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ABSTRACT  
This study introduces a causal fusion framework for multimodal wearable sensor data that integrates causal inference, 
attention-guided fusion, and uncertainty-aware decision refinement to enable explainable in vivo biomedical 
diagnostics. The system employs Lasso-regularized vector autoregression to generate causal graphs, which guide an 
attention mechanism for feature integration across heterogeneous sensor modalities. By aligning attention weights with 
physiological dependencies and embedding saliency-driven interpretability, the framework delivers both predictive 
accuracy and transparent reasoning. Empirical validation demonstrates that the proposed approach achieves 96.3% 
accuracy, 94.6% precision, 93.9% recall, and a 94.2% F1-score, while sustaining a low inference latency of 17.4 ms 
and energy efficiency of 0.82 J/inference. It also records a temporal stability score of 0.89, a causal clarity score of 
0.91, and top-tier interpretability indices (explainability 0.94, interpretability 0.93). Importantly, the model exhibits 
superior resilience with an imputation robustness score of 0.91, maintaining diagnostic reliability under noisy or 
incomplete data streams. These results highlight the method’s potential for real-time, personalized, and resource-
constrained healthcare environments. 
Keywords: Attention mechanisms, Biomedical diagnostics, Causal inference, Data robustness, Edge computing, 
Explainable AI, Multimodal fusion, Real-time processing, Wearable healthcare, Uncertainty quantification. 
 
I. INTRODUCTION 
Wearable tech is changing healthcare. It is shifting biological diagnostics from one-time tests to dynamic, 
ongoing, and individualized tracking. Modern wearable sensors provide real-time, non-invasive data on 
many human systems thanks to flexible electronics, low-power wireless communication, and built-in AI 
[1]. This shift advances in vivo biomedical diagnostics, which collects physiological data outside of clinical 
settings. Multimodal wearable devices become more crucial for early detection, individualized therapies, 
and long-term disease management as healthcare advances from reactive to predictive and preventative. 
These systems sometimes capture ECG, PPG, skin temperature, EDA, respiration rate, glucose levels, and 
motion data simultaneously [2]. Each type of data provides separate but connected health information. 
Combining these data sources is still difficult due to their varying sample rates, noise levels, and sensitivity 
to outside factors. Also, physiological processes might have complex temporal and systemic linkages. A 
vascular reaction may cause a rapid drop in skin temperature and enhanced EDA and HRV due to stress. 
Therefore, good diagnostic systems must employ causative relationships between signals as well as 
association. Statistical aggregation or feature concatenation-based sensor fusion methods generally ignore 
temporal and causal dynamics, making them difficult to understand and use clinically [3]. Healthcare 
decisions must be explained and based on biological understanding; therefore, "black box" models don't 
function. Increasingly, fusion models must contain domain knowledge, causation, and interpretability to 
avoid these issues. Wearable sensor design has advanced in recent years [4]. Now, biosensors can attach 
to skin, be incorporated into garments, or use near-field wireless technology. Much physiological data can 
be tracked in real time. Edge AI and cloud computing can detect heart rhythms, seizures, metabolic 
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problems, and stress reactions. Using feature-based or ensemble fusion models to merge sensor data 
doesn't account for complex physiological relationships. Doctors may struggle to accept or validate deep 
learning model outcomes because they aren't always clear [5]. Lack of clarity slows regulatory approval, 
practical application, and generalization in many medical contexts. Researchers are applying causal 
reasoning to physiological data modeling to address these issues. These methods are utilized in economics 
and epidemiology. Granger causality, structural equation modeling, and directed acyclic graphs (DAGs) 
are being used to find physiological cause-and-effect relationships in time-series health data [6]. The data 
is easier to grasp and more clinically useful. Mixing these methodologies with explainable AI (XAI) 
technologies creates models that operate well and demonstrate how they make decisions. This study relies 
on causal fusion to detect and apply causal linkages between wearable sensor sets [7]. Causal fusion creates 
graph-based models of how biological signals interact across time rather than just merging portions. 
Changes in breathing rate may affect HRV during stress. Modeling this reliance improves health tracking 
system predictions. Understanding how signals interact together and in order enables us to make general 
and body-specific predictions [8]. Causal fusion often uses attention-based recurrent neural networks and 
other temporal learning approaches to account for time delays and real-time sensor stream dependencies. 
This method promotes explainability by identifying and counting key sensors and causal channels for 
diagnosis. Clinical trust and real-time patient participation in treatment planning are built. The study 
proposes a three-part causal fusion design to do this. Each sensor stream undergoes bandpass filtering, 
normalization, and interpolation before multimodal signal representation [9]. Recording signals with 
convolutional or recurrent neural networks preserves mode-specific information. Second, a causal graph 
section uses Granger causality, variational Bayesian networks, or attention-based DAGs to develop a 
probabilistic model. This model dynamically maps effects and finds hidden confounders across modes 
[10]. Third, an explainable diagnostic inference module employs an attention-augmented classifier to 
interpret fused embeddings and produce diagnostic results with comprehension metrics. Post-hoc 
approaches like SHAP (SHapley Additive Explanations) clarify each signal's importance in the final 
choice. Real-life datasets of stress, arrhythmia, diabetes, and other disorders train this algorithm. 
Modularity allows it to work on many devices and in many settings. How the system handles sensor noise 
and missing data is crucial to design. This study introduced a causal fusion framework for real-time, in 
vivo biomedical diagnostics using multimodal wearable sensors, a dynamic graph modeling approach to 
capture physiological signal directional dependencies, explainability tools to simplify results, a 
preprocessing pipeline to ensure data integrity even when errors or gaps occur, and successful validation 
on real-world data [11]. The platform facilitates modular deployment for various medical uses and respects 
ethical norms in AI-driven healthcare by emphasizing transparent, robust, and understandable decision-
making. This work makes several significant contributions toward advancing explainable biomedical 
diagnostics with wearable technologies. First, it introduces a novel causal graph–guided fusion mechanism 
that leverages Lasso-regularized vector autoregression and temporal smoothing to uncover physiologically 
meaningful relationships among multimodal signals. Building on this foundation, the framework 
incorporates a unique attention alignment strategy, ensuring that the learned attention scores remain 
consistent with causal dependencies, thereby embedding explainability into the model’s decision-making 
process [12]. Furthermore, the design integrates an uncertainty-aware decision refinement module that 
combines entropy-based confidence estimation with saliency-driven interpretability, providing clinicians 
with transparent and trustworthy diagnostic insights. The system also demonstrates strong scalability and 
computational efficiency, delivering high diagnostic accuracy while minimizing latency and energy 
consumption, making it practical for real-time, edge-based deployment. Finally, extensive evaluation 
confirms its robustness under noisy inputs, missing data, and sensor dropout, underscoring its resilience 
and suitability for diverse healthcare environments. Collectively, these contributions establish the 
proposed approach as both a methodological advance in multimodal causal fusion and a clinically viable 
solution for transparent, personalized diagnostics. 
 
II. RELATED WORKS 
The integration of multimodal wearable sensor data into in vivo biomedical diagnostics has motivated a 
diverse range of fusion and causal inference strategies. Traditional methods such as Granger causality 
analysis offered one of the earliest ways to measure directional dependencies in physiological time-series. 
While computationally efficient and interpretable, these approaches are restricted to linear assumptions 
and are sensitive to noise, limiting their applicability to high-dimensional and nonlinear wearable data 
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streams. Similarly, the PC Algorithm provided constraint-based causal discovery through statistical 
independence testing but lacked robustness under incomplete or missing data, which are frequent 
challenges in wearable environments. To address these shortcomings, probabilistic graphical models such 
as Dynamic Bayesian Networks (DBNs) and Structural Causal Models (SCMs) were introduced [13-15]. 
DBNs captured temporal dynamics and uncertainty more effectively, yet required large datasets and 
substantial computational resources, making them difficult to deploy on edge devices. SCMs, on the other 
hand, brought interpretability through directed acyclic graphs (DAGs) and counterfactual reasoning, 
aligning well with biomedical needs for transparency. However, their scalability in real-time multimodal 
fusion tasks remained limited. The rise of deep learning–based multimodal fusion models further 
advanced wearable health diagnostics. Architectures such as Temporal Convolutional Networks (TCNs) 
and Transformers demonstrated strong sequence modeling capabilities, flexibly handling variable input 
lengths and long-range dependencies. Transformer-based fusion models, in particular, achieved superior 
diagnostic accuracy by dynamically weighting heterogeneous modalities via attention. Nonetheless, their 
black-box nature made causal reasoning opaque and reduced clinical trust, as they often failed to explain 
the underlying physiological interactions behind predictions [16]. More recent efforts have focused on 
hybrid approaches that embed causality within deep learning frameworks. Attention-based causal 
inference models explicitly aligned attention weights with causal dependencies, thereby improving both 
interpretability and diagnostic reliability. Variational autoencoders with DAG constraints enabled 
unsupervised discovery of latent causal structures and hidden confounders, ensuring fusion adhered to 
physiological principles. Graph Neural Networks (GNNs) extended these ideas by encoding spatial and 
causal relationships across structured sensor modalities, offering robustness, resilience, and scalability. 
These causal deep learning hybrids consistently outperformed conventional fusion models in recall, 
precision, F1-score, and robustness under noise. Finally, explainability frameworks such as SHAP 
(SHapley Additive Explanations) have been adopted to make post-hoc sense of multimodal predictions. 
While effective in quantifying feature contributions, they lack integration with causal reasoning, resulting 
in slower inference and weaker clinical acceptance [17]. By contrast, models that unify causal discovery, 
interpretable fusion, and real-time efficiency are emerging as the most promising candidates for wearable 
diagnostics. Prior research highlights a clear progression: from linear causal models with limited 
robustness, to probabilistic and structural approaches that improved transparency but sacrificed 
scalability, and finally to deep learning architectures that achieved accuracy but often neglected 
interpretability. Recent advances in causal-aware neural architectures suggest that the future lies in 
integrated frameworks that jointly optimize accuracy, interpretability, robustness, and deployment 
efficiency—a gap directly addressed by the proposed causal fusion methodology. 
 
Table 1 Comparative Summary of Related Works on Causal and Fusion Methods 

Method/Family Strengths Limitations Suitability for 
Biomedical 
Wearables 

Granger Causality / 
PC Algorithm 

Simple, interpretable, 
computationally light 

Limited to linear 
relations, weak under 
noise, poor scalability 
with high-dimensional 
data 

Useful for basic 
analysis, but 
insufficient for 
complex multimodal 
signals 

Dynamic Bayesian 
Networks (DBNs) 

Capture temporal 
dependencies and 
uncertainty; 
probabilistic reasoning 

High computational 
cost; require large 
datasets 

Good for modeling 
uncertainty, but not 
feasible for real-time 
edge deployment 

Structural Causal 
Models (SCMs) 

Strong interpretability, 
counterfactual 
reasoning, biomedical 
alignment 

Difficult to scale; 
limited robustness 
with missing/noisy 
data 

Valuable for clinical 
trust, but less practical 
for wearable platforms 

Temporal 
Convolutional 
Networks (TCNs) 

Good at long-range 
sequence modeling; 
efficient training 

Not inherently causal; 
limited interpretability 

Effective for temporal 
dynamics, but lacks 
clinical explainability 
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Transformer-Based 
Fusion 

Flexible with varying 
input lengths; strong 
accuracy via attention 

Black-box nature; lacks 
causal grounding; high 
computational load 

High diagnostic 
performance, but poor 
transparency and 
energy demands 

Attention-Based 
Causal Inference 

Aligns attention with 
causal relations; 
interpretable and 
accurate 

Complexity increases 
with modality count 

Strong candidate for 
wearable diagnostics 
with explainability 

Variational 
Autoencoders with 
DAGs 

Discover hidden 
causal structures; 
handle confounders 

Computationally 
heavy; training 
instability 

Theoretically strong, 
but less suitable for 
low-power devices 

Graph Neural 
Networks (GNNs) 

Encode causal and 
spatial relations; 
robust and scalable 

Require structured 
data; relatively 
complex 

Excellent balance of 
performance and 
interpretability for 
structured biosignals 

SHAP and Post-hoc 
XAI 

Provide feature 
contribution 
explanations; clinician-
friendly 

Post-hoc, not 
integrated; adds 
computational 
overhead 

Improves trust, but 
slower and less 
coherent for real-time 
use 

Recent Causal Fusion 
Hybrids 

Integrate causality, 
attention, and 
interpretability; robust 
under noise/missing 
data 

Still maturing; require 
optimization for edge 
platforms 

Most promising 
direction for 
explainable, efficient 
wearable diagnostics 

Table 1 provides a structured comparison of major approaches used in multimodal biomedical 
diagnostics, ranging from classical causal inference methods to modern causal fusion hybrids. It highlights 
their respective strengths, such as interpretability in structural causal models or robustness in graph-based 
methods, while also noting limitations like scalability issues, computational overhead, or lack of causal 
grounding. Importantly, the table shows that recent causal fusion hybrids uniquely combine accuracy, 
efficiency, and explainability, positioning them as the most promising direction for wearable healthcare 
systems. 
 
III. PROPOSED METHODOLOGY 
Wearable sensor systems acquire multimodal data for real-time biological diagnosis. The suggested 
approach is layered and explicable. The core of this approach involves making judgments about the causes 
of events to identify meaningful connections between physiological signals in a dynamic environment 
[18]. The input data is separated into fixed-length time periods to observe and capture trends in wearable 
sensor streams, which fluctuate over time. Lagged sensor stream observations are made per frame. These 
observations form predictive models' temporal basis. These helps fit a multivariate vector autoregressive 
model that accounts for self-influence and sensor interaction. Omitting cross-sensor effects and assuming 
the null hypothesis limits this model. This experiment tests the inter-sensor effect's statistical significance 
[19-21]. The F-statistic finds statistically significant Granger-type causal linkages between the models' 
results. Adding a Lasso regularization component to coefficient estimation strengthens it. This procedure 
reduces weak dependencies and enhances sparsity. Coordinate descent ensures computer efficiency 
during optimization. After examining all sensor pairs for each time window, a weighted and directed 
causal graph is created. Each edge shows the strength and direction of causal interactions between sensor 
modalities. Temporally smoothing the graph removes transitory or noise-induced edges. This creates a 
stable, understandable structure that records physiological trends. A cause graph is given to the next stage 
to combine signals and make predictions. The second phase combines multimodal features using causally 
informed attention. It builds on causality. Every sensor stream is encoded by a bespoke neural encoder 
into a tiny physiological latent representation [22-14]. Key, query, and value vectors for attention 
processing are made from embeddings. Earlier causal influence weights affect query vectors. This 
approach ensures the attention system organizes sensor inputs by physiological causation and temporal 
relevance. This creates a context-aware attention system that adjusts sensor weight based on real-time 
signal content and learning relevance across modes. An attention weight distribution for each sensor type 
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is calculated at each time step and utilized to create a merged feature vector. This vector extracts the most 
significant sensor data and discards the rest. A shallow diagnostic prediction layer converts this combined 
representation into a binary or probabilistic output indicating medical conditions [25]. An additional 
attention alignment loss function aligns the attention mechanism with the causal graph. This term 
punishes causal weight-attention score discrepancies. The result makes fusion understandable and uses 
signal correlations that reveal physiological interdependence. The model learns to minimize prediction 
error and causal misalignment. This balances diagnostic performance and interpretability. Saliency 
analysis, uncertainty estimation, and explanation consistency assessment improve forecast clarity and 
reliability in the final stage. The diagnostic feature vector is divided into interpretable areas. These realms 
are molecular, structural, and temporal. In the model output, gradients are calculated for each 
component. These saliency scores indicate how single-area changes affect the final prediction. These 
variations can be used to create explanation maps to help scientists understand model decisions. Two key 
techniques to evaluate uncertainty simultaneously are the model's forecast distribution entropy and 
attention weight fluctuation across modalities. These are combined to provide a single uncertainty score 
that encompasses epistemic and aleatoric doubt. When the score exceeds a specific number, the forecast 
is considered uncertain. Looking at attribution map changes over time provides a temporal consistency 
score. This helps identify excessive model logic modifications. This consistency score determines each 
estimate's interpretability [26]. The model output shows the anticipated condition label, fused uncertainty 
score, attribution heatmaps, explanation saliency values, and interpretability signals. These aspects create 
a clear, useable, clinically reliable decision. The system supports real-time, in vivo biomedical applications 
using wearable gear. It helps clinicians diagnose and explain issues so they can confirm AI-driven system 
decisions. 
 
Algorithm 1: Causal Discovery via Lasso-Regularized Vector Autoregression for Multimodal Sensor 
Streams. 
Steps: 
Step 1: Initialize time series structures and lagging 
▪ 𝑋 = [𝑆1(𝑡), 𝑆2(𝑡), … , 𝑆𝑁(𝑡)] ∀𝑡 ∈ [1, 𝑇]           (1) 

▪ 𝑆𝑖 =
1

𝑇
∑  𝑇

𝑡=1 𝑆𝑖(𝑡)                                                            (2) 

▪ 𝛴𝑖𝑗 =
1

𝑇
∑  𝑇

𝑡=1 (𝑆𝑖(𝑡) − 𝑆𝑖) (𝑆𝑗(𝑡) − 𝑆𝑗)                 (3) 

Step 2: Construct lagged predictors and responses 
▪ 𝑋𝑙𝑎𝑔(𝑡) = ∑  𝑃

𝑝=1 ∑  𝑁
𝑖=1 𝑆𝑖(𝑡 − 𝑝)                             (4) 

▪ 𝑌(𝑡) = ∑  𝑃
𝑝=1 𝑆𝑗(𝑡)                                                    (5) 

Step 3: Apply Z-score normalization to all sensor stream 
Step 4: Segment series into overlapping windows 
Step 5: Form unrestricted VAR model 
▪ 𝑆𝑗(𝑡) = ∑  𝑃

𝑝=1 𝑎𝑗𝑝𝑆𝑗(𝑡 − 𝑝) + ∑  𝑃
𝑝=1 𝑏𝑖𝑝𝑆𝑖(𝑡 − 𝑝) + 𝜖𝑡                               

 (6) 
▪ 𝑆𝑗̂(𝑡) = ∑  𝑃

𝑝=1 ∑  𝑁
𝑖=1 𝛽𝑖𝑗𝑝𝑆𝑖(𝑡 − 𝑝)                         (7) 

Step 6: Build restricted model and error computation 

▪ 𝑆𝑗
(𝑟)(𝑡) = ∑  𝑃

𝑝=1 𝑎𝑗𝑝𝑆𝑗(𝑡 − 𝑝) + 𝜖𝑡
′                          (8) 

▪ 𝑅𝑆𝑆𝑢 = ∑  𝑇
𝑡=1 (𝑆𝑗(𝑡) − 𝑆𝑗̂(𝑡))

2
                   (9) 

▪ 𝑅𝑆𝑆𝑟 = ∑  𝑇
𝑡=1 (𝑆𝑗(𝑡) − 𝑆𝑗

(𝑟)(𝑡))
2

                       (10) 

Step 7: Estimate coefficients using ordinary least squares 
Step 8: Apply Lasso regularization to coefficients 

▪ 𝐿(𝐵) = ∑  𝑇
𝑡=1 (𝑌(𝑡) − ∑  𝑃

𝑝=1 ∑  𝑁
𝑖=1 𝐵𝑖𝑝𝑆𝑖(𝑡 − 𝑝))

2
             (11) 

▪ +𝜆 ∑  𝑁
𝑖=1 ∑  𝑃

𝑝=1 |𝐵𝑖𝑝|                                              (12) 
▪ 𝐵∗ =𝑎𝑟𝑔 𝑎𝑟𝑔 𝐿  (𝐵)                                                 (13) 
Step 9: Solve Lasso optimization via coordinate descent 
Step 10: Perform Granger causality test with F-statistic 
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▪ 𝐹 =
(𝑅𝑆𝑆𝑟−𝑅𝑆𝑆𝑢)/𝑃

𝑅𝑆𝑆𝑢/(𝑇−2𝑃−1)
                                                  (14) 

▪ 𝐹𝑖𝑗 =
∑𝑇

𝑡=1 (𝑆𝑗
(𝑟)̂

(𝑡)−𝑆𝑗̂(𝑡))

2

𝑃⋅𝜎2̂
                                       (15) 

Step 11: Construct causal influence graph 𝐺 = (𝑉, 𝐸) 
▪ 𝑉 = {𝑆1, 𝑆2, … , 𝑆𝑁}                                                   (16) 
▪ 𝐸 = {(𝑖, 𝑗) ∣ 𝐹𝑖𝑗 > 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙}                                  (17) 
▪ 𝑤𝑖𝑗 = ∑  𝑇

𝑡=1 1(𝐹𝑖𝑗(𝑡) > 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙)                         (18) 
Step 12: Repeat for all sensor pairs 
Step 13: Aggregate causal scores 
Step 14: Smooth causal matrix over time 

▪ 𝐶𝑖𝑗(𝑡) =
1

𝐾
∑  𝑡

𝑘=𝑡−𝐾+1 𝐶𝑖𝑗(𝑘)                                  (19) 

▪ 𝐶𝑖𝑗
∗ (𝑡) = 1 (𝐶𝑖𝑗(𝑡) > 𝜏)                           (20) 

Step 15: Output robust causal graph G^* 
▪ 𝐺∗ = (𝑉, 𝐸∗)                                                               (21) 
▪ 𝐸∗ = {(𝑖, 𝑗) ∣ 𝐶𝑖𝑗

∗ = 1}                                              (22) 

▪ 𝐶∗ = ∑  𝐾
𝑘=1 𝐶(𝑘)                                                         (23) 

Notations 
● 𝑆𝑖(𝑡):Sensor stream 𝑖 at time 𝑡 
● 𝑁: Number of sensor streams 
● 𝑇: Total time samples 
● 𝛥𝑡: Time window duration 
● 𝑃: VAR lag order 
● 𝑋, 𝑌:Predictor and response matrices 
● 𝑎𝑗𝑝, 𝑏𝑖𝑝:Coefficients in unrestricted model 
● 𝜖𝑡 , 𝜖𝑡

′:Residual errors 
● 𝑅𝑆𝑆𝑢, 𝑅𝑆𝑆𝑟:Residual sum of squares 
● 𝜆: Regularization strength 
● 𝐵:Coefficient matrix in VAR 
● 𝐿(𝐵):Lasso objective function 
● 𝐹: F-statistic for causality test 
● 𝐺 = (𝑉, 𝐸):Causal influence graph 
● 𝐶:Causal adjacency matrix 
Algorithm 1 performs robust causal inference between multiple wearable sensor streams using a Lasso-
regularized Vector Autoregression (VAR) model. It begins by segmenting input data into fixed windows 
to handle non-stationarity and constructs lagged predictors for each stream. Standardized signals are then 
input into the unrestricted VAR model, which includes both self and cross-sensor terms. A restricted 
version removes the cross-sensor influence, forming the basis for hypothesis testing. By comparing residual 
errors from both models using an F-statistic, the algorithm determines the presence of Granger-type causal 
influence. To improve robustness and eliminate irrelevant variables, Lasso regularization is applied to the 
VAR coefficients, promoting sparsity and enhancing interpretability. The resulting coefficients are 
optimized through coordinate descent. If the calculated F-statistic exceeds a critical threshold, a directed 
edge is added to the causal influence graph between the corresponding sensor streams [27]. This process 
repeats for every pair of sensors across all time windows. Temporal smoothing helps filter out transient 
or noisy edges. The final result is a weighted, directed causal graph that reflects statistically significant 
influence among the sensors. This graph enables downstream tasks like modality attention and 
explainability in biomedical diagnosis, making the system suitable for real-time, in vivo wearable 
applications with high reliability. 
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Fig.1.Robust VAR-Based Causal Estimation algorithm illustrating the steps for detecting causal 
relationships from multimodal wearable sensor streams using regularized VAR modeling and F-statistical 
testing. 
Figure 1 outlines the process of detecting causal relationships among multimodal wearable sensor streams 
using a robust VAR-based method. It begins with collecting raw sensor data, which is segmented into 
fixed-size windows for temporal analysis. Each stream is normalized using Z-score transformation, 
followed by the construction of lagged predictor matrices. Both unrestricted and restricted Vector 
Autoregression (VAR) models are built to estimate relationships between sensor streams. Residual errors 
are computed and compared using an F-statistic to evaluate Granger causality [28]. Lasso regularization is 
applied for robust coefficient estimation, and the results are used to form a weighted causal graph. 
Temporal smoothing and thresholding ensure only consistent relationships are retained, leading to a final 
graph that highlights significant, interpretable causal links. 
Algorithm 2: Causally Guided Attention Fusion for Adaptive Biomedical Signal Integration. 
Steps 
Step 1: Input causal graph and sensor features 
▪ 𝐻𝑖(𝑡) = ∑  𝑇

𝜏=1 𝜙𝑖𝜏𝑆𝑖(𝜏)                                                (24) 
▪ 𝐶𝑖𝑗 =

𝑤𝑖𝑗

∑  𝑁
𝑘=1 𝑤𝑖𝑘

                                                            (25) 

Step 2: Generate causally influenced attention embeddings 
▪ 𝑐𝑖(𝑡) = ∑  𝑁

𝑗=1 𝐶𝑖𝑗𝐻𝑗(𝑡)                                            (26) 

▪ 𝑞𝑖(𝑡) =𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (∑  𝑑
𝑘=1 𝑊𝑐

(𝑘)
𝑐𝑖

(𝑘)(𝑡) + 𝑏𝑐)        (27) 

▪ 𝑧𝑖(𝑡) = ∑  𝑑
𝑙=1 𝑊𝑧

(𝑙)
[𝐻𝑖

(𝑙)(𝑡) + 𝑞𝑖
(𝑙)(𝑡)]                  (28) 

Step 3: Project each sensor’s latent to keys and values 

▪ 𝐾𝑖(𝑡) = ∑  𝑑
𝑚=1 𝑊𝑘

(𝑚)
𝐻𝑖

(𝑚)(𝑡)                               (29) 

▪ 𝑉𝑖(𝑡) = ∑  𝑑
𝑚=1 𝑊𝑣

(𝑚)
𝐻𝑖

(𝑚)(𝑡)                                (30) 
 
 
Step 4: Form global query representation 

▪ 𝑄(𝑡) = ∑  𝑁
𝑖=1 ∑  𝑑

𝑛=1 𝑊𝑞
(𝑛)

𝑧𝑖
(𝑛)(𝑡)                          (31) 

Step 5: Compute attention weights using softmax 

▪ 𝑒𝑖(𝑡) =
1

√𝑑𝑘
∑  

𝑑𝑘
𝑘=1 𝑄(𝑘)(𝑡)𝐾𝑖

(𝑘)(𝑡)                        (32) 

▪ 𝛼𝑖(𝑡) =
𝑒𝑥𝑝𝑒𝑥𝑝 (𝑒𝑖(𝑡)) 

∑  𝑁
𝑗=1  𝑒𝑥𝑝𝑒𝑥𝑝 (𝑒𝑗(𝑡)) 

                                      (33) 

▪ ∑  𝑁
𝑖=1 𝛼𝑖(𝑡) = 1                                                          (34) 

Step 6: Weighted sensor fusion using attention scores 
▪ 𝐻𝑓𝑢𝑠𝑒𝑑(𝑡) = ∑  𝑁

𝑖=1 𝛼𝑖(𝑡)𝑉𝑖(𝑡)                                (35) 
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▪ 𝐻𝑔𝑙𝑜𝑏𝑎𝑙(𝑡) =𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (∑  𝑑
𝑟=1 𝑊𝑓

(𝑟)
𝐻𝑓𝑢𝑠𝑒𝑑

(𝑟)
(𝑡) + 𝑏𝑓)                                                       

 (36) 
Step 7: Generate diagnostic prediction 

▪ 𝑦̂(𝑡) = 𝜎 (∑  𝑑
𝑠=1 𝑊𝑦

(𝑠)
𝐻𝑔𝑙𝑜𝑏𝑎𝑙

(𝑠)
(𝑡) + 𝑏𝑦)          (37) 

Step 8: Supervise attention with causal influence 

▪ 𝐿𝑎 = ∑  𝑁
𝑖=1 ∑  𝑁

𝑗=1 (𝛼𝑖(𝑡) − 𝐶𝑖𝑗)
2

                       (38) 
▪ 𝐿𝑑 = − ∑  𝑇

𝑡=1 [𝑦(𝑡) 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑦̂ (𝑡) + (1 − 𝑦(𝑡)) 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝑦̂(𝑡)) ]                                    (39) 
Step 9: Compute fused feature vector using causal attention 
▪ 𝐻fused(𝑡) = ∑ 𝛼𝑖(𝑡)𝑁

𝑖=1 ⋅ ℎ𝑖(𝑡)                                (40) 
Step 10: Evaluate causal alignment and compute losses 

▪ ℒ𝑎𝑙𝑖𝑔𝑛 = ∑ ∑ (𝛼𝑖(𝑡) − 𝜓𝑖𝑗)
2𝑁

𝑗=1
𝑁
𝑖=1                     (41) 

▪ ℒpe = − ∑ 𝑦𝑐(𝑡)𝐶
𝑐=1 ⋅ 𝑙𝑜𝑔 𝑦𝑐̂ (𝑡)                             (42) 

• ℒ𝑡𝑜𝑡𝑎𝑙 = 𝜆1 ⋅ ℒ𝑝𝑟𝑒𝑑 + 𝜆2 ⋅ ℒ𝑎𝑙𝑖𝑔𝑛                  (43) 
Step 11: Optimize fused prediction output 
▪ 𝑦̂(𝑡) = 𝜎(𝑊𝑑 ⋅ 𝐻fused(𝑡) + 𝑏𝑑)                    
 (44) 
▪ 𝑦∗(𝑡) = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝑐
𝑦𝑐̂ (𝑡)                                        (45) 

Step 12: Output fused features and predicted label 
▪ Output(𝑡) = {𝐻fused(𝑡), 𝑦̂(𝑡), 𝑦∗(𝑡), 𝛼(𝑡)}          (46) 
Notations 
● 𝑆𝑖(𝑡): Time-series input from sensor 𝑖 
● 𝐻𝑖(𝑡): Hidden state representation of 𝑆𝑖(𝑡) 
● 𝐺 = (𝑉, 𝐸, 𝑤𝑖𝑗): Causal graph from Algorithm 1 
● 𝐶𝑖𝑗: Normalized causal influence score 
● 𝑐𝑖(𝑡): Causal context vector 
● 𝑞𝑖(𝑡): Causal-enhanced query 
● 𝑧𝑖(𝑡): Combined representation of sensor 𝑖 
● 𝑄(𝑡), 𝐾𝑖(𝑡), 𝑉𝑖(𝑡): Query, Key, and Value vectors 
● 𝛼𝑖(𝑡): Attention weight for sensor 𝑖 
● 𝐻𝑓𝑢𝑠𝑒𝑑(𝑡): Fused weighted representation 
● 𝐻𝑔𝑙𝑜𝑏𝑎𝑙(𝑡): Nonlinear global fusion vector 
● 𝑦̂(𝑡): Predicted diagnostic output 
● 𝐿𝑎: Attention alignment loss 
● 𝐿𝑑: Diagnostic prediction loss 
● 𝐿𝑡𝑜𝑡𝑎𝑙: Combined training loss 
Algorithm 2 builds upon the causal graph generated in Algorithm 1 to fuse multimodal wearable sensor 
streams for real-time diagnostic prediction. It begins by transforming each sensor stream into a latent 
representation using an encoder, and then integrates causal weights derived from the influence matrix 
into attention queries. This approach allows the model to prioritize sensor inputs based not only on 
temporal features but also on their inferred causal relevance. 
Each sensor representation is projected into key and value spaces, while the query is derived from causal-
aware embeddings. The attention mechanism computes weights 𝛼𝑖(𝑡), representing the importance of 
each modality at a given time. These weights are used to form a fused vector that emphasizes critical 
features for health prediction [29-31]. A shallow diagnostic layer maps the fused representation to a binary 
output 𝑦̂(𝑡), indicating the presence or absence of a condition. Simultaneously, an attention alignment 
loss encourages the learned attention to mirror causal relationships identified in the previous step, 
improving both interpretability and robustness. The model optimizes a composite loss balancing 
prediction accuracy and causal alignment. 
Through this fusion of attention and causality, Algorithm 2 enables interpretable, adaptive decision-
making that responds dynamically to changing physiological signals across time and individuals. 
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Fig.2.Multimodal Attention Fusion Network illustrating the integration of causal influence from 
wearable sensor streams into an attention-based fusion model for explainable biomedical diagnostics. 
Figure 2 illustrates the causal-aware attention-based fusion process for multimodal wearable sensor data. 
It begins with inputs from Algorithm 1—a causal influence graph—and time-aligned sensor features. The 
model generates causal context vectors to guide attention formation. These contexts are used to compute 
attention queries, while each sensor’s features are projected into key and value representations. The 
attention mechanism computes weights that reflect each sensor’s relevance, leading to a fused 
representation [32]. This fused vector is passed through a diagnostic layer to produce health predictions. 
Losses are computed for both diagnostic accuracy and alignment with causal influence. The model is 
trained using combined loss and updated iteratively. The final output includes the predicted diagnosis 
and interpretable attention weights for each sensor. 
Algorithm 3: Uncertainty-Aware Decision Refinement with Saliency-Based Interpretability. 
Steps: 
Step 1: Input fused representation and prediction 
▪ 𝑍(𝑡) = ∑ 𝛼𝑖(𝑡)𝑁

𝑖=1 ⋅ 𝐸𝑖(𝑡)                                         (47) 
▪ 𝑦̂(𝑡) = ∑ 𝑤𝑘𝑍(𝑘)(𝑡)𝑑

𝑘=1                                           (48) 
Step 2: Decompose fused vector into interpretable domains 

▪ 𝑍bio(𝑡) = ∑ 𝑊𝑏
(𝑘)

𝑍(𝑘)(𝑡)𝑑𝑏
𝑘=1                                   (49) 

▪ 𝑍temp(𝑡) = ∑ 𝑊𝑡
(𝑘)

𝑍(𝑘)(𝑡)𝑑𝑡
𝑘=1                                 (50) 

▪ 𝑍struct(𝑡) = ∑ 𝑊𝑠
(𝑘)

𝑍(𝑘)(𝑡)𝑑𝑠
𝑘=1                                (51) 

Step 3: Saliency computation for biological component 

▪ 𝑆𝑏𝑖𝑜 = ∑
𝜕𝑦̂(𝑡)

𝜕𝑍bio
(𝑘)

(𝑡)

𝑑𝑏
𝑘=1 ⋅ 𝑍bio

(𝑘)(𝑡)                              (52) 

▪ 𝐺𝑏𝑖𝑜 = ∑ |
𝜕𝑦̂

𝜕𝑍bio
(𝑘)

(𝑡)
|

𝑑𝑏
𝑘=1                                       (53) 

Step 4: Saliency computation for structural component 

▪ 𝒮src = ∑
𝜕𝑦̂(𝑡)

𝜕𝑍struct
(𝑘)

(𝑡)

𝑑𝑠
𝑘=1 ⋅ 𝑍struct

(𝑘) (𝑡)                          (54) 

▪ 𝒢src = ∑ |
𝜕𝑦̂

𝜕𝑍struct
(𝑘)

(𝑡)
|

𝑑𝑠
𝑘=1                                       (55) 

Step 5: Saliency computation for temporal component 

▪ 𝒮tm = ∑
𝜕𝑦̂(𝑡)

𝜕𝑍temp
(𝑘)

(𝑡)

𝑑𝑡
𝑘=1 ⋅ 𝑍temp

(𝑘) (𝑡)              

 (56) 

▪ 𝒢tm = ∑ |
𝜕𝑦̂

𝜕𝑍temp
(𝑘)

(𝑡)
|

𝑑𝑡
𝑘=1                                        (57) 

Step 6: Attention-based uncertainty 

▪ 𝜇𝛼 =
1

𝑁
∑ 𝛼𝑖(𝑡)𝑁

𝑖=1                                        (58) 
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▪ 𝜎𝛼
2 = ∑ (𝛼𝑖(𝑡) − 𝜇𝛼)2𝑁

𝑖=1                              (59) 
Step 7: Entropy of prediction 
▪ ℋ(𝑦̂) = − ∑ 𝑦𝑐̂(𝑡)𝐶

𝑐=1 ⋅ 𝑙𝑜𝑔 𝑦𝑐̂ (𝑡)                        (60) 

▪ ℋnr = ∑
𝑦𝑐̂(𝑡)

∑ 𝑦𝑗̂(𝑡)𝐶
𝑗=1

𝐶
𝑐=1 ⋅ 𝑙𝑜𝑔  

1

𝑦𝑐̂(𝑡)
                  (61) 

Step 8: Combined uncertainty score 
▪ 𝑈(𝑡) = 𝜆1 ⋅ 𝜎𝛼 + 𝜆2 ⋅ ℋ(𝑦̂)                              (62) 
▪ 𝜆1 + 𝜆2 = 1                                  
  (63) 
Step 9: Uncertainty-based flagging 
▪ 𝟙lwcn(𝑡) = 𝟙(𝑈(𝑡) > 𝜏)                             
 (64) 
▪ FlagCount = ∑ 𝟙lwcn(𝑡)𝑇

𝑡=1                             (65) 
Step 10: Attribution for each modality 

▪ 𝐴𝑖(𝑡) = ∑ 𝛼𝑖(𝑡)𝑑
𝑘=1 ⋅ |

𝜕𝑦̂

𝜕𝐸𝑖
(𝑘)

(𝑡)
|                               (66) 

▪ 𝐴(𝑡) = ∑ 𝐴𝑖(𝑡)𝑁
𝑖=1                                                 (67) 

▪ 𝐴̅ =
1

𝑇
∑ 𝐴(𝑡)𝑇

𝑡=1                                                (68) 

Step 11: Temporal consistency of explanation 

▪ 𝒞(𝑡) = 𝑒𝑥𝑝 (− ∑ (𝐴(𝑗)(𝑡) − 𝐴(𝑗)̅̅ ̅̅ ̅)
2

𝑑
𝑗=1 )               (69) 

▪ AvgConsist =
1

𝑇
∑ 𝒞(𝑡)𝑇

𝑡=1                                       (70) 

Step 12: Construct explanation vector 
▪ 𝒳(𝑡) = ∑ 𝒮𝓀(𝑡)3

𝑘=1 + 𝒞(𝑡) + 𝑈(𝑡)                      (71) 
▪ ExplanationMatrix = ∑ 𝒳(𝑡)𝑇

𝑡=1                            (72) 
 
Step 13: Generate interpretability label 
▪ 𝐿(𝑡) = 𝟙(𝒞(𝑡) > 𝜃1) ⋅ 𝟙(𝑈(𝑡) < 𝜃2)                   (73) 
▪ LabelScore = ∑ 𝐿(𝑡)𝑇

𝑡=1                                           (74) 
Step 14: Final structured output 
▪ Output(𝑡) = {𝑦̂(𝑡), 𝑈(𝑡), 𝐴(𝑡), 𝒳(𝑡), 𝐿(𝑡)}        (75) 
▪ FinalOutput = ∑ Output(𝑡)𝑇

𝑡=1                              (76) 
Notations 
● 𝐻𝒈𝒍𝒐𝒃𝒂𝒍(𝑡): Fused feature vector from Algorithm 2 
● 𝑦̂(𝑡): Diagnostic output from Algorithm 2 
● 𝑊𝑠, 𝑊𝑡 , 𝑊𝑏: Projection weights for structure, temporal, and biological components 
● 𝐻𝒔𝒕𝒓𝒖𝒄𝒕, 𝐻𝒕𝒆𝒎𝒑, 𝐻𝒃𝒊𝒐: Component features 
● 𝑆𝒔𝒓𝒄, 𝑆𝑏𝑖𝑜: Saliency vectors 
● 𝐸𝒔𝒓𝒄, 𝐸𝑏𝑖𝑜: Explanation scores 
● 𝛼𝑖(𝑡): Attention weight for sensor 𝑖 
● 𝜇𝛼 , 𝜎𝛼

2: Mean and variance of attention 
● 𝑈𝒂𝒕𝒕𝒏, 𝐻(𝑦̂): Uncertainty terms 
● 𝑈𝒇𝒊𝒏𝒂𝒍: Fused uncertainty estimate 
● 𝜆1, 𝜆2: Fusion weights for uncertainty 
● 𝐴𝑖(𝑡), 𝐴(𝑡): Feature attribution maps 
● 𝜎𝐴, 𝐶𝒆𝒙𝒑𝒍: Explanation variance and consistency 
● 𝐿𝒊𝒏𝒕𝒑: Binary interpretability label 
● 𝑋(𝑡): Structured explanation vector 
The diagnostic pathway ends with Algorithm 3. It decides and interprets. Using Algorithm 2's attention-
based characteristics and diagnostic outputs, this stage explains and measures doubt to ensure clinical 
validity. The input fused vector is broken down into meaningful elements that characterize sensor signal 
structure, timing, and biological properties. Saliency-based explanation scores estimate how sensitive each 
part is to variance in the end prediction. The system simultaneously analyzes diagnosis accuracy using two 
measures: variation in sensor attention weights and forecast probability entropy [33-34]. Add these figures 
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to see if a prediction is reliable. This helps you make a decision when you're unsure what to do with a 
patient. A feature attribution map shows which sensors contributed most to the forecast, making it 
clearer. This map is evaluated over time to verify if the model's thinking stays the same, and a consistency 
score indicates how stable the explanation is. Finally, this model outputs the forecast, uncertainty level, 
interpretability label, and explanation vectors. This clarifies, reads, and acts on real-time medical 
diagnoses. 

 
Fig.3.Explainable decision refinement and uncertainty quantification pipeline, highlighting feature 
decomposition, saliency analysis, uncertainty scoring, and attribution for interpretable biomedical 
diagnostics. 
Figure 3 outlines the process of explainable decision refinement and uncertainty quantification following 
multimodal sensor fusion. It starts by receiving fused sensor features and diagnostic outputs from the 
previous stage. These features are decomposed into interpretable components such as structural, 
biological, and temporal elements. Saliency analysis is performed to determine the importance of each 
component. Simultaneously, uncertainty is measured based on attention variability and prediction 
entropy. The combined uncertainty score helps flag low-confidence predictions. Attribution maps are 
generated to visualize influential sensor regions, and consistency is evaluated over time. Based on this, an 
interpretability label is assigned. Finally, the system outputs predictions alongside explanation vectors and 
uncertainty scores for transparent, trustworthy biomedical diagnostics. 
 
IV. RESULT 
Multimodal wearable health diagnostics performed best in the suggested method for diagnosing and 
determining cause. Compared to conventional clinical measurements, the suggested method was most 
accurate (96.3%), with 94.6% precision, 93.9% recall, and a 94.2% F1-score. These figures demonstrate 
that physiological changes associated with in vivo medical illnesses are easier to identify and group. 
Previous high-performing approaches like attention-based causal inference and transformer-based 
multimodal fusion scored well but significantly worse on these criteria. The suggested approach is more 
robust and full. Granger Causality and the PC Algorithm exhibited worse accuracy and recall, 
demonstrating that they can't handle complicated physiological data streams that fluctuate over time. The 
suggested strategy excels in being adaptable and transparent about reasons. With a temporal stability score 
of 0.89 and a causal clarity score of 0.91, the model shows how biosignals vary over time and are coupled 
in a way that makes future predictions straightforward. Other models, such as Structural Causal Models 
and Variational Autoencoders with Directed Acyclic Graphs, learned causes but struggled to track 
changes and display the signal-to-decision process. Temporal Convolutional Networks and transformer-
based architectures modeled time series well, but causal connections needed unambiguous storage. 
However, the suggested method integrates causal discovery with attention. It ensures relevance and 
responsibility in the decision pipeline. At the system level, the technique explained things clearly, used 
computer power efficiently, and worked without data. The best explainability and interpretability scores 
were 0.94 and 0.93. For real-time wearable tech, its 30-millisecond inference time was critical. These 
statistics suggest that the approach works effectively for device or edge diagnostics, when quick, clear 
conclusions are crucial. SHAP-Based Explanation and Attention-Based Causal Inference were simpler, 
but they required more CPU resources or external attribution post-processing, which could impede real-
time analysis. The proposed system's in-model explanation reduces delay and improves coherence. The 
ability to handle missing or incorrect data is another benefit. The suggested method scored 0.91 for data 
imputation robustness, indicating it can withstand sensor noise, dropout, and partial signal loss. Dynamic 
Bayesian Networks and Structural Causal Models were dependable but slow at scaling and drawing 
conclusions. Scalability and balanced model complexity scores of 0.84 and 0.71 indicate that the suggested 
strategy works with a variety of sensor configurations, datasets, and computational settings. Complex 
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models like Transformer-Based Fusion and Variational Autoencoders with DAGs were good at 
generalization but too complex for low-power wearable platforms. A thorough review of the evaluation 
criteria demonstrates that diagnostic performance alone cannot establish causal fusion models 
functioning in biological contexts. Understanding, consistent, and low-computing results are also crucial. 
The proposed approach integrates multimodal attention, causal inference, and temporal modeling. It 
ensures that all forecasts are based on physiologically reasonable signal correlations and that irregular 
behavior can be explained by cause and effect and time. Lasso regularization, temporal windowing, and 
attention alignment loss simplify, improve accuracy, and enable real-time application. Finally, the findings 
reveal that the suggested method is the most accurate, simple, swift, and trustworthy. It's because 
reasoning and multimodal fusion design advances wearable health diagnosis. This makes it a benchmark 
for future systems that demand clear and dependable real-time clinical and personalized health tracking 
decision support. 
Table 2. Comparative Evaluation of Multimodal and Causal Fusion Methods for Biomedical Diagnostics 
Method (Year) AURO

C (±95% 
CI) 

AUPR
C 

F1-
score 

MC
C 

Brier
↓ 

Calibratio
n ECE↓ 

Specificit
y 

Sensitivit
y 

Latenc
y (ms) 

Early Fusion 
CNN–LSTM 
(2018) 

0.874 ± 
0.012 

0.811 0.80
2 

0.70
2 

0.142 0.034 0.86 0.78 18.6 

Late Fusion 
(Weighted) 
(2019) 

0.881 ± 
0.011 

0.822 0.80
9 

0.71
3 

0.137 0.031 0.85 0.80 15.2 

DeepSense 
(2016) 

0.865 ± 
0.014 

0.792 0.78
5 

0.68
3 

0.151 0.039 0.84 0.77 22.9 

Temporal 
Fusion 
Transformer 
(TFT, 2019) 

0.902 ± 
0.010 

0.846 0.82
8 

0.73
5 

0.126 0.027 0.87 0.81 24.1 

Multimodal 
Transformer 
(MMT, 2020) 

0.914 ± 
0.009 

0.861 0.84
2 

0.75
6 

0.118 0.023 0.88 0.83 26.3 

Graph Neural 
Fusion (GNN-
Fusion, 2021) 

0.921 ± 
0.009 

0.872 0.85
1 

0.76
8 

0.111 0.021 0.89 0.84 21.4 

IRM-based 
Causal Fusion 
(2022) 

0.927 ± 
0.008 

0.879 0.85
8 

0.77
7 

0.108 0.019 0.90 0.84 23.0 

CausalTST 
(Causal 
Temporal 
Spectral 
Transformer, 
2023) 

0.936 ± 
0.008 

0.892 0.86
9 

0.79
2 

0.101 0.017 0.90 0.86 20.3 

Counterfactua
l Multimodal 
Fusion (2024) 

0.943 ± 
0.007 

0.903 0.87
8 

0.80
4 

0.096 0.016 0.91 0.87 19.1 

Proposed 
Causal Fusion 
(2025) 

0.956 ± 
0.006 

0.921 0.89
6 

0.82
7 

0.084 0.013 0.92 0.89 17.4 

Table 2 presents a comprehensive comparison of traditional fusion models, advanced transformer-based 
methods, and causal fusion approaches in terms of diagnostic performance and computational efficiency. 
The results indicate a clear progression in accuracy and reliability from early architectures such as CNN–
LSTM (2018) and DeepSense (2016) to recent causal-aware models. Metrics such as AUROC, AUPRC, 
F1-score, and MCC steadily improve with each methodological advancement, while error-based measures 
like Brier score and calibration ECE decrease, highlighting better reliability. The Proposed Causal Fusion 
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(2025) achieves the highest AUROC (0.956 ± 0.006), F1-score (0.896), and MCC (0.827), while also 
maintaining lower latency (17.4 ms) compared to earlier methods. These results demonstrate that 
integrating causality and counterfactual reasoning not only enhances predictive accuracy but also 
improves robustness, calibration, and real-time suitability for wearable biomedical diagnostics. 

 
Fig.4. ROC Curve Demonstrating Discriminative Power Across Models 
Figure 4 presents the Receiver Operating Characteristic (ROC) curve comparing the proposed method 
against Transformer Fusion and Graph Neural Network (GNN) baselines. The x-axis denotes the False 
Positive Rate, while the y-axis represents the True Positive Rate, providing a graphical measure of 
classification performance across different thresholds. The area under the curve (AUC) values clearly 
indicate that the proposed method (AUC = 0.907) achieves superior discriminative ability compared to 
Transformer Fusion (AUC = 0.837) and GNN (AUC = 0.793). This highlights the effectiveness of the 
proposed framework in distinguishing between positive and negative classes, demonstrating both 
robustness and reliability for real-world deployment. 
Table 3. Performance evaluation of causal fusion methods in Robustness of Multimodal Fusion Methods 
Under Noise, Missing Data, and Sensor Dropout 

Method 10% 
Gaussian 
noise (F1) 

30% 
Gaussian 
noise (F1) 

10% 
Missing 
(MCAR) 
(F1) 

30% 
Missing 
(MCAR) 
(F1) 

Sensor 
Dropout 
(1 stream) 
(F1) 

Sensor 
Dropout 
(2 streams) 
(F1) 

Early Fusion CNN–
LSTM (2018) 

0.78 0.69 0.76 0.63 0.70 0.58 

Late Fusion 
(Weighted) (2019) 

0.79 0.71 0.77 0.65 0.72 0.60 

DeepSense (2016) 0.76 0.67 0.73 0.60 0.68 0.55 
TFT (2019) 0.81 0.74 0.79 0.68 0.76 0.63 
MMT (2020) 0.83 0.76 0.80 0.70 0.78 0.66 
GNN-Fusion (2021) 0.84 0.77 0.81 0.72 0.79 0.68 
IRM Causal Fusion 
(2022) 

0.85 0.79 0.83 0.74 0.81 0.70 

CausalTST (2023) 0.87 0.81 0.85 0.78 0.84 0.73 
Counterfactual Fusion 
(2024) 

0.88 0.83 0.86 0.79 0.85 0.75 

Proposed Causal 
Fusion (2025) 

0.90 0.86 0.88 0.82 0.88 0.79 

Table 3 evaluates the resilience of different multimodal fusion approaches when subjected to real-world 
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challenges such as Gaussian noise, missing data (MCAR), and sensor stream dropout. Earlier architectures 
like DeepSense (2016) and CNN–LSTM (2018) show significant performance degradation under high 
noise (30%) and multiple sensor dropout, with F1-scores dropping below 0.60. Transformer-based 
models, including TFT (2019) and MMT (2020), demonstrate stronger robustness, sustaining F1-scores 
above 0.70 in most conditions. Recent causal-aware approaches show the most stable performance, with 
CausalTST (2023) and Counterfactual Fusion (2024) mitigating sharp declines. The Proposed Causal 
Fusion (2025) achieves the highest robustness, maintaining an F1-score of 0.86 under 30% Gaussian 
noise and 0.79 under two-stream sensor dropout. These results highlight the effectiveness of causal fusion 
in preserving diagnostic reliability even under substantial data perturbations. 

 
Fig.5. Precision–Recall Curve Validating Model Effectiveness in Imbalanced Settings 
Figure 5 illustrates the Precision–Recall (PR) curve comparison of the proposed method against 
Transformer Fusion and Graph Neural Network (GNN) baselines. The x-axis shows Recall, while the y-
axis depicts Precision, making this plot particularly suitable for evaluating performance under class 
imbalance. The proposed method achieves the highest area under the curve (AP = 0.906), outperforming 
Transformer Fusion (AP = 0.832) and GNN (AP = 0.782). This superior alignment between precision 
and recall demonstrates that the proposed framework consistently delivers accurate predictions while 
minimizing false positives, thereby reinforcing its robustness and reliability in real-world deployments 
with skewed data distributions. 

 
Fig.6 Temporal Robustness with Mean and Standard Deviation across Evaluation Points 
Figure 6 illustrates the temporal robustness of the proposed method compared to Transformer Fusion 
and GNN baselines across six evaluation points. The plot reports mean accuracy values with error bars 
representing standard deviation, thereby capturing both performance stability and reliability over time. 
The proposed method consistently achieves higher accuracy while maintaining smaller fluctuations, in 
contrast to the baselines, which show larger performance variability. This stability highlights the capability 
of the proposed framework to generalize effectively across temporal shifts, making it well-suited for 
dynamic real-world environments where data distribution evolves over time. 
Table 3. Explainability and Causal Alignment Metrics Across Multimodal Fusion Methods 
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Method Causal F1 
(DAG match) 

CPDAG 
SHD↓ 

Counterfactual 
Consistency↑ 

Attribution 
Faithfulness↑ 

Sparsity 
(Top-k=10)↑ 

Early Fusion CNN–
LSTM (2018) 

0.41 23 0.62 0.58 0.32 

Late Fusion 
(Weighted) (2019) 

0.44 21 0.65 0.60 0.35 

DeepSense (2016) 0.39 25 0.60 0.56 0.30 
TFT (2019) 0.52 18 0.69 0.65 0.40 
MMT (2020) 0.56 16 0.72 0.68 0.44 
GNN-Fusion (2021) 0.60 14 0.75 0.72 0.48 
IRM Causal Fusion 
(2022) 

0.64 12 0.78 0.75 0.51 

CausalTST (2023) 0.69 10 0.82 0.79 0.56 
Counterfactual 
Fusion (2024) 

0.72 9 0.84 0.81 0.58 

Proposed Causal 
Fusion (2025) 

0.78 7 0.88 0.85 0.63 

Table 3 benchmarks fusion methods on their ability to capture causal structure and provide interpretable 
explanations. Early models like CNN–LSTM (2018) and DeepSense (2016) exhibit low causal F1-scores 
(<0.45) and higher structural errors (SHD > 20), reflecting limited causal fidelity. Transformer-based 
approaches, such as TFT (2019) and MMT (2020), improve both causal alignment and attribution 
faithfulness, with modest gains in sparsity of explanations. Graph-based and causal methods achieve 
significant improvements, with IRM Causal Fusion (2022) and CausalTST (2023) reducing CPDAG SHD 
while raising causal F1 above 0.65. The Counterfactual Fusion (2024) further strengthens interpretability 
metrics. Notably, the Proposed Causal Fusion (2025) attains the highest causal F1 (0.78), lowest SHD (7), 
and top scores in counterfactual consistency (0.88) and attribution faithfulness (0.85), confirming its 
ability to generate both accurate and explainable biomedical diagnostic insights. 

 
Fig.7. Alignment Between Ground Truth Causal Graph and Learned Attention Weights 
Figure 7 presents a side-by-side comparison of the ground truth causal graph (left) and the learned 
attention alignment (right). The causal graph shows the true directed dependencies between variables, 
while the attention heatmap illustrates how the model allocates importance during inference. The close 
alignment between highlighted causal links and strong attention weights indicates that the proposed 
framework is not only effective in prediction but also explainable, as it successfully captures underlying 
causal structures. This strengthens the argument for adopting the method in domains requiring 
transparency and interpretability. 
Table 4. Computational Efficiency and Deployment Feasibility of Multimodal Fusion Methods 

Method Params 
(M) 

FLOPs 
(G) 

Throughput 
(Hz) 

Latency 
(ms) 

Energy 
(J/infer) 

Peak 
RAM 
(MB) 

Quantized 
(INT8) F1 

Early Fusion 
CNN–LSTM 
(2018) 

5.2 1.1 54 18.6 0.92 410 0.79 

Late Fusion 4.7 0.9 66 15.2 0.85 370 0.80 
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(Weighted) (2019) 

DeepSense (2016) 6.4 1.3 43 22.9 1.05 520 0.76 
TFT (2019) 7.9 1.8 41 24.1 1.10 590 0.81 
MMT (2020) 12.4 3.6 38 26.3 1.18 720 0.83 
GNN-Fusion 
(2021) 

9.1 2.4 47 21.4 0.97 610 0.84 

IRM Causal Fusion 
(2022) 

8.3 2.0 45 23.0 1.02 580 0.85 

CausalTST (2023) 10.2 2.8 49 20.3 0.94 640 0.86 
Counterfactual 
Fusion (2024) 

9.6 2.2 52 19.1 0.89 600 0.87 

Proposed Causal 
Fusion (2025) 

8.8 2.1 57 17.4 0.82 560 0.89 

Table 4 compares fusion models on efficiency-related parameters relevant for real-time biomedical 
diagnostics on wearable and edge devices. Early models such as DeepSense (2016) and CNN–LSTM 
(2018) show relatively modest latency and throughput but consume higher energy per inference. 
Transformer-based approaches like TFT (2019) and MMT (2020) improve accuracy but at the cost of 
increased FLOPs and memory demands, making them less suitable for constrained environments. Graph-
based fusion (2021) and causal fusion methods (2022–2024) strike a balance, reducing energy 
consumption while enhancing predictive power. The Proposed Causal Fusion (2025) delivers the best 
trade-off, achieving the highest throughput (57 Hz), lowest latency (17.4 ms), and reduced energy footprint 
(0.82 J/infer), while sustaining strong quantized F1 performance (0.89). These results demonstrate that 
the proposed method is not only accurate but also optimized for scalable, energy-efficient deployment in 
wearable biomedical systems. 

 
Fig.8. Scalability and Resource Usage across Increasing Participants 
Figure 8 illustrates how the proposed method and baseline models (Transformer Fusion and GNN) 
perform as the number of participants or nodes increases. The primary y-axis (left) shows accuracy, while 
the secondary y-axis (right) represents memory consumption. The proposed method demonstrates 
consistent accuracy improvements as the system scales, reaching beyond 0.91, while Transformer Fusion 
and GNN plateau or decline at higher scales. Although memory usage for the proposed method increases 
with node count, the trade-off remains efficient compared to accuracy gains. This analysis underscores 
the suitability of the proposed framework for large-scale or federated environments, highlighting both 
scalability and balanced resource consumption. 
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Fig.9. Robustness under Increasing Noise and Adversarial Attack Strength 
Figure 9 evaluates the resilience of the proposed method in comparison to Transformer Fusion and GNN 
baselines under varying levels of noise and adversarial perturbations. The x-axis denotes the noise/attack 
strength, while the y-axis measures accuracy. As perturbations intensify, all models show a performance 
decline; however, the proposed method maintains significantly higher accuracy (remaining around 0.80 
at the highest noise level), whereas Transformer Fusion and GNN degrade more steeply. This 
demonstrates that the proposed framework is more robust to environmental noise and adversarial 
manipulations, a critical property for safety-critical and wearable IoT applications. 
 
V. CONCLUSION 
The Findings Of This Research Highlight The Transformative Potential Of Causality-Driven Multimodal 
Fusion In Wearable Healthcare Diagnostics. By Uniting Causal Inference, Attention-Guided Fusion, And 
Uncertainty-Aware Interpretability Into A Cohesive Framework, The Proposed Method Not Only 
Enhances Predictive Accuracy But Also Ensures That Each Diagnostic Outcome Is Grounded In 
Physiologically Meaningful Reasoning. Unlike Black-Box Fusion Architectures, This Approach Embeds 
Explainability Directly Into The Inference Pipeline, Making Its Outputs Transparent, Interpretable, And 
Reliable For Clinical Adoption. Performance Metrics Underscore Its Superiority, Achieving State-Of-The-
Art Accuracy, Precision, Recall, And F1-Scores, While Maintaining Extremely Low Latency And Reduced 
Energy Consumption Suitable For Resource-Constrained Wearable Platforms. In Addition, The 
Framework Exhibits Remarkable Resilience, Handling Incomplete Or Corrupted Data With Minimal 
Degradation, And Maintaining Consistency Under Temporal Shifts And Adversarial Perturbations. 
Beyond Technical Gains, The System Advances The Broader Vision Of Trustworthy Ai In Healthcare, 
Enabling Clinicians To Both Diagnose And Understand Underlying Physiological Interactions In Real 
Time. This Combination Of Diagnostic Power, Efficiency, And Interpretability Positions The Proposed 
Causal Fusion Framework As A Benchmark For Next-Generation Personalized Healthcare Systems, With 
Strong Potential For Integration Into Smart, Scalable, And Ethically Grounded Biomedical Platforms. 
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