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Abstract 
Face detection under occlusion remains a significant challenge in real-world computer vision applications. This paper 
proposes a hybrid two-stage detection framework that integrates the real-time efficiency of the Viola-Jones algorithm 
with the Accuracy of a lightweight, modified AlexNet-based Convolutional Neural Network (CNN). The system 
initially uses Viola-Jones to propose candidate face regions, which are then verified by the CNN trained on over 
70,000 face and non-face images, half of which include partial occlusions such as masks, sunglasses, or hands. CNN 
incorporates dropout and batch normalisation to ensure robust generalisation. Experimental results demonstrate that 
the proposed hybrid model achieves a detection accuracy of 93%, precision of 95%, and a false positive rate of only 
3%, outperforming state-of-the-art models such as MTCNN, SSD, YOLOv3, and RetinaFace in occlusion-specific 
scenarios. With a processing speed of approximately 12 frames per second on standard CPU hardware and a memory 
footprint of only 60 MB, the model is well-suited for real-time applications like surveillance and access control in 
occlusion-prone environments. 
Keywords: Face Detection, Occlusion, Viola-Jones, Convolutional Neural Networks, Hybrid Model, Real-Time 
Detection. 

 

INTRODUCTION 
Face detection is a fundamental task in computer vision with applications in surveillance, human-
computer interaction, and biometric systems. While many algorithms perform well under ideal 
conditions, detecting faces with partial occlusions, such as masks, scarves, sunglasses, or hands, remains 
a significant challenge. In such cases, key facial features may be hidden, leading to missed detections or 
false positives by conventional models. Classical detectors, such as Viola-Jones [1], though efficient for 
real-time tasks, suffer from performance degradation when faces are partially obscured [2]. Recent 
advancements in deep learning, particularly CNN-based detectors such as MTCNN [3], SSD [4], and 
YOLO [5], have improved Accuracy in general settings. However, these models can struggle with 
occlusions unless specifically trained on such cases. Moreover, they often require high computational 
resources, limiting their deployment in real-time or resource-constrained environments.To address these 
challenges, this paper proposes a hybrid two-stage face detection framework tailored for occluded 
scenarios. The system first uses the fast Viola-Jones algorithm to generate candidate face regions, which 
are then verified by a custom CNN classifier designed for occlusion robustness. By combining the 
strengths of classical and deep learning methods, the proposed approach enhances detection accuracy 
while maintaining practical efficiency. The following sections review related work, describe the hybrid 
methodology, present experimental results, and conclude with a discussion of future directions. 

LITERATURE REVIEW 
Face detection is a foundational task in computer vision with critical roles in surveillance, biometric 
authentication, and human-computer interaction. While many methods achieve high Accuracy under 
normal conditions, occlusion remains a persistent challenge [6][7]. When faces are partially obscured by 
objects like masks, glasses, or hands, detection accuracy declines significantly [8]. This section reviews 
primary techniques used in occluded face detection, their strengths, and their limitations. 
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2.1. Classical Approaches 
The Viola-Jones algorithm is among the earliest real-time face detectors. It utilises Haar-like features with 
AdaBoost to detect faces efficiently [9]. However, it performs poorly on occluded faces due to its reliance 
on complete frontal visibility [10]. Table 1 presents the detection accuracy of the Viola-Jones algorithm 
on two occluded face datasets. It exhibits reduced performance when detecting faces obscured by items 
such as sunglasses, hands, scarves, or masks, with accuracies of 68.2% (FDDB) and 63.7% (COFW). 

Table 1. Performance of Viola-Jones on Occluded Datasets 

Dataset Occlusion Type Detection Accuracy (%) 

FDDB Sunglasses, Hands 68.2 

COFW Scarves, Masks 63.7 

Viola and Jones introduced the concept of cascade classifiers [11], which significantly reduced 
computation time but lacked robustness against partial occlusions. 

2.2. Deep Learning-Based Detectors 
Deep learning methods such as Multi-task Cascaded Convolutional Networks (MTCNN), YOLO (You 
Only Look Once), and SSD (Single Shot MultiBox Detector) have significantly improved face detection 
accuracy [12]. These models automatically learn hierarchical features from data and handle variations in 
pose, scale, and background. However, occlusion remains a challenge, especially when the models are not 
trained on occlusion-rich datasets [13].Zhang et al. [14] proposed MTCNN for simultaneous detection 
and facial landmark localisation, as shown in Table 2. YOLOv3 [15] extended general object detection to 
face detection, showing improved real-time performance [16].  

Table 2. Comparison of CNN-Based Methods on Occluded Faces 

Model FPS (GPU) Occluded Accuracy (%) Model Size 
MTCNN ~14 85.6 78 MB 
YOLOv3 ~45 87.2 236 MB 
SSD ~22 83.9 95 MB 

Although CNN-based detectors generally outperform classical models, they still misclassify occluded 
regions without proper training data augmentation. The above Table 2 compares CNN-based face 
detectors (MTCNN, YOLOv3, SSD) on occluded faces, highlighting their GPU speed (FPS), Accuracy, 
and model size. YOLOv3 achieves the highest Accuracy (87.2%) and fastest speed but requires the largest 
model size (236 MB). 

2.3 Occlusion-Aware Models 
To improve performance in occluded scenarios, researchers introduced occlusion-aware architectures. 
Part-based CNNs and attention mechanisms have proven effective in detecting visible facial components 
and inferring occluded ones.Wang et al. [17] designed a part-based CNN that detects separate facial 
regions, such as eyes and nose and reconstructs the presence of a full face. Zhang et al. [18] created 
synthetic occluded datasets to train their models, improving generalisation. Table 3 outlines strategies to 
improve face detection under occlusion. Part-based CNNs and data augmentation are highly effective, 
while attention mechanisms provide moderate improvement by focusing on visible facial regions. 

Table 3. Strategies for Occlusion Handling 

Strategy Description Effectiveness 

Part-based CNN Detects facial parts independently High 
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Attention Mechanism Focuses on informative visible regions Moderate 

Data Augmentation Adds synthetic occlusions during training High 

2.4 Hybrid Approaches 
Hybrid models combine classical detection (e.g., Viola-Jones) with CNN-based verification. The classical 
method generates candidate face regions quickly, while the CNN confirms the validity of the detections. 
This method balances Accuracy with speed, which is especially useful for occlusion-prone environments. 
Liu et al. [19] proposed a hybrid face detector that achieved higher precision on partially occluded faces 
while maintaining a smaller model footprint suitable for real-time processing [20][21]. 

METHODOLOGY 
Occluded face detection is challenging due to the loss of key facial features. This research addresses the 
problem through a hybrid model combining the speed of Viola-Jones and the robustness of a modified 
AlexNet CNN [22][23]. This section presents a comprehensive methodology covering the overall design, 
individual components, and the effectiveness of various parameters in occluded face scenarios. 

3.1. System Overview 
The hybrid model follows a two-stage pipeline, as shown in Figure 1. 

• Viola-Jones Detector: Used for initial face region proposal based on Haar-like features [24]. It rapidly 
scans the image and detects potential face regions. 

• AlexNet Verifier: Each proposed region is passed through a modified AlexNet-based CNN to verify 
if it contains a face. This stage significantly reduces false positives and enhances robustness to partial 
occlusion. 

 

Figure 1. Hybrid Face Detection Workflow 

3.2. Viola-Jones for Region Proposal 

The Viola-Jones algorithm uses Haar-like features and an AdaBoost classifier in a cascaded structure to 
detect face-like regions. Although efficient, its precision decreases when faces are partially occluded. Table 
4 summarises the key parameters used in the Viola-Jones algorithm for generating initial face region 
proposals. It highlights feature type, classifier settings, detection window size, scaling, and performance, 
ensuring fast, real-time face detection with reduced false positives. 

Table 4. Viola-Jones Parameters Used 

Parameter Value/Type Purpose 
Feature Type Haar Basic visual cues 
Classifier AdaBoost Improves Accuracy 
Detection Window Size 24×24 px Minimum face size 
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Scale Factor 1.1 Pyramid scaling 
Min Neighbors 3 Reduces false positives 
Speed ~20 FPS (CPU) Real-time capable 

This stage ensures fast pre-processing but requires CNN verification to remove noise in cases where 
objects are occluded. 

3.3. CNN-Based Face Verification Using AlexNet 

The CNN model is based on AlexNet, adapted for binary classification (face vs. non-face) [15][16]. The 
network learns spatial hierarchies and is trained on a dataset enriched with occluded face samples (e.g., 
faces partially covered with sunglasses, hands, or masks). Table 5 describes the architecture of the modified 
AlexNet CNN used for face verification, detailing the type, filter size, stride, and output dimensions of 
each layer. The network processes 227×227×3 input images through convolutional, activation, pooling, 
and fully connected layers, finally classifying regions as Face or Non-Face using a Softmax output. 

Table 5. Adapted AlexNet Architecture 

Layer Type Filter Size / Units Stride Output Size 
Input Input Layer 227×227×3 - 227×227×3 
Conv1 Convolutional 96 × 11×11 4 55×55×96 
ReLU1 Activation - - 55×55×96 
MaxPool1 Pooling 3×3 2 27×27×96 
Conv2 Convolutional 256 × 5×5 1 27×27×256 
ReLU2 Activation - - 27×27×256 
MaxPool2 Pooling 3×3 2 13×13×256 
Conv3 Convolutional 384 × 3×3 1 13×13×384 
Conv4 Convolutional 384 × 3×3 1 13×13×384 
Conv5 Convolutional 256 × 3×3 1 13×13×256 
FC1 Fully Connected 4096 units - 4096 
FC2 Fully Connected 4096 units - 4096 
FC3 Fully Connected 2 units - Face / Non-Face 
Output Softmax - - Final Label 

3.4. Model Parameters Optimised for Occlusion 

Several parameters and techniques improved the CNN's performance for occluded face detection. Table 
6 lists the training parameters used for the CNN, optimised for occluded face detection. It highlights 
settings such as batch size, optimiser, learning rate, dropout, and data composition (50% occluded faces), 
all aimed at improving model robustness and preventing overfitting on partially visible faces. 

Table 6. CNN Training and Evaluation Parameters 

Parameter Value/Setting Impact on Occluded Face Detection 
Batch Size 32 Balanced memory and convergence speed 
Optimizer SGD Stable learning 
Learning Rate 0.001 Prevents overfitting 
Dropout Rate 0.5 It avoids overfitting on partially visible faces 
Loss Function Cross-Entropy Handles binary classification well 
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Epochs 25 Sufficient for convergence 
Data Composition 50% occluded faces Improves generalisation to occlusions 

3.5. Benefits of the Hybrid Model in Occlusion Context 

• Improved Detection Accuracy: Viola-Jones ensures fast proposals, while AlexNet ensures accurate 
classification even under occlusion. 

• False Positive Reduction: Non-face regions falsely marked by Viola-Jones are rejected by the CNN 
verifier. 

• Adaptability: AlexNet generalises well to different occlusion types due to diversified training. 

Table 7. Summary of Detection Capabilities on Occluded Dataset 

Method Precision (%) Recall (%) F1-Score (%) Inference Speed (FPS) 
Viola-Jones Only 68.3 72.5 70.3 20 
AlexNet Only 91.2 88.6 89.9 6 
Hybrid Model 95.0 90.1 92.5 12 

This hybrid framework is particularly well-suited for detecting faces under partial occlusions, such as in 
public spaces [19], where users may wear masks, hold objects near their faces, or be viewed from awkward 
angles. The combination of fast region proposal (Viola-Jones) [20][21] and deep learning-based verification 
(AlexNet) enables a practical trade-off between Accuracy and speed in real-world environments, as shown 
in Table 7. 

RESULTS 
This section presents the evaluation of the proposed hybrid face detection model on datasets containing 
partially occluded faces. The model's performance was assessed based on detection accuracy, precision, 
recall, F1-score, false positives, and execution time. The results indicate the advantages of combining the 
Viola-Jones detector with a CNN-based verifier in the presence of facial occlusions. 
4.1. Dataset Description 
The dataset used for evaluation comprises 10,000 labeled images, including: 
• 5,000 occluded faces (using objects like hands, sunglasses, and masks), 
• 2,500 non-occluded faces, 
• 2,500 non-face background patches. 
The occluded face subset includes both partial and heavy occlusions, manually verified to ensure diversity 
in occlusion type and region (upper, lower, lateral face). 
4.2. Performance Metrics 
The model was evaluated using standard classification metrics 
• Accuracy = (TP + TN) / (TP + TN + FP + FN) 
• Precision = TP / (TP + FP) 
• Recall (Sensitivity) = TP / (TP + FN) 
• F1-Score = 2 × (Precision × Recall) / (Precision + Recall) 
Where: 
• TP: True Positives (correct occluded face detection) 
• FP: False Positives (non-face detected as face) 
• FN: False Negatives (missed occluded face) 
4.3. Model Performance on Occluded Faces 

Table 8. Performance Metrics for Occluded Face Detection 
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Model Accuracy 
(%) 

Precision (%) Recall (%) F1-Score (%) False Positives (%) 

Viola-Jones Only 72.4 68.3 70.5 69.4 15.2 

AlexNet Only 90.1 91.2 88.6 89.9 5.1 

Hybrid Model 93.0 95.0 90.1 92.5 3.0 

The hybrid model significantly improves precision and reduces false positives compared to using Viola-
Jones or AlexNet alone. It combines efficient region proposals with accurate classification, which is 
especially useful in occlusion scenarios where isolated components (like one eye or part of the nose) are 
still visible. 

 

4.4. Detection Examples 
 

 
Figure 2. Occluded Face Detection output generated by MATLAB 
The above figure illustrates the effectiveness of the hybrid model in detecting various types of occluded 
faces. 
• Top left: Successful detection of faces covered with surgical masks. 
• Top-right: Low-visibility and tinnyfaces are correctly detected. 
• Bottom right: Complex occlusions, such as hands covering faces, are correctly identified. 
4.5. Inference Time and Model Size 
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Table 9. Computational Efficiency 
Model Average Inference Time (per image, CPU) Model Size (MB) 
Viola-Jones Only 0.05 sec (~20 FPS) ~1 MB 
AlexNet Only 0.17 sec (~6 FPS) 240 MB 
Hybrid Model 0.08 sec (~12 FPS) ~60 MB 

Table 9 shows the hybrid model strikes a balance between detection speed and Accuracy. It is suitable for 
deployment on standard computing hardware in real-time scenarios such as surveillance or masked face 
detection. 
4.6. Model Size and Inference Speed 
Model size and inference speed on CPU for the Hybrid model and baseline detectors. Blue bars denote 
the model's size on disk (in megabytes), and the orange dashed line with markers shows the frames per 
second (FPS) that each model can process on a typical CPU, as shown in Figure 3. We observe that the 
Hybrid model is ~60 MB and runs at around 12 FPS on a CPU. In contrast, YOLOv3 is very large 
(≈240 MB) and, without a GPU, achieves only around 3 FPS on the same CPU. RetinaFace (with a 
ResNet-50 backbone) is ~110 MB and runs at around 2 FPS on a CPU. SSD is ~100 MB and achieves 
around 10 FPS, while MTCNN is extremely compact (≈6 MB) but still only achieves around 5 FPS on the 
CPU due to its sequential 3-stage processing.  

 
Figure 3. Model Size and Inference Speed 
These results highlight the computational efficiency of the Hybrid Algorithm. It is an order of magnitude 
smaller than YOLOv3 and roughly half the size of RetinaFace, yet it achieves higher CPU speed than 
both. The Hybrid model's ~12 FPS on the CPU is real-time or better for many applications, with ~80 
milliseconds per frame. YOLOv3 and RetinaFace, on the other hand, are designed for GPU execution. 
On a CPU, they are too slow for real-time use (≲ less than 5 FPS). MTCNN, while lightweight, is slowed 
by its cascaded architecture. Figure 3 shows that the Hybrid model strikes a favourable balance, combining 
a modest-sized deep network with the efficient Viola-Jones mechanism to yield a system that is deployable 
on standard hardware. It makes it well-suited for edge deployment in cameras or embedded devices where 
GPU resources are limited.  
In summary, the Hybrid Algorithm meets the practical requirements of speed, size efficiency, and 
Accuracy. It can run in real-time on a CPU with a reasonable memory footprint, which underscores its 
value for real-world surveillance and mobile applications. 
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CONCLUSION 
Detecting faces under partial occlusion remains a persistent challenge in computer vision, especially in 
real-world scenarios such as surveillance, biometric authentication, and public safety systems. In this 
research, a hybrid face detection model was proposed, integrating the speed of the Viola-Jones algorithm 
with the robustness of a modified AlexNet-based CNN classifier. The primary objective was to enhance 
face detection performance under occluded conditions, where conventional detectors often struggle due 
to missing or obstructed facial features. The model was trained and evaluated on a dataset of 10,000 
images comprising 5,000 samples with various forms of occlusion, including masks, sunglasses, and 
hands. The hybrid architecture used Viola-Jones for rapid face proposal generation, followed by AlexNet 
to verify each candidate region. This approach allowed for a balance between detection accuracy and 
computational efficiency. The final results demonstrated the effectiveness of this design, achieving an 
overall accuracy of 93.0%, precision of 95.0%, recall of 90.1%, and an F1-score of 92.5%, with a false 
positive rate as low as 3.0%. Additionally, the model maintained an inference speed of approximately 12 
frames per second on a standard CPU, with a memory footprint of just 60 MB, making it suitable for 
real-time and resource-constrained deployments. 
Compared to standalone approaches, the hybrid model significantly reduced false positives and improved 
robustness to partial occlusions. Viola-Jones alone showed limited Accuracy (72.4%) and a high false 
positive rate (15.2%), while AlexNet alone was more accurate but slower. The hybrid design successfully 
combined their strengths, resulting in improved detection of partially visible faces across different 
occlusion types. In summary, the proposed method offers a practical, scalable, and effective solution for 
occluded face detection. Future work may explore the integration of attention mechanisms or 
transformer-based models further to enhance performance in highly crowded or heavily occluded 
environments. 
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