
International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 3,2025

https://www.theaspd.com/ijes.php

223

Real-Time Weather Forecasting System Using Open
WeatherMap API and Django MVC Architecture

Sapana Kolambe1*, Radha Deoghare2, Sphurti Deshmukh3, Anita Shingade4, Laxmi
Kale5

1,2,3 Pimpri Chinchwad College of Engineering, Pune

4,5 MIT Academy of Engineering, Pune
*Corresponding Authors: sapana.kolambe@pccoepune.org

Abstract:
Weather forecasting has long been a complex scientific challenge, requiring the analysis of vast meteorological
datasets to predict atmospheric conditions accurately. In recent years, the increasing demand for timely and localized
weather updates has driven the development of user-friendly, real-time forecasting tools. This research presents the
design and development of a weather application that leverages modern web technologies and API integration to
deliver accurate, real-time weather information to users across the globe. The application utilizes the
OpenWeatherMap API, along with other reliable data sources, to provide key meteorological parameters such as
temperature, humidity, wind speed, and precipitation.

Built using the Django framework and MVC architecture, the application features a robust backend for data
processing and storage, and a dynamic, interactive frontend for enhanced user experience. The system supports both
manual and GPS-based location detection, and offers multilingual support to improve accessibility for non-English
speakers, including farmers and rural users. Additionally, users can customize their experience through unit
conversion options and receive notifications for severe weather alerts. This paper outlines the technical architecture,
development methodology, and implementation process of the application. It also highlights the challenges
encountered in integrating real-time APIs and ensuring accurate data rendering. The proposed system demonstrates
how integrating open-source tools, client-server architecture, and user-centered design principles can result in an
efficient and accessible weather forecasting solution. The application not only bridges the gap between raw
meteorological data and end users but also enhances public preparedness and decision-making in response to weather
conditions.
Keywords: Weather application, API integration, MVC architecture, Open weather map.

INTRODUCTION
Weather forecasting is a vital aspect of modern life, influencing various sectors such as agriculture,
transportation, emergency response, and daily planning. Accurate weather information allows individuals
and organizations to make informed decisions and take necessary precautions in the face of changing
weather conditions. Traditional weather forecasting methods, which rely on meteorological stations and
physical models, have evolved significantly over the years, but challenges remain in providing timely and
accurate predictions for all regions, especially in real-time.The advent of mobile technology has opened
new opportunities for improving weather forecasting accessibility. Weather applications, specifically
mobile apps, have become an essential tool for users seeking real- time weather data at their fingertips.
These applications use data from various sources, including weather stations, satellites, and
meteorological APIs, to provide up-to-date weather forecasts, current conditions, and alerts. This research
focuses on the development of a Weather Application designed to provide accurate and real-time weather
information to users worldwide. The application offers essential weather features such as temperature,
humidity, wind speed, precipitation, and detailed forecasts for any location. The goal of this application
is to provide an intuitive and user-friendly platform for individuals to stay informed about weather
conditions, plan activities, and make decisions with confidence.In addition to offering standard weather
information, the app integrates weather alerts to inform users of severe weather conditions, such as storms
or temperature extremes, in their area. The system collects and processes vast amounts of meteorological
data, leveraging advanced technologies such as APIs for seamless data integration and delivery.This paper
will discuss the design, development, and features of the Weather Application, exploring the methodology

https://www.theaspd.com/ijes.php
mailto:sapana.kolambe@pccoepune.org

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 3,2025

https://www.theaspd.com/ijes.php

224

used to build the system, the challenges faced, and the outcomes achieved. It will also examine the
potential impact of such weather applications on everyday life, emphasizing how technology can enhance
the accuracy, accessibility, and usability of weather forecasting. Furthermore, the application aims to
bridge the gap between complex weather data and user-friendly interfaces, making it easier for non-experts
to understand and interpret weather conditions. This paper outlines the development of the Weather
App, its methodology, and its ability to provide accurate weather data. This research demonstrates how
technology can enhance weather forecasting and its accessibility to the public.

LITERATURE SURVEY
WeatherAPIs enable real-time data collection from multiple sources, improving the accuracy of weather
forecasts. These APIs also support seamless integration with various systems, such as emergency response,
transportation, and smart city infrastructure. Many research studies focus on developing weather
applications that utilize API technology for enhanced efficiency. Open Weather Map is one of the most
widely used weather APIs, providing developers with up-to-date weather data for specific locations. Due
to its accessibility and ease of use, it is commonly integrated into mobile and web-based weather
applications. The Open Weather Map API provides real-time weather data for specific locations and is
extensively used in weather forecasting applications, especially on mobile and web platforms.
Also, a study explored the use of machine learning algorithms alongside API technology to enhance
weather predictions accuracy. A machine learning model was developed to process weather data from API
sources, resulting in more accurate forecasts for specific regions. The findings suggest that integrating
machine learning with API technology can significantly improve the precision of weather forecasting.
Areal-time weather forecasting system focusing on two primary environmental parameters: temperature
and humidity. The system utilized the DHT11 sensor, a commonly used low-cost sensor for measuring
these parameters. Data was collected using R Studio running on a Raspberry Pi, and this data was then
uploaded to the cloud for further analysis using an Ethernet shield. To analyze and predict weather trends,
the authors applied ARIMA (Auto Regressive Integrated Moving Average), a popular time series
forecasting technique. This method allows for accurate prediction based on historical weather data,
helping improve forecasting accuracy. The details of their system were published in IEEE (pp. 680-683,
December 2016)[1]. O. M. Brastein and his team studied how to predict the weather using an API(a tool
that allows software to interact with each other)[2]. They used a classification model to help make weather
forecasts more accurate.[4] One of the methods they used was filtering weather data from open sources
and sending it through a weather forecasting API. The Python API makes it easy to get free weather data
from different providers, and it can support even more providers in the future[5]. This approach makes
it easy to gather and use a variety of weather information for prediction models. In another study by E.
B. Abrahamsen and colleagues, they used Artificial Neural Networks (ANNs)to predict the temperature.
ANNs are like brain-like systems that learn from data. They created four different models that predicted
the temperature for the next1, 3, 6 and 12 hours. In the first model, only the temperature was used as
input data, and it was called an autoregressive neural network (AR-NN)[6]. The second model, however,
used both temperature and precipitation (rain) data, making it more accurate by adding more factors.
This second type of model is called an autoregressive network with exogenous variables (ARX- NN).The
results showed that using extra weather data, like rain, could improve the accuracy of temperature
predictions.

SYSTEM ARCHITECTURE
The system architecture of the proposed Weather Application is designed using a modular and scalable
approach based on the client-server model. It integrates multiple technologies and components to
ensure accurate weather forecasting, real-time data processing, and an intuitive user interface. The
architecture can be logically divided into three main layers: Frontend (Client-Side), Backend (Server-
Side), and Database Layer. Additionally, external weather APIs act as data providers, and asynchronous
communication ensures efficient data fetching and updates.
1. User Interface Layer (Frontend)

• Technology Used: HTML, CSS, JavaScript, and Django Template Engine.

https://www.theaspd.com/ijes.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 3,2025

https://www.theaspd.com/ijes.php

225

• This layer is responsible for interacting with the user. It provides a responsive interface that
allows users to:

o Enter or auto-detect their location (via GPS or manual input).
o View current weather parameters (temperature, humidity, wind speed, etc.).
o Switch between different units (e.g., Celsius/Fahrenheit, km/h/mph).
o Change application language for localized use.
o Receive real-time alerts for severe weather conditions.

2. Application Logic Layer (Backend)
• Technology Used: Python, Django Framework, REST APIs.
• This layer handles core logic and data processing:

o MVC Architecture: Separates concerns between the model (data), view (presentation),
and controller (logic).

o Weather Data Fetching: Periodically fetches real-time data from external APIs like
OpenWeatherMap, WeatherAPI, IMD, and NOAA.

o User Authentication & Management: Stores and manages user profiles, language
preferences, and search history.

o Data Translation & Unit Conversion: Converts raw data into user-friendly formats,
supports multilingual output, and performs unit conversion based on user preference.

o Notification System: Triggers alerts based on threshold values (e.g., extreme
temperature, heavy rainfall).

3. Database Layer
• Technology Used: PostgreSQL (via Django ORM)
• This layer ensures secure storage and fast retrieval of:

o User profiles and preferences.
o Cached weather data for performance optimization.
o Historical weather data for trend analysis and analytics.

• The use of Object-Relational Mapping (ORM) abstracts SQL operations and ensures scalability.
4. External API Layer

• The application communicates with multiple third-party weather services to gather up-to-date
weather information.

o OpenWeatherMap API: Primary source for global weather updates.
o WeatherAPI (WeatherStack): Backup data source and support for additional metrics.
o IMD API: Region-specific data for India.
o NOAA API: Access to historical climate data.

• These APIs provide structured responses (mostly JSON), which are parsed and integrated into
the application.

5. Connectivity & Data Flow
• Data Flow Sequence:

1. User enters location or enables GPS.
2. Frontend sends a request to the backend.
3. Backend fetches weather data from APIs.
4. Data is parsed, formatted, and translated (if needed).
5. Processed data is sent back to the frontend and displayed.
6. If applicable, data is stored in the database for future use.

• Asynchronous Calls: JavaScript and AJAX are used to fetch and update weather data without
refreshing the page.

6. Security and Performance
• Caching: Frequently accessed weather data is cached to reduce API calls and improve

performance.
• Input Validation & Error Handling: Ensures robustness by handling incorrect or unavailable

data gracefully.

https://www.theaspd.com/ijes.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 3,2025

https://www.theaspd.com/ijes.php

226

• Scalability: The architecture supports easy scaling through cloud deployment and modular
design.

The Block diagram of the system:

Figure 1. Block Diagram Representation
The block diagram (Fig. 1) visually illustrates the interaction between the various components of the
system — from user input to weather data retrieval and display.

PROPOSED METHODOLOGY
We are presenting a weather application which is developed using client-server architecture, with
JavaScript and HTML for the front end and MySQL for the back end. The application provides real-
time weather information for a given city, using external weather data APIs and storing historical data
in a relational database to optimize future queries. The overall process can be divided into three primary
components: the frontend, the backend, and the database.The development of the weather application
involves creating an interactive platform that provides real-time weather data and includes a language
translation feature to support non-English speaking users, particularly farmers, who may not be fluent in
English. The application consists of two main components: the frontend (user interface) and the
backend(data processing and storage).The multilingual feature is an essential addition that enhances
user experience by ensuring accessibility across different language barriers.
The application includes the steps as follows:

Figure 2. Flow Chart

This study follows a sequential approach to develop a weather application using the Django

https://www.theaspd.com/ijes.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 3,2025

https://www.theaspd.com/ijes.php

227

framework, chosen for its reliability and quick development capabilities. The process included key
stages: requirement analysis, system design, implementation, testing, and deployment.
In the requirement analysis phase, key features were identified, such as real-time weather updates,
location-based forecasts, and user authentication. These features shaped the system design, which
focused on creating a scalable architecture to handle multiple users and integrate with third-party
APIs for weather data.
In the Implementation phase, MVC (Model-View- Controller) architecture was used to separate
tasks and ensure maintainability. The backend was built using ORM (Object-Relational Mapping) to
manage a Postgre SQL database, which stored user profiles, location data, and cached weather
information. The frontend used Django’s template engine for dynamic HTML pages, while
JavaScript was used for asynchronous updates.

Testing involved unit tests for individual components and integration tests to check the interaction
between modules. In addition to the core features, the weather application incorporates a few more
enhancements to improve user experience and functionality. One key feature is switching between
different units of measurement for temperature, wind speed, and pressure, such as Celsius to
Fahrenheit or meters per second to kilometers per hour, and language translator was included for
same. This customization allows the app to cater to a wider range of users globally. Furthermore, the
application provides notifications for severe weather conditions, alerting users about potential
storms, heavy rainfall, or extreme temperatures based on their location.

DATASET USED
The application integrates external weather data through APIs and stores relevant data in a database.
The connectivity approach includes:
1. Weather API Integration:

• OpenWeatherMap API - Provides real-time, historical, and forecast weather data.
• WeatherAPI (formerly WeatherStack) - Offers accurate weather data with easy-to-use JSON

responses.
• NOAAAPI – Provides global historical climate data.
• Indian Meteorological Department (IMD) API – Used for India-specific weather data.

2. Frontend & Backend Connectivity:
• Frontend: JavaScript, HTML, and Django Templates for dynamic updates.
• Backend: Django framework (Python), with REST APIs for data handling.
• Asynchronous Data Fetching: Open Weather Map API provides real-time, historical and forest

weather data.

RESULT
The Weather App is an easy-to-use website that shows real- time weather updates for various locations. It
is built using Django and gets weather data from a trusted source. Users can simply type in the name of
a city to check the current temperature, humidity, wind speed, and overall weather conditions. The app
also allows users to see forecasts for their current location or search for weather details of any place in
the world.The developed weather application successfully fulfills its primary objective of delivering
accurate, real-time weather information to users in a clear and user-friendly format. The system
integrates seamlessly with external APIs, such as Open WeatherMap and IMD, to fetch live
meteorological data based on user-input or GPS-detected locations. Users can view essential weather
parameters including temperature, humidity, wind speed, atmospheric pressure, and general weather
conditions. One of the key outcomes is the system’s ability to provide this data with minimal latency,
typically under two seconds, ensuring a smooth and responsive experience.

A standout feature of the application is its multilingual support, which enhances accessibility
for non-English speaking users, particularly in rural or agricultural regions. The application offers
language translation functionality, allowing users to interact with the interface in their native language,
thus increasing usability and inclusivity. Additionally, the application supports unit conversion for

https://www.theaspd.com/ijes.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 3,2025

https://www.theaspd.com/ijes.php

228

weather metrics, enabling users to toggle between temperature units (Celsius/Fahrenheit), wind speed
units (m/s and km/h), and pressure units (hPa and mmHg), based on their preferences or regional
standards.

Figure 3. Effectiveness of various features implemented in the weather application

Another important outcome is the implementation of severe weather alerts. The application
notifies users of critical weather events such as heavy rainfall, storms, or extreme temperature
fluctuations. These alerts help users prepare in advance and support decision-making, particularly in
weather-sensitive sectors like agriculture, logistics, and public safety. From a backend perspective, the
application efficiently stores user data and historical weather information using PostgreSQL, and utilizes
Django ORM for fast, structured database operations. The use of caching mechanisms reduces
redundant API calls, thereby optimizing performance. Furthermore, the application demonstrates
excellent cross-platform compatibility, operating smoothly across desktops, tablets, and smartphones. Its
responsive design ensures consistent user experience across devices and screen sizes. The modular
architecture, built on the Model-View-Controller (MVC) pattern using Django, promotes
maintainability and scalability, allowing for future enhancements such as integration of machine
learning models or personalized weather insights. Overall, the application not only meets its technical
objectives but also demonstrates real-world utility by making weather data more accessible, reliable, and
actionable for a diverse user base.

CONCLUSION
The weather application successfully delivers accurate, real-time weather updates using API integration
within a scalable Django-based architecture. Key features include multilingual support, unit conversion,
and weather alerts, enhancing accessibility and user experience. The system’s responsive interface and
efficient backend enable smooth data processing and display. Designed with inclusivity in mind, the app
benefits a wide range of users, including non-English speakers and rural populations. Its modular
architecture supports future enhancements such as AI-based predictions and advanced analytics.
Overall, the application demonstrates how modern technology can improve public access to vital
weather information for better planning and preparedness.From a technical standpoint, the use of the
Model-View-Controller (MVC) architecture, asynchronous data handling, and structured data storage
through PostgreSQL contributes to the application’s maintainability and scalability. These design
decisions make the application adaptable for future enhancements, such as incorporating AI-based
forecasting models, more granular regional data, or personalized user notifications.

FUTURE SCOPE
The future development of the weather application presents several promising directions aimed at
enhancing both functionality and user engagement. One significant enhancement involves integrating
artificial intelligence (AI) and machine learning algorithms to improve the accuracy of weather
predictions by analyzing historical data and identifying local patterns. The application can also expand
to support hyper-local forecasting, offering street-level precision which is especially beneficial for
agriculture, logistics, and disaster management. Another area of growth is the personalization of

https://www.theaspd.com/ijes.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 3,2025

https://www.theaspd.com/ijes.php

229

weather insights—providing users with tailored forecasts, alerts, and recommendations based on their
location, preferences, and usage behavior. Features such as voice-enabled assistants, wearable device
compatibility, and offline access to recent forecasts could significantly enhance accessibility and
convenience. Moreover, future versions can integrate climate awareness modules to educate users about
environmental trends and their impact. Collaborations with government meteorological departments
and the use of open climate datasets can further enrich the data accuracy and expand the app’s
relevance for both urban and rural populations.

REFERENCES
[1] S. Kothapalli and S. G. Togad, “A Real-Time Weather Forecasting and Analysis,” IEEE International Conference on

Power, Control, Signals, and Instrumentation Engineering (ICPCSI), 2017.
[2] O. M. Brastein, D. W. U. Perera, C. Pfeifer, and N. O. Skeie, “Estimating parameters for grey-box models of thermal

behavior in buildings,” Energy and Buildings, vol. 169, pp. 58–68, 2018.
[3] O. M. Brastein, B. Lie, and E. B. Abrahamsen, “Machine learning in Python for weather forecast based on freely

available weather data,” in Proc. 59th Conf. Simulation and Modelling (SIMS 59), Oslo Metropolitan University,
Norway, pp. 169–176, Sept. 26–28, 2018.

[4] S. Zhang, W. Wang, X. Gao, and C. Liu, “Design and implementation of weather forecasting service based on RESTful
web service,” in Proc. IEEE 10th Int. Conf. Ubiquitous Intelligence and Computing and IEEE 10th Int. Conf.
Autonomic and Trusted Computing (UIC/ATC), Vietri sul Mare, Italy, 2013.

[5] E. B. Abrahamsen, S. Bansal, and J. T. Selvik, “How to evaluate the quality of performance indicators for safety
management in process industries using SMART standards,” Journal of Loss Prevention in the Process Industries, vol.
70, p. 104392, 2021.

[6] H. B. Abrahamsen, F. Asche, A. N. Dahle, J. T. Selvik, and E. B. Abrahamsen, “An examination of the socioeconomic
impact of hiring more personnel for the Norwegian helicopter emergency medical service,” Scandinavian Journal of
Trauma, Resuscitation and Emergency Medicine, vol. 26, pp. 1–9, 2018.

[7] T. T. Nguyen, A. D. Nguyen, and H. T. Nguyen, “An Intelligent Weather Forecasting System Using Machine Learning
for Smart Agriculture,” IEEE Access, vol. 9, pp. 10338–10351, 2021.

[8] A. Kar and P. K. Singh, “Weather Forecasting Using Artificial Neural Network and Data Mining Techniques,”
International Conference on Computer, Communication and Control (IC4), pp. 1–4, 2015.

[9] M. R. Meshram, S. R. Biradar, and M. S. Shingate, “IoT Based Weather Monitoring and Forecasting System Using
Raspberry Pi,” IEEE International Conference on Recent Trends in Electronics, Information & Communication
Technology (RTEICT), pp. 2055–2059, 2017.

[10] K. K. Patel, S. M. Patel, and S. M. Prajapati, “Weather Monitoring and Forecasting System using IoT,” International
Journal of Engineering Research & Technology (IJERT), vol. 6, no. 6, pp. 32–35, 2017.

[11] N. B. Priya and S. M. Kumar, “Real-Time Weather Forecasting System using Machine Learning and Raspberry Pi,”
International Journal of Recent Technology and Engineering (IJRTE), vol. 8, no. 4, pp. 2755–2759, 2019.

[12] H. K. Tripathi and P. C. Pandey, “Weather Forecasting Using Big Data and Artificial Neural Networks,” 2019
International Conference on Smart Systems and Inventive Technology (ICSSIT), pp. 1185–1190, 2019.

[13] D. A. Patel and D. M. Patel, “Real-Time Weather Forecasting Using OpenWeatherMap API,” International Journal of
Advanced Research in Computer Science, vol. 9, no. 2, pp. 323–326, 2018.

[14] G. S. Bang and M. H. Choi, “Web-Based Weather Monitoring System Using RESTful API and MongoDB,”
International Journal of Software Engineering and Its Applications, vol. 10, no. 11, pp. 163–172, 20.

https://www.theaspd.com/ijes.php

