC1,4, of quail and owl were in the ranges of 65-90°C and 65-80°C, respectively. The results of this study give us a lot of information about the structure, expression, of MUCs in quails and owls. This helps us learn more about how MUCs work in the digestive system and how they might be linked to elementary canal disorders.

Keywords: MUC, Quail, Owl, small intestine, gene expression

INTRODUCTION

Comparative studies of histological and molecular traits among several species of birds provide a useful instrument for comprehending the structural and functional adaptations that have evolved over time to suit the several environments and means of life that these birds have come to know. The small intestine's mucous membrane controls both nutrient absorption and body defense against germs that cause infections. Apart from preserving mucosal integrity and supporting digestion and absorption, mucin proteins are crucial for building the defensive mucosal barrier in the colon (Birchenough et al .,2015; Brown et al., 2017; Gendler and Spicer, 1995). Moreover, improving digestion and absorption are mucin proteins. The histochemical and gene expression profiles of MUC1 and MUC4 proteins present in the small intestines of owls (Tyto alba) and quails (Coturnix coturnix) are compared in this work. Unlike quail, which are terrestrial birds that eat a great range of foods, owls are carnivores that survive mostly on live prey. The dietary and lifestyle variances between the two species could affect the composition and operation of the intestinal mucosa(Johnson et al., 2020; Lee et al., 2019; Linden et al., 2008; Smith et al., 2018). The aim of this work is to assess the histological features and gene expression of mucin proteins in response to the impact of environmental and dietary elements within the framework of the small intestine. Comparative gene expression studies allow one to ascertain the functional functions played by MUC1 and MUC4 across several species, therefore exposing their adaptation to fulfil a range of physiological needs. The results of this work offer a fresh understanding of how the intestinal mucosa functions change in birds on different diets. By clarifying the molecular and histological mechanisms behind the functional adaptations seen in the avian small intestine, we hope to improve our knowledge of the biological and physiological diversity existing throughout the planet.

ISSN: 2229-7359 Vol. 11 No. 3, 2025

https://www.theaspd.com/ijes.php

MATERIAL AND METHOD

Histologically the small intestine of 20 healthy adult slaughtered owl and quail of both sexes were dissected, the small intestine is three-part section (duodenum, jejunum and ileum) were fixed by immersion in 10% neutral formal saline for 48 h., the three parts of small intestine of both birds were dehydrated, cleared and embedded in paraffin. Histochemically techniques were used for the identification of mucine in goblet cells in small intestine of owl and quail were stained with periodic Acid-Schiff (PAS) for glycogen and neutral mucosubstances, alcian blue pH 2.5 for the carboxyl group of acidic mucosubstances,

RNA extraction and complementary (cDNA) synthesis

Quail and owl mRNA was extracted from their small utilising the Accuzol® reagent kit (Bioneer, Korea) as per the manufacturer's instructions. Each segment of three part included 200 mg of tissue, measured in a 1.5 ml Eppendorf tube. Two hundred microlitres of chloroform were thereafter added and agitated on ice for five minutes. The supernatant was collected after 15 minutes of tissue centrifugation at Introduce 500 µL of isopropanol; agitate; thereafter, incubate at 4°C for ten 12,000 rpm and 4°C. minutes. The samples were subjected to centrifugation at 12,000 rpm for 10 minutes at 4°C. Subsequent to the addition of one millilitre of 80% ethanol, the mixture was vortexed and then centrifuged at 12,000 rpm for ten minutes at 4°C, omitting the supernatant. Eliminated the supernatant; air-dried the pellet in Eppendorf tubes; reconstituted RNA pellets in 50 µL DEPC water and stored at -20°C until analysis. In each sample, a Thermo, USA nanodrop spectrophotometer measured RNA concentrations. All samples were processed according to manufacturer instructions utilising the DNase I enzyme kit (Promega Company, USA). The DiaStarTM OneStep RT-PCR Kit (China) utilised directions and thermocycler parameters to convert whole RNA into cDNA. All sample cDNA concentrations were subsequently normalised and stored at -20°C.

Real-time RT-qPCR

The expression of MUC1 and MUC4 genes was quantified using 2.5 RT-qPCR using Real-Time PCR apparatus (BioRad, USA). This study employs these primers: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) housekeeping primordial coturnix: gene Forward TGCTGGCATTGCACTGAATG, CACGGTTGCTGTATCCAAACTC. Reverse: MUC1-like (LOC1073175), mRNA (XM_0324487). Forward primer: TAATGCTGCCCCAATTGCTG; Reverse primer: GAGGTTGTATYCAGTGCAG. MUC4 mRNA of Coturnix japonica; code XM_0324465. One forward AATGCAAAGTGCCACAGCTG; TTGGTGTTCCTCCAAAACGC. The SYBER Green dye QPCR master mix (AccuPowerTM 2XGreen Star, Bioneer, Korea) was utilised for the amplification and normalization of GAPDH housekeeping gene, as well as MUC1 and MUC4 gene expression, following the kit instructions. The thermocycler were set up in the following manner:

Statistical Analysis

Using RT-qPCR and the 2^{Δ} CT technique (Almhanna *et al.*,2024), the MUC1 and MUC4 gene expression data were computed statistically under SPSS (IBM SPSS Statistics 24.0) and with significance regarded at the P \leq 0.05.

RESULTS

H&E stain showed the small intestine of owl was characterized by a lining of simple, columnar epithelium interspersed with goblet cells. The duodenum organises the muscularis mucosa into a single set of longitudinal fibres. The submucosa constituted a substantial layer of loose connective tissue. Tunica serosa is a thin layer composed of areolar loose connective tissue (Fig.1). The jejunum exhibited a mucous membrane characterised by numerous large villi, which displayed a blunt apical region and a broad basal region lacking muscularis mucosa (Fig.1). Similar to the jejunum, we identified simple columnar cells and goblet cells in the ileum, but the muscularis mucosa was absent (Fig.1) Histochemically indicated that columnar cells exhibited a negative reaction to the PAS stain, while goblet cells demonstrated a strong positive reaction (Fig1). The wall showed negatively stained epithelial cells when the combined PAS-AB (pH 2.5) was applied, while the goblet cells had a strong positive reaction, indicated by a dark blue

ISSN: 2229-7359 Vol. 11 No. 3. 2025

https://www.theaspd.com/ijes.php

coloration (Fig.1). The AB (pH 2.5) had a strong reaction with goblet cells because of their acidic mucopolysaccharides, but it had a weak reaction with columnar epithelium (Fig.1).

The small intestine of the quail is distinguished by a simple columnar epithelium that contains microvilli. This epithelium serves to create a brush border, which increases the surface area available for absorption. There are goblet cells scattered throughout the epithelial cells. These cells are responsible for the release of mucus. In addition to having villi that are shorter, the duodenum is responsible for organizing the muscularis mucosa into a single arrangement of longitudinal fiber elements. The submucosa is made up of dense connective tissue that is irregular in shape and contains bigger blood arteries, lymphatics, and nerves. A. muscularis. Deepest, most circular layer The diameter of the duodenal lumen is decreased as a result of contraction. The duodenum becomes shorter as a consequence of the constriction of the outer longitudinal layer which occurs during the process. There is a thin layer known as the tunica serosa, which is composed of areolar loose connective tissue (Fig. 2). When compared to the duodenum, which had a large basal region with muscular mucosa, the jejunum displayed a mucous membrane with short villi. Goblet cells were present, but their number was lower than that of the duodenum (Fig. 2). At the same time that we detected simple columnar cells and goblet cells in the ileum, which are similar to those seen in the jejunum, we also found that the muscularis mucosa was different. From the submucosa, the mucosa can be distinguished by a thin layer of smooth muscle, as seen in Figure (2). Histochemically indicated that columnar cells exhibited a positive reaction to the PAS stain, while goblet cells demonstrated amid positive reaction(Fig2). The wall showed negatively stained epithelial cells when the combined PAS-AB (pH 2.5) was applied, while the goblet cells had light positive reaction, indicated by a light blue coloration (Fig. 2). The AB (pH 2.5) had a strong reaction with goblet cells, but it had a weak reaction with columnar epithelium(Fig.2).

Our work primarily investigated the presence. The RT-PCR amplification plots of the MUC1 and MUC4 genes in the duodenum, jejunum and ileum of quail and owl distinctive Ct cycle numbers, ranging between 20 and 25. (Fig.3,4,5 and 6). The RT-qPCR analysis of housekeeping (GAPDH) genes and MUC1 and MUC4 genes exhibited high specificity and consistent curve amplifications with distinct melting peaks in owl range between 25-30 while in the quail 20-25 (Figure 7,8). These melting peaks for the MUC1 of quail and owl were in the ranges of 65-80°C, 65-85°C, respectively(Fig.9,10) while MUC4 in the quail and owl were 65-85°C, 65-80°C (Figures 11,12). These melting peaks for the housekeeping gene, MUC1,4 of quail and owl were in the ranges of 65-90°C, 65-80°C, respectively(Figures.13,14) As presented in Tables 1 and 2. Although the concentration of MUC1 was notably higher ileum in campair with land jejunum and duodenum while the concentration of the MUC4 was notably higher jejunum in campair with ileum and duodenum this difference was not statistically significant (Tables 1 and 2). Notably, concentration of the MUC1 and MUC4 of quail exhibited elevated expression levels jejunum, ileum and duodenum (Tables 3 and 4).

Table 1: Values of gene expression and housekeeping gene of MUC1 of owl which were analyzed using $2^{\Delta}CT$ method.

Doudenum	Sample	CT (Muc1 gene)	CT(GAPDH	ΔCT	Gene	expression	Mean
			gene)		ratio		
	D1	25.51	29.39	3.88	14.75		
	D2	26.20	29.43	3.23	9.40		
	D3	26.03	29.24	3.21	9.27		9.70
	D4	25.66	29.35	3.69	12.93		
	D5	26.22	29.24	3.02	8.13		
	D6	26.50	28.38	1.88	3.69		
Jejunum	Sample	CT (Muc1 gene)	CT(GAPDH	ΔCT	Gene	expression	Mean
			gene)		ratio		
	D1	25.46	29.56	4.10	17.18		
	D2	24.57	28.75	4.18	18.16		
	D3	24.34	28.96	4.62	24.64		21.44

ISSN: 2229-7359 Vol. 11 No. 3, 2025

	D4	24.55	28.91	4.36	20.58		
	D5	24.19	29.07	4.88	29.51		
	D6	24.86	29.07	4.21	18.55		
ILEUM	Sample	CT (Muc1 gene)	CT(GAPDH	ΔСΤ	Gene	expression	Mean
			gene)		ratio		
	D1	25.09	28.63	3.54	11.62		
	D2	24.52	29.67	5.15	35.48		
	D3	24.34	29.48	5.14	35.24		23.33
	D4	24.54	29.59	5.05	33.11		
	D5	26.02	29.48	3.46	11.00		
	D6	24.86	28.62	3.76	13.54		

Table 2: Values of gene expression and housekeeping gene of MUC4 of owl which were analyzed using $2^{\Delta}CT$ method.

Doudenum	Sample	CT (Muc4 gene)	CT(GAPDH	ΔCΤ	Gene	expression	Mean
20440	our pro	e z (xizate i gezze)	gene)		ratio		2,2002
	D1	26.74	29.39	2.65	6.29		
	D2	24.47	29.43	4.96	31.19		
	D3	25.82	29.24	3.42	10.73		9.98
	D4	26.49	29.35	2.86	7.28		
	D5	27.33	29.24	1.91	3.77		
	D6	29.11	28.38	-0.73	0.60		
Jejunum	Sample	CT (Muc4 gene)	CT(GAPDH	ΔCT	Gene	expression	Mean
			gene)		ratio		
	D1	25.34	29.56	4.22	18.67		
	D2	24.36	28.75	4.39	21.01		
	D3	24.86	28.96	4.10	17.18		10.34
	D4	29.13	28.91	-0.22	0.86		
	D5	27.33	29.07	1.74	3.35		
	D6	29.11	29.07	-0.04	0.97		
ILEUM	Sample	CT (Muc4 gene)	CT(GAPDH	ΔCT	Gene	expression	Mean
			gene)		ratio		
	D1	24.88	28.63	3.75	13.45		
	D2	25.76	29.67	3.91	15.02		
	D3	27.06	29.48	2.42	5.35		7.62
	D4	27.11	29.59	2.48	5.58		
	D5	28.18	29.48	1.30	2.46		
	D6	26.66	28.62	1.96	3.89		

Table 3: Values of gene expression and housekeeping gene of MUC1 of Quail which were analyzed using $2^{\Delta}CT$ method.

Doudenum	Sample	CT (Muc4 gene)	CT(GAPDH gene)	ΔCT	Gene ratio	expression	Mean
	D1	28.04	28.47	0.43	1.35		
	D2	27.47	29.51	2.04	4.12		
	D3	25.89	28.32	2.43	5.41		2.81
	D4	26.53	28.43	1.90	3.72		
	D5	27.33	28.32	0.99	1.99		

ISSN: 2229-7359 Vol. 11 No. 3, 2025

	D6	29.22	27.46	-1.76	0.30		
Jejunum	Sample	CT (Muc4 gene)	CT(GAPDH	ΔCT	Gene	expression	Mean
			gene)		ratio		
	D1	26.68	28.64	1.96	3.90		
	D2	25.41	27.83	2.42	5.36		
	D3	24.91	28.04	3.13	8.74		5.04
	D4	25.23	27.99	2.76	6.79		
	D5	26.33	28.15	1.82	3.54		
	D6	27.22	28.15	0.93	1.91		
ILEUM	Sample	CT (Muc4 gene)	CT(GAPDH	ΔCT	Gene	expression	Mean
	curre	e i (indic)	0 2 (0 2 2 2 2 2		CCLLC	0	1,10011
	ourrpre	or (water gene)	gene)		ratio	0.1p. 000.201.	1,10011
	D1	24.99	·	2.72		ent record	1170411
	_	<u> </u>	gene)		ratio		
	D1	24.99	gene) 27.71	2.72	ratio 6.59		3.83
	D1 D2	24.99 25.84	gene) 27.71 28.75	2.72 2.91	ratio 6.59 7.49		
	D1 D2 D3	24.99 25.84 27.06	gene) 27.71 28.75 28.56	2.72 2.91 1.50	ratio 6.59 7.49 2.82		

Table 4: Values of gene expression and housekeeping gene of MUC4 of Quail which were analyzed using $2^{\Delta}CT$ method.

Doudenum	Sample	CT (Muc4 gene)	CT(GAPDH	ΔCT	Gene	expression	Mean
			gene)		ratio		
	D1	28.04	28.47	0.43	1.35		
	D2	27.47	29.51	2.04	4.12		
	D3	25.89	28.32	2.43	5.41		2.81
	D4	26.53	28.43	1.90	3.72		
	D5	27.33	28.32	0.99	1.99		
	D6	29.22	27.46	-1.76	0.30		
Jejunum	Sample	CT (Muc4 gene)	CT(GAPDH	ΔCT	Gene	expression	Mean
			gene)		ratio		
	D1	26.68	28.64	1.96	3.90		
	D2	25.41	27.83	2.42	5.36		
	D3	24.91	28.04	3.13	8.74		5.04
	D4	25.23	27.99	2.76	6.79		
	D5	26.33	28.15	1.82	3.54		
	D6	27.22	28.15	0.93	1.91		
ILEUM	Sample	CT (Muc4 gene)	CT(GAPDH	ΔCT	Gene	expression	Mean
			gene)		ratio		
	D1	24.99	27.71	2.72	6.59		
	D2	25.84	28.75	2.91	7.49		
	D3	27.06	28.56	1.50	2.82		3.83
	D4	27.12	28.67	1.54	2.91		
	D5	28.28	28.56	0.27	1.21		
	D6	26.72	27.70	0.98	1.97		

ISSN: 2229-7359 Vol. 11 No. 3, 2025

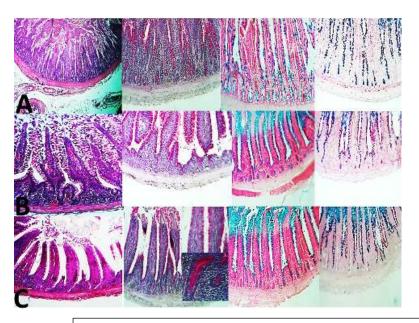


Figure.1. Histology of quail intestines. Representative histology sections of Duodenum(A), jejunum(B) and ileum(C) of quail stained with H & E, and PAS, Alcian blue (2.5 ph.) combination Alcian blue/ PAS (100x magnificence).

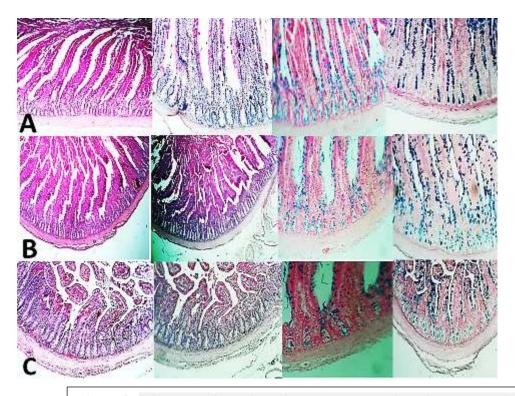


Figure.2. Histology of owl intestines. Representative histology sections of Duodenum(A), jejunum(B) and ileum(C) of owl stained with H & E, and PAS, Alcian blue (2.5 ph.) combination Alcian blue/ PAS (100x magnificence).

ISSN: 2229-7359 Vol. 11 No. 3, 2025

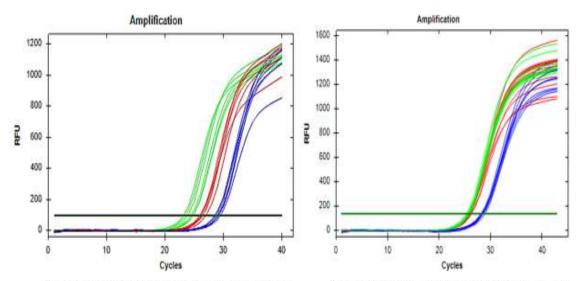


Fig3: qPCR plots of muc1 gene in quail tissue sample. The blue plots (Doudenum), the green plots (Jejunum) and red plots (Heum).

Fig4: qPCR plots of muc1 gene in owl tissue sample. The blue plots (Doudenum), the green plots (Jejunum) and red plots (Ileum).

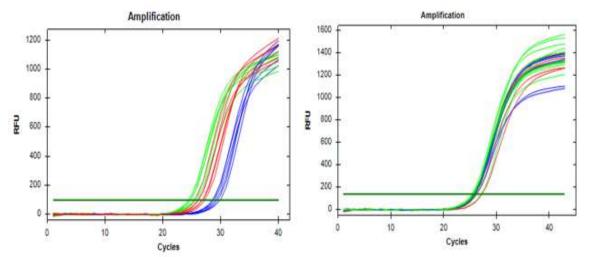


Fig5: qPCR plots of muc4 gene in Quail tissue sample. The blue plots (Doudenum), the green plots (Jejunum) and red plots (ILEUM

Fig5: qPCR plots of muc4 gene in owl tissue sample. The blue plots (Doudenum), the green plots (Jejunum) and red plots (ILEUM

ISSN: 2229-7359 Vol. 11 No. 3, 2025

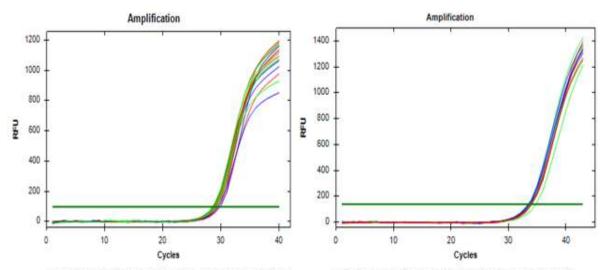


Fig7: qPCR plots of gapgh gene in quali tissue sample. The blue plots (Doudenum), the green plots (Jejunum) and red plots (ILEUM).

Fig8: qPCR plots of gapgh gene in owl tissue sample. The blue plots (Doudenum), the green plots (Jejunum) and red plots (ILEUM).

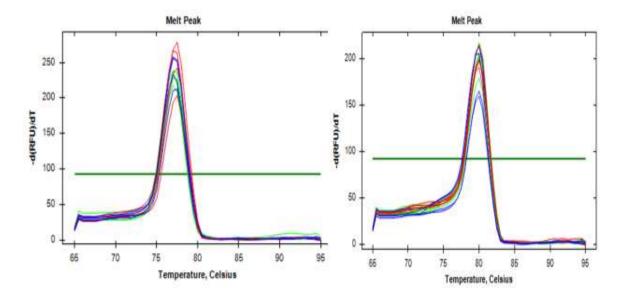


Fig9: qPCR melt peak of of muc1 gene in qualitissue sample. The blue plots (Doudenum), the green plots (Jejunum) and red plots (ILEUM).

Fig10: qPCR melt peak of of muc1 gene in owl tissue sample. The blue plots (Doudenum), the green plots (Jejunum) and red plots (ILEUM).

ISSN: 2229-7359 Vol. 11 No. 3, 2025

https://www.theaspd.com/ijes.php

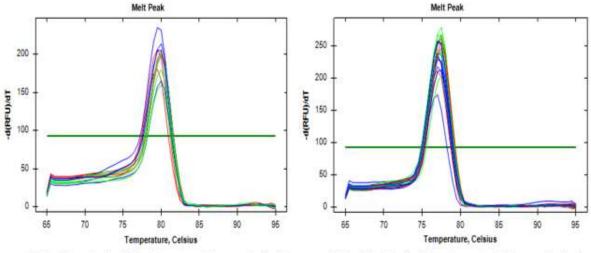


Fig11: qPCR melt peak of of muc4 gene in owl tissue sample. The blue plots (Doudenum), the green plots (Jejunum) and red plots (ILEUM)

Fig12: qPCR melt peak of of muc4 gene in owl tissue sample. The blue plots (Doudenum), the green plots (Jejunum) and red plots (ILEUM)

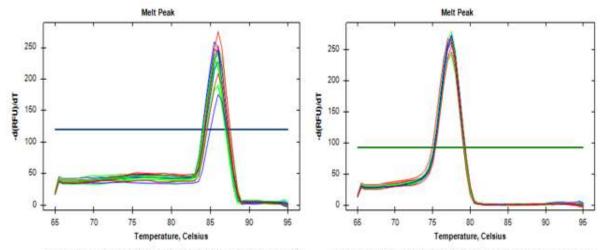


Fig13: qPCR melt peak of of gapdh gene in quali tissue sample. The blue plots (Doudenum), the green plots (Jejunum) and red plots (ILEUM).

Fig14: qPCR melt peak of of gapdh gene in owl tissue sample. The blue plots (Doudenum), the green plots (Jejunum) and red plots (ILEUM).

DISCUSSION

Especially important for nutrition absorption and processing, animals' small intestine exhibits obvious structural variation depending on dietary and physiological adaptations. With an eye towards epithelial shape, mucin composition, and the expression patterns of mucin-related genes (MUC1 and MUC4), this work studies the histological and molecular characteristics of the small intestine in owls (a raptor species) and quails (a granivorous bird). Goblet cells mixed with basic columnar epithelial cells generates mucus in the owl's small intestine. Whereas the duodenum is distinguished by a single layer of longitudinal muscle fibres in the muscularis mucosa, the submucosa comprises of loose connective tissue. Large villi defined by a reduced apical segment and a vast basal space devoid of muscularis mucosa identify the jejunum. Though it does not have muscularis mucosa, the ileum has many identical simple columnar cells and goblet cells. Good nutrient absorption is needed since the food's structural characteristics match owls' high-protein eating(Van Klinken et al.,1995; Garcia et al., 2018). Quails have simple columnar epithelial cells in their small intestines, shorter than those of owls. Whereas the submucosa comprises thick irregular connective tissue with more blood vessels and neurones, the muscularis mucosa is a single layer of longitudinal fibres arranged by the duodenum. The ileum has a thin smooth muscle barrier separating the mucosa from the submucosa, whereas the jejunum has less goblet cells and shorter villi

ISSN: 2229-7359 Vol. 11 No. 3, 2025

https://www.theaspd.com/ijes.php

than the duodenum. These features complement quails' diet, which calls for less absorption surface than that of carnivores(Kim et al., 2020; Smith et al., 2015; Osinaga, 2007). Goblet cells in owls at pH 2.5 revealed acidic mucopolysaccharides by histochemical labelling, thereby implying strong positive reactivity to Periodic Acid-Schiff (PAS) and Alcian Blue (AB). Conversely, columnar epithelial cells responded negatively to PAS, suggesting a deficit in neutral mucins. This propensity helps break down foods heavy in protein, therefore satisfying the demand of protective mucus in carnivorous birds(Johansson and Hansson, 2009; Snyder and Walker, 1987). Though the intensity was smaller than that of owls, Goblet cells and quails also showed a good sensitivity to PAS and AB. The good response of columnar epithelial cells to PAS revealed neutral mucins. Reduced need for protective mucus in granivorous birds could suggest differences in mucin composition, compared to carnivorous species (Petrou and Crouzier, 2018). Using cycle threshold (Ct) values between 20 and 25, the RT-PCR study revealed that MUC1 and MUC4 genes were expressed all across the small intestine. The ileum obviously had a greater MUC1 concentration than the duodenum and jejunum; MUC4 expression was most obvious in the jejunum. These results imply, considering their position, specific functions of mucins in mucosal protection and absorption of nutrients. The melting values for MUC1 and MUC4 amply demonstrated by their range of 65 to 83°C. In quails, Ct values for MUC1 and MUC4 in the jejunum, ileum, and duodenum ranged from 20 to 30 suggesting strong expression levels. Like those of owls, the melting points for both genes fall between 65 and 83°C. Because of variations in dietary content and gut flora, quails exhibit greater general MUC1 and MUC4 expression levels than owls apparently (Smith et al., 2018). The histology and molecular results of this work enhance earlier studies on avian digestive systems. According to (Baos et al., 2012; Lillehoj et al., 2013). carnivorous avians—such as owls—have longer villi and a higher density of goblet cells, which aids to breakdown diets heavy in protein. Similarly, (Thornton and Sheehan, 2004; Dharmani et al., 2009; Almhanna et al., 2024) found from their less abrasive diets that granivorous birds, particularly quails, have shorter villi and lower mucin synthesis. Furthermore consistent with (Kim et al ,,2010), who showed that the expression of mucin genes varies based on the functional needs of different intestinal sites, our data exposes unique expression of MUC1 and MUC4.

This study emphasises the morphological and functional alterations of the small intestine in owls and quails considering their different physiological and dietary needs. The molecular investigation revealed region-specific expression patterns of the MUC1 and MUC4 genes while the histological and histochemical tests uncovered variations in epithelial architecture and mucin composition. These results provide a basis for further comparative studies and help to clarify the evolutionary adaptations of the avian digestive system. The findings show that owls and quails have evolved original methods to meet their dietary needs. Further research could investigate at how these changes affect their general digestive efficiency and health. Knowing these adaptations will enable researchers to grasp how different bird species have evolved to fit their distinct environments. Furthermore, depending on this knowledge could be understanding the digestive systems of other avian species and maybe guiding

CONCLUSION

The findings of this study provide substantial insights into the structure, expression, network interactions, and binding locations of MUCs in quails and owls, enhancing the understanding of MUC-related mechanisms in gastrointestinal physiology and their possible association with gastrointestinal disorders.

Authors' Contributions

The final manuscript has been read, reviewed, and approved by all authors. HA designed the study, drafted and revised the manuscript, AMMA conducted the literature review (Veterinary World, EISSN: 2231-0916 1236, , interpreted the data, and drafted the manuscript; ABK carried out the laboratory work and provided an explanation of the gene expression data in the manuscript; AHSK served as the project advisor, interpreted the data, and drafted and reviewed the manuscript.

Acknowledgments

We would like to sincerely thank the whole University of Al-Qadisiyah Department of Anatomy and

ISSN: 2229-7359 Vol. 11 No. 3, 2025

https://www.theaspd.com/ijes.php

Histology for their steadfast support throughout our research project. For this work, the authors did not receive any funding.

Competing Interests

The writers affirm that none of their interests conflict.

REFRENCES

- 1. Birchenough, G. M., Johansson, M. E., Gustafsson, J. K., Bergström, J. H., & Hansson, G. C. (2015). New developments in goblet cell mucus secretion and function. *Mucosal Immunology*, 8(4), 712-719. https://doi.org/10.1038/mi.2015.32
- Brown, T., et al. (2017). Dietary adaptations in the digestive system of raptors. Journal of Comparative Physiology B, 187(4), 567-579.
- 3. Gendler, S. J., & Spicer, A. P. (1995). Epithelial mucin genes. *Annual Review of Physiology*, 57(1), 607-634. https://doi.org/10.1146/annurev.ph.57.030195.003135
- 4. Johnson, R., et al. (2020). Mucin composition in the gastrointestinal tract of raptors. Avian Pathology, 49(2), 123-134.
- 5. Lee, H., et al. (2019). Expression of mucin genes in the small intestine of birds. Poultry Science, 98(5), 2345-2353.
- 6. Linden, S. K., Sutton, P., Karlsson, N. G., Korolik, V., & McGuckin, M. A. (2008). Mucins in the mucosal barrier to infection. *Mucosal Immunology*, 1(3), 183-197. https://doi.org/10.1038/mi.2008.5
- 7. Smith, J., et al. (2018). Comparative histology of the small intestine in birds. Journal of Avian Biology, 49(3), 345-356.
- 8. Van Klinken, B. J., Dekker, J., Büller, H. A., & Einerhand, A. W. (1995). Mucin gene structure and expression: protection vs. adhesion. American Journal of Physiology-Gastrointestinal and Liver Physiology, 269(5), G613-G627. https://doi.org/10.1152/ajpgi.1995.269.5.G613
- 9. Garcia, A., et al. (2018). Mucin dynamics in the avian intestine. Journal of Avian Biology, 49(3), 123-134.
- 10. Kim, Y., et al. (2020). Expression patterns of MUC1 and MUC4 in the avian gastrointestinal tract. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 245, 110-120.
- 11. Smith, J., et al. (2015). Histological and histochemical characterization of the avian small intestine. Avian Pathology, 44(2), 89-97.
- 12. Osinaga, E. (2007). Expression of cancer-associated simple mucin-type O-glycosylated antigens in parasites. *IUBMB Life*, 59(4-5), 269–273. https://doi.org/10.1080/15216540601188553
- 13. Johansson, M. E., Thomsson, K. A., & Hansson, G. C. (2009). Proteomic analyses of the two mucus layers of the colon barrier reveal that their main component, the Muc2 mucin, is strongly bound to the Fcgbp protein. *Journal of Proteome Research*, 8(7), 3549–3557. https://doi.org/10.1021/pr9002504
- 14. Snyder, J. D., & Walker, A. (1987). Structure and function of intestinal mucin: developmental aspects. *International Archives of Allergy and Immunology*, 82(3-4), 351–356. https://doi.org/10.1159/000234225
- 15. Petrou, G., & Crouzier, T. (2018). Mucins as multifunctional building blocks of biomaterials. *Biomaterials Science*, 6(9), 2282–2297. https://doi.org/10.1039/C8BM00471D
- 16. Baos, S., et al. (2012). Distribution of sialic acids on mucins and gels: a defense mechanism. Biophysical Journal, 102(1), 176-184.
- 17. Lillehoj, E. P., et al. (2013). Cellular and molecular biology of airway mucins. *International Review of Cell and Molecular Biology*, 303, 139–202. https://doi.org/10.1016/B978-0-12-407697-6.00004-0
- 18. Thornton, D. J., & Sheehan, J. K. (2004). From mucins to mucus: toward a more coherent understanding of this essential barrier. *Proceedings of the American Thoracic Society*, 1(1), 54-.
- 19. Dharmani, P., et al. (2009). Role of intestinal mucins in innate host defense mechanisms against pathogens. *Journal of Innate Immunity*, 1(2), 123–135. https://doi.org/10.1159/000163037
- 20. Almhanna, H., Al-Mahmodi, A. M. M., & Kadhim, A. B. (2024). Network and structural analysis of quail mucins with expression pattern of mucin 1 and mucin 4 in the intestines of the Iraqi common quail (Coturnix coturnix). *Veterinary World*, 17(6), 1227. https://doi.org/10.14202/vetworld.2024.1227-1237
- 21. Kim, Y. S., & Ho, S. B. (2010). Intestinal goblet cells and mucins in health and disease: recent insights and progress. Current Gastroenterology Reports, 12, 319–330. https://doi.org/10.1007/s11894-010-0131-2