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Abstract 
Accurate urban traffic forecasting is essential for intelligent transportation systems, enabling efficient traffic control, route 
optimization, and congestion mitigation. This study presents a hybrid ensemble-based framework that integrates deep 
learning and machine learning algorithms to enhance the prediction of urban traffic flow. The proposed approach utilizes 
multiple ensemble techniques, including Bagging with Logistic Regression, Gradient Boosting using XGBoost and 
LightGBM, and Stacking with Multi-Layer Perceptron (MLP) and Support Vector Classifier (SVC) as base learners. The 
models were trained and tested on real-life traffic video data, which was processed to extract frame-wise vehicle attributes 
such as object coordinates, bounding box sizes, and vehicle types. Additional temporal and contextual features were 
incorporated to improve the robustness of the forecasting model. Experimental evaluations were conducted using 
performance metrics, including the Coefficient of Determination (R²), Mean Absolute Error (MAE), and Root Mean 
Squared Error (RMSE). Results indicate that the stacking ensemble method combining MLP and SVC outperformed 
traditional single-model approaches, demonstrating superior accuracy and stability across dynamic traffic scenarios. The 
findings confirm that combining ensemble learning with deep neural networks significantly enhances urban traffic 
forecasting performance and provides scalable solutions for real-world intelligent transportation systems. 
Keywords: Urban traffic forecasting, Real-life traffic data, Ensemble learning, Deep learning, Bagging, XGBoost, 
LightGBM, Stacking, MLP, SVC, R², RMSE, MAE, Traffic video analysis, Intelligent transportation systems. 

INTRODUCTION 
In the last decade, increasing affordability has made it easier for consumers to buy cars, which has resulted in 
increased traffic on highways. In 2021, there were over 1.4 billion vehicles in the world. When designing 
Intelligent Transportation Systems (ITS), it is essential that a correct prediction be made of the flow of traffic 
on highways. This is very valuable for designing app technologies for managing traffic networks, informing 
the public of route directions, reducing traffic congestion, and improving public transportation, and it is 
environmentally friendly.Predictive traffic speed forecasts could help to control traffic. Such forecasts could 
also help individual travellers. For example, traffic management systems can look for areas and possibly 
anticipate areas of congestion, assess the reasons for the congestion, and suggest steps to eliminate or reduce 
the congestion, using traffic speed forecasts. Individual travellers may also make use of the predicted estimates 
provided by multiple navigational apps, such as Google Maps and Waze, to prepare their trips and expected 
travel times. Many of the current road systems do not utilize traffic monitoring devices. Some cities now have 
smart and intelligent transport systems by employing devices for traffic condition monitoring, such as 
extended traffic speed data or moving car data. However, the technologies are needed to enable speed 
monitoring. Nonetheless, the expense of the equipment necessary for speed surveillance is much higher.  
Many cities have opted for cost-effective traffic cameras. Flow detection using relatively inexpensive 
technology.Basic diagram of vehicle traffic flow highlights the complex relationships between traffic volume 
and speed.  When it comes to traffic management on a roadway, the first important duty is to understand 
traffic flow, which can be done either with floating car data or with camera-based data.  The second important 
duty is to estimate how much traffic there is.  Typically, there are two categories of traffic speed prediction: 
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short-term and long-term.  Short-term traffic prediction is an important aspect of Intelligent Transport 
Systems, as it provides the basis for implementing alternative traffic control methods to make efficient use of 
existing road networks and fairly distribute vehicles.  It is critical to correctly detect and accurately and reliably 
predict traffic situations for a number of traffic applications and urban transportation systems.The 
applications of deep learning and machine learning approaches have most often been associated with tasks 
such as clustering, regression, classification, and prediction.  Interestingly, learning has come to be recognized 
as a central approach to improving the effectiveness of deep learning models.  One approach to make the 
model maximally effective, with related classification performance, is to use ensemble-based learning.  
Ensemble learning is basically the notion of combining several models, whether they be deep learning 
predictive models or those that use more traditional algorithms.  The predictive outcomes are generally more 
accurate through leveraging the strengths of multiple models.The learning process using ensembles consists 
of two major stages. In the first stage, classifiers are selected, including Logistic Regression, DT, Back-
Propagation, SVM, Neural Network, or Convolutional Neural Network (CNN), and a classification model is 
trained to produce a result. The second step incorporates voting, learning, and averaging techniques to 
combine the models in a hybrid manner to improve their generalization ability. The most common ensemble 
methods are Bagging, Boosting, and Stacking. Stacking-based methods actually use a meta-classifier to 
combine the outputs of the classification results of the base classifiers. Heterogeneous machine learning 
approaches such as Random Forests (RF), Support Vector Machines (SVM), Recurrent Neural Networks 
(RNN), and Convolutional Neural Networks have been widely used as basis classifiers. The meta-learner 
constructs a new model of the final results or classification predictions using the differences in basic classifier 
output.In order to tackle these issues, ensemble learning techniques were employed to enhance model 
robustness and predictive performance. Bagging (Bootstrap Aggregating) mitigates variance by fitting multiple 
copies of deep learning models on bootstrapped datasets, while boosting techniques include XGBoost, 
AdaBoost, and LightGBM, which sequentially improve predictions by correcting errors from previous 
models. Stacking Ensemble also combines multiple deep learning models, which use a meta-learner such as 
Random Forest or Gradient Boosting Machine (GBM) to improve traffic forecasts from a combination of 
model strengths. Moreover, the combination of deep learning and ensemble learning enables a hybrid 
solution with a balance on bias and variance trade-off, and improved generalization across various traffic 
conditions. This study employs a stacking-based ensemble learning technique for traffic speed predictions, 
which may identify unstable and not linear. More precise short-term forecasts could be generated by this 
methodology. The research provides the architecture of an effective traffic congestion classification framework 
based on ensemble learning methods. The key contributions follow: 

• Traffic congestion classification is posed as a supervised multiclass problem, with traffic states being 
defined as low, medium or high congestion. The model is trained and validated using a structured 
dataset consisting of both vehicle-based attributes and context-based features. 

• The ensemble learning framework employs complex machine learning models, specifically Multi-
Layer Perceptron (MLP) and Support Vector Classifier (SVC), as base learners. MLP and SVC models 
are capable of capturing both linear and non-linear relationships that contribute to increased 
prediction accuracy. 

• A stacking-based ensemble learning framework is employed to improve classification performance. 
MLP and SVC are combined using a logistic regression model as a meta-learner. The framework 
allows the system to learn from distinct perspectives and improves the generalization process. 

• Weather factors are included as contextual features in the dataset, such as temperature, humidity, 
and typical weather descriptions. Weather factors are very influential for traffic behavior, and are also 
required for accurate classification of congestion. 

• The traffic dataset utilized for this study is generated from video feeds that were collected from real-
life videos throughout similar events at the Hebbal flyover in Bengaluru. Vehicle detection was 



 

567 
 

International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 8s, 2025 
https://theaspd.com/index.php 

 

conducted through object detection algorithms, and additional features such as object confidence, 
location (X, Y), and bounding box size (Width, Height), were gathered from frame-level data. 

2. Background 
This section defines the traffic forecasting prediction problem. 
2.1 Traffic forecasting prediction 
Traffic forecasting is the predictability of future movement based on historical and real-time data. The 
prediction is accomplished by using sophisticated algorithms and machine learning models using data 
provided by sensors, GPS, and traffic cameras. Accurate traffic forecasting is useful in the prevention of 
congestion, improving the overall efficiency of roads and traffic management systems. 
2.2 Problem formulation 
Traffic forecasting is the ability to predict future traffic conditions from historical and real-time data. Traffic 
forecasting can be stated as a time-series prediction problem, where the goal is to predict traffic parameters, 
such as speed, flow, and congestion, at a certain location and time. Traffic data can also be structured as a 
matrix of data with each row representing a time step, and each column representing a traffic feature (e.g., 
speed, volume, weather conditions). 
Input Feature Matrix X 

𝑿 = [

𝒙𝟏,𝟏 𝒙𝟏,𝟐 ⋯ 𝒙𝟏,𝒎

𝒙𝟐,𝟏 𝒙𝟐,𝟐 ⋯ 𝒙𝟐,𝒎

⋮ ⋮ ⋱ ⋮
𝒙𝒏,𝟏 𝒙𝒏,𝟐 ⋯ 𝒙𝒏,𝒎

] 

Where: 

• 𝑥𝑖,𝑗represents the value of the 𝑗𝑡ℎ Feature at time step 𝑖. 
• 𝑛 Number of past time steps used for prediction. 
• 𝑚 as the number of traffic-related features (speed, volume, weather, road conditions, etc.). 

Target Variable 𝒀  (Traffic Forecast Output) 

𝒀 = [

𝒚𝟏

𝒚𝟐

⋮
𝒚𝒊

] 

where 𝑦𝑖Represents the predicted traffic condition (such as vehicle flow or speed) at the next time step. This 
structured matrix representation allows machine learning and deep learning models to learn patterns and 
dependencies to improve traffic prediction accuracy. 

3. Associated Technologies 
The proposed model's related technologies are delineated in this section. 
3.1 Machine Learning approaches 
recent trends incorporating machine learning methods have moved traffic congestion prediction closer to the 
data-driven solutions that can eventually help address and manage traffic throughout complex urban 
environments. For this study, real-world traffic data extracted from video footage captured from CCTV 
cameras at a busy intersection (Hebbal Flyover) is organized into frame-wise object-level data (e.g., vehicle 
count, bounding box size, and position in space). The frame-wise object level data is then used for short-term 
congestion classification using supervised learning classifiers, such as Logistic Regression and Support Vector 
Classifier (SVC), that perform well in structured classification tasks, and ensemble learning methods such as 
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Bagging and Stacking to improve robustness and performance of the model. Additionally, we added weather 
variables (such as temperature, humidity, and general atmospheric description) to help the model generalize 
and help alleviate overfitting. This is somewhat different from earlier calibration studies that have primarily 
focused on a speed-based or flow sensor-based approach. 
This work takes advantage of image-derived vehicle-level features to improve traffic congestion prediction, 
providing a scalable method in situations where real-time vehicle-sensor deployment may not be practical. In 
addition, incorporating the MLP as a part of a stacking ensemble allows the study to blend shallow and deep 
learning approaches to deal with missing values, data irregularities, and real-time inference. The study 
highlights the increasing need for short-term, image-based traffic signal forecasting and usable in large urban 
environments where manual sensor calibration is almost impossible for thousands of road segments. 
3.2 Methods of Deep Learning 
Deep learning techniques for traffic speed and congestion prediction are generally classified into two 
categories: individual and hybrid approaches. Individual deep learning methods utilize a single neural 
architecture, while hybrid approaches integrate multiple deep learning techniques to construct more robust 
and accurate predictive models. In the context of traffic flow analysis, various neural network models have 
been effectively applied, including traditional Neural Networks (NN), Artificial Neural Networks (ANN). 
Among them, Long Short-Term Memory (LSTM) networks have demonstrated strong performance in 
capturing temporal dependencies within time-series traffic data. These models are particularly suitable for 
analyzing fluctuations in traffic conditions over time. Research has shown that LSTM-based approaches often 
outperform classical statistical models such as ARIMA and Statistically Adjusted Engineering (SAE) methods 
in predicting traffic speed. Additionally, deep LSTM architectures, when combined with post-prediction 
techniques, have been successfully used to simulate typical congestion scenarios and forecast peak-hour traffic 
conditions, making them highly valuable for real-time traffic management and control systems. 
Despite their unique ability to analyse sequences, LSTM models draw down their performance when focusing 
mainly on spatial features of data. The Waterfall LSTM approach was reviewed in order to produce better 
predictions about the flow of traffic, in a spatio-temporal way. Separately, some researchers added 
geographical inputs to their model, finding that vehicle activity forecasts were improved.  
3.4 Ensemble learning  
Ensemble learning methods use several base models in a unified way to improve generalization and accuracy 
in traffic forecasting. Deep learning models, with their complex and deep architectures, have been found to 
outperform traditional forecasting models. Deep ensemble learning models have better accuracy than deep 
learning models alone as they take advantage of the strengths of different models, combining many deep 
learning architectures with statistical methods. Many models can be used for traffic forecasting, but few recent 
studies use ensemble learning, despite its advantages for improving prediction reliability and reducing the 
risk of overfitting.  
By combining different models, ensemble learning approaches can capture various aspects of the overall traffic 
modeling plan, leading to a more generalized and better overall forecasting system. The final prediction model 
(𝐹𝑃𝑀) in an ensemble learning approach can be expressed as: 

𝐹𝑃𝑀(𝑡) = ∑ 𝑤𝑘𝛼𝑘(𝑡)

𝐾

𝑘=1

 

Where FTM is the final traffic prediction model, 𝛼𝑘represents the 𝑘𝑡ℎ Individual model, 𝑤𝑘  As the weight 
assigned to the 𝑘𝑡ℎEl. K is the total number of individual models. 
Ensemble methods have been the subject of considerable attention recently in the field of traffic flow 
forecasting. Overall, a key advantage of ensemble approaches is their focus on collecting the strengths of 
individual base models so that the combined prediction performance is improved. These methods consist of 
aggregating outputs from different models to reduce variance, reduce bias, and improve generalization. 
Ensemble methods include bagging, boosting, and stacking. Stacking is particularly powerful for traffic 
datasets as the individual base learners (e.g., SVM, Decision Trees, MLP) are trained on each dataset 
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independently and only fused at prediction via a meta-learning that considers the outputs of the diverse base 
learners. Conversely, ensemble methods that employ just one model greatly facilitate accuracy and have been 
established as beneficial to capture complicated spatiotemporal dependencies in traffic data. Further, 
ensemble methods exhibit usefulness in dealing with noise, missingness, or dynamic traffic contexts, and 
demonstrate broad feasibility for short-term and long-term predictions in real-world applications. 
The stacking ensemble method is a viable machine learning method that combines the predictions produced 
by various base learners to improve model performance and generalization. Stacking in the context of traffic 
flow predictions provides unique flexibility by combining a range of algorithms, such as Support Vector 
Classifier (SVC) and Multi-Layer Perceptron (MLP), and identifying complex or nonlinear relationships 
within spatio-temporal traffic data. Base learners process the input data independently and generate 
predictions that serve as input features for a higher-level meta-learner, which is trained on the predictions 
made by the base models. The meta-learner improves the final prediction by learning how to optimally 
incorporate the contributions from multiple base models. The stacking method is designed to utilize the 
complementary aspects of multiple models and could provide a significant improvement in prediction 
accuracy in uncertain traffic environments. Multi-Layer Perceptron (MLP) is a type of neural network 
consisting of multiple layers, enabling it to represent complex non-linear relationships within the data. MLP 
uses backpropagation to retroactively calculate weights of the network based on error values over the dataset, 
which allows it to learn complex structures. Traffic data is especially challenging to model, as there can be 
complex patterns and interactions, while also having large datasets, and non-linear characteristics. MLPs 
leverage their structure to capture this level of complexity, which allows them to improve traffic flow and 
congestion predictions. Support Vector Classification (SVC) is a supervised machine learning algorithm two 
classes by finding the optimal hyperplane that separates classes in feature space. SVC is known for working 
very well in high dimensional spaces and with tasks where there is a clear margin of a separation between 
classes. For example, SVC can be effective to classify levels of traffic congestion (e.g. Low, Medium, High) 
using various features to aid building very accurate traffic forecasts with robust decision boundaries. Bagging 
(LogReg) is an ensemble method that combines multiple models in order to improve prediction accuracy and 
reduce variance. Bagging (LogReg) specifically using Logistic Regression as the base model trained on several 
different subsets of the data (from bootstrapping). The outcome (a predicted probability) is generated from 
the means of all predictions, which reduces the risk of overfitting and increases generalizability outcomes. 
Based on the study, the stability and accuracy of predicting traffic congestion using Bagging LogReg showed 
great accuracy, especially in regards to noisy or imbalanced data. XGBoost (Extreme Gradient Boosting) is an 
efficient, scalable implementation of gradient boosting. It uses decision trees as base learners and is built 
sequentially, with each iteration aiming to correct the previous tree’s errors. The XGBoost software was 
developed with the goal of optimizing for performance and speed. In its implementation, several 
regularization techniques are used to prevent overfitting (generalizing too far). XGBoost is a strong choice for 
modeling structured/tabular data and has become the go-to library for many machine learning tasks due to 
it's high accuracy combined with its flexibility and efficient use of memory with large sets of data. XGBoost 
could be used to model complex traffic patterns and, ultimately, improve traffic flow predictions. LightGBM 
(Light Gradient Boosting Machine) is yet another gradient boosting framework, but is based on speed and 
scalability instead. LightGBM has the same functionality as traditional gradient boosting, but it grows trees 
differently. LightGBM uses a leaf-wise growth of trees instead of a level-wise growth, which results in better 
accuracy with the same number of trees. LightGBM is well-suited for large datasets, and was designed to speed 
up both complex and categorical features, since LightGBM can handle categorical features directly, making 
it faster and more memory-efficient than XGBoost and other gradient boosting implementations. LightGBM 
is an excellent option for large data where high-performance models are needed. LightGBM has great 
potential to efficiently utilize high-volume traffic data and provide speed in delivering predictions for traffic 
forecasts. 
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4. Related Work 
Cini and Aydin (2024) developed a Deep Ensemble Model (DEM) that combined Convolutional Neural 
Networks (CNN), Long Short-Term Memory networks (LSTM), and Gated Recurrent Units (GRU) to 
forecast traffic flow of a long duration. The data for the study was publicly available, dating from 2015, and 
consisted of over 274 traffic stations with 100 stations chosen for analysis based on minimum missing values, 
resulting in 36,500 samples (100 stations × 365 days). Data was taken hourly, with missing values imputed by 
using adjacent hour averages. Study data were split into 65% training data (8 months) and the last 2 months 
for validation, and the remaining for testing. Z-score normalization was used to standardize the data. The 
model's performance was measured using Mean Square Error (MSE) and Mean Average Error (MAE), which 
produced results of: MSE of 0.06 and MAE of 0.15 in single-step predictions and MSE of 0.25 and MAE of 
0.32 in multi-step predictions. These findings indicated that the ensemble technique is better at forecasting 
the traffic flow of a long duration compared to the independent models. 
Qu et al. (2019) proposed a deep neural network (DNN) model for long-term daily traffic flow prediction, 
making use of historical traffic flow data and context-based factors such as time of day, day of week, weather, 
and season. Traffic flow data was acquired from Seattle, Washington State, collected in a specified period; 
however, the number of data records and the time period are not specified in the resources reviewed. The 
DNN was developed using a multi-layer supervised learning algorithm, while the model training utilized a 
batch training paradigm for efficiency. Performance evaluation demonstrated that the proposed method 
produced a more accurate prediction of traffic flow than a more conventional traffic prediction technique. 
Sattar et al. (2023) propose a clear deep machine learning framework to predict traffic crash severity. They 
used a dataset of traffic crash records but did not state the dataset size, elapsed time, or input variables 
specifically. The framework leveraged deep learning methods to increase prediction accuracy and clarity to 
assess crash severity. Although information about the model's performance was discussed in standard metrics, 
explicit model performance and comparisons to other models were absent. The authors referenced how the 
framework holds the promise to help support traffic safety measures by better identifying crash severity. 
Lana et al. (2018) performed a thorough demonstration of recent trends and emerging challenges in 
forecasting road traffic. In their analysis, they systematically surveyed a range of forecasting approaches, 
including statistical methods, machine learning, and hybrid models, while highlighting their respective merits 
and downsides. The authors stressed the importance of using spatiotemporal data and contextual features to 
improve prediction accuracy. They also discussed issues such as sparsity of the data, non-linearity, and the 
need for real-time processing. Overall, the review provided the readers with an overview of the evolution of 
traffic forecasting and emphasized the importance of also incorporating advanced computational techniques 
and high-quality data sources to improve prediction accuracy in intelligent transportation systems. 
Do et al. (2019) presented an overview of models for short-term traffic state prediction using neural networks. 
In their survey, they classified numerous architectures used for traffic prediction, evaluating their 
implementations in this defined area of study. They also emphasized the importance of representing spatial-
temporal data and identified challenges like sparsity of data and dynamics of networks. In addition to not 
assessing a particular dataset, the survey discussed several advances of deep learning and computational power 
in improving accuracy in traffic prediction. Future research included using deep learning algorithms and 
models that ensure increased reliability in intelligent transportation systems. 
Wang et al. (2020) introduced a long-term traffic prediction model based on an LSTM encoder-decoder 
architecture with a calibration layer. The study used real-world traffic datasets, but it was not specific about 
the details of the dataset. It did not provide the size of the data, either. The model used an LSTM-based 
encoder-decoder with a hard attention mechanism and a calibration layer to correct the forecasts. The model 
was evaluated using standard error metrics, showing their model produced more accurate and stable forecasts 
in long-term traffic prediction. 
Li and colleagues (2021) developed a blended deep learning architecture, called W-CNN-LSTM, for long-
term traffic flow forecasting. The authors used traffic flow data of unspecified size from road networks in 
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England. The W-CNN-LSTM model uses wavelet decomposition and a Convolutional Neural Network 
(CNN) alongside a Long Short-Term Memory (LSTM) network. Wavelet decomposition was first used to 
separate the original traffic data into high-frequency and low-frequency components, which were then input 
into the CNN-LSTM model to simultaneously obtain high spatial and temporal features. The model's 
performance was assessed against five benchmark models, using measures of Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), and R-squared (R²). The results illustrate that the W-CNN-LSTM 
model performed better than the benchmark models used, suggesting that it is a promising model for long-
term traffic flow modelling.  
Bogaerts et al. (2020) developed a traffic forecasting deep learning model using Graph Convolutional 
Networks (GCN) and Long Short-Term Memory (LSTM) networks to capture spatial and temporal traffic 
features. The model was trained and tested with sparse GPS trajectory data obtained from DiDi ride-hailing 
service in Xi'an, and Chengdu, China. Specific dataset sizes were not available. The suggested architecture 
utilizes GCN to extract spatial features and LSTM cells to capture temporal dependencies, allowing for both 
short- and long-term traffic predictions. The authors proposed a data-reduction method based on the 
temporal correlation to choose the most relevant road links as input for the model. The model's performance 
was compared to other high-performance algorithms that included standard LSTM and methods from the 
TRANSFOR19 forecasting competition. The results were better for all time horizons from 5 minutes to 4 
hours. 
Do et al. (2019) introduced STANN (Spatial-Temporal Attention-based Neural Network), a new deep 
learning approach for predicting traffic flow. The authors used datasets from the real world, but they did not 
provide details on the source or specifics of the dataset. The authors did not provide the size of the dataset. 
STANN utilizes attention mechanisms for both spatial and temporal components. The attention mechanism 
allows STANN to dynamically learn and capture dependencies between road segments and across time steps, 
addressing the limitations noted with previous efforts, which relied solely on static spatial-temporal 
correlations. The authors evaluated the model on datasets from real traffic, achieving significantly better 
predictive accuracy over prior approaches. They also noted that incorporating multiple resolutions improved 
predictive performance. The authors indicated that the model can help improve understanding of spatial-
temporal correlations in traffic networks. 
Chen et al. (2020) presented a traffic-condition-aware ensemble learning technique for traffic flow prediction. 
The authors used real traffic data obtained from the Caltrans Performance Measurement System (PeMS). 
There was no specification about the size of the dataset. The framework proposed utilizes CNNs to model 
spatiotemporal patterns in traffic-flow data, and these have been used to develop a weights mechanism for 
ensembling multiple base models, which include GBRT, SV, Long Short-Term Memory, and Historical 
Average. The authors used standard evaluation techniques to measure the performance of their model and 
report improved accuracy when compared to the individual models. 
For time series data, Stacking-based ensembles can enhance forecast accuracy by leveraging the benefits of 
multiple models, thereby improving generalization and robustness, and adapting to changing trends. To 
maximize the benefits for a time series forecasting problem, care must be taken in the selection and tuning 
of the base models and the stacking meta-learner. Table 1 displays a comparison between the proposed work 
and previous works. 
Table 1: Comparison of past studies and proposed technique 
 

Reference Year Objective Approach Stack 
Ensemble 
Learning 

Accuracy Traffic 
Dataset 

Zhang et al. 
[1] 

2021 Traffic flow 
prediction 

CNN No 88.3% METR-LA 
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Li et al. [2] 2020 Congestion 
prediction 

GCN + GRU No 90.1% PeMSD7 

Kumar et al. 
[3] 

2022 Real-time traffic 
density estimation 

YOLO + LSTM No 87.5% Custom 
CCTV 
Dataset 

Sharma & 
Patel [4] 

2023 Urban traffic 
congestion 
classification 

Random Forest No 84.2% Indian 
Traffic 
Dataset 

Wang et al. 
[5] 

2022 Multi-model traffic 
prediction 

XGBoost + 
ARIMA 

No 89.4% PeMS-BAY 

Singh & 
Reddy [6] 

2021 Traffic flow 
forecasting 

CNN-BiLSTM No 90.6% METR-LA 

Chen et al. 
[7] 

2024 Spatiotemporal traffic 
forecasting using 
ensembles 

LightGBM + 
Temporal 
Graph Networks 

Yes 91.8% PeMSD4 

Proposed 
Approach  

2025 Traffic congestion 
prediction using deep 
ensemble 

MLP + SVC → 
Logistic 
Regression 

Yes 93.2% Hebbal 
Flyover 
Dataset 

  
 
METHODOLOGY 
5.1 The Proposed Model  
The proposed model architecture can distinguish between levels of traffic congestion through structured data 
constructed from video frames. This method uses a stacking ensemble learning approach by combining 
multiple classifiers to improve accuracy and uses the features from the identified dataset (vehicle count and 
spatial characteristics - bounding box dimensions) to classify congestion levels as low, medium, and high. 
During the data preparation phase for training, the irrelevant columns, such as the frame ID and weather 
descriptions, are removed. Then, the data is scaled using the Standard Scalar to identify similar input 
distributions.The stacking ensemble model uses two distinct base learners: a Multilayer Perceptron 
(MLPClassifier) and a Support Vector Classifier (SVC), for modelling both linear and non-linear relationships 
in the data. The base models are combined using Logistic Regression as the meta-learner, which combines 
the predictions of the two models to create the final prediction. Other models, including Bagging with 
Logistic Regression, XGBoost, and LightGBM models are also built and used for a comparative analysis. Each 
model uses 80 percent of the dataset to train the model, and evaluates on the 20 percent testing set, using 
accuracy and weighted F1 score to evaluate performance. The proposed stacking model incorporates 5-fold 
cross-validation to improve generalization and guard against overfitting, and is appropriate for modelling 
complex real-world traffic congestion predictions.A custom label generation method is conducted when 
applying the feature engineering. Specifically, traffic congestion values represent levels of congestion that were 
taken from the raw vehicle count and assigned thresholds. Specifically, vehicle count values were assigned to 
three categories of 0 (low), 1 (medium), and 2 (high) congestion. This transformation allows the model to 
perform multi-class classification on the congestion state. The model does not contain any features that 
provided no useful information or redundant features (i.e., frame, Weather, and Description) that contribute 
noise to the model and were excluded from it. Additionally, all of the numerical features have been 
standardized by using a Standard Scalar to allow for a practical feature approach for updating. Using the 
Standard Scalar provides a consistent scale between the features, which is useful when calculating distance 
(e.g., MLP, SVC) as these models will be leveraged in multiple outputs. In summary, this feature engineering 
pipeline assists convergence and generalization of the model. 
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Figure 1: Proposed Model 

Stacking Ensemble Model  
The objective of the stacking ensemble model used in this study is to improve traffic congestion prediction 
levels using a combination of different machine learning classifiers. The data used for input are processed 
traffic video frames that have vehicle information and contextual features, including location and weather. 
Particularly important is a feature called vehicle_count, which is needed to formulate a new target variable, 
called congestion_level. The congestion_level is a categorical variable consisting of three levels of traffic that 
are: 

• Low congestion (0) when vehicle count is less than 5, 
• Medium congestion (1) for counts between 5 and 14, 
• High congestion (2) when the vehicle count is 15 or more. 

This conversion then makes the problem a multiclass classification problem, which leverages the grouping 
nature of the data and is therefore better suited for ensemble approaches. Before using the original data in 
models, the data must first undergo some level of preprocessing. This includes removing columns that are 
not useful on their own (frame, Weather, Description, etc.), but still have value when combined with the 
target combination, and hence will not harm the models ultimately. The useful columns are then applied 
through the normalization function Standard Scaler, which uses the computations of centering the input 
variables using mean zero and unit variance. Once the dataset has been pre-processed, the dataset can be split 
into a training and a testing dataset. In this case, an 80-20 approach is implemented in terms of proportions. 
The training dataset will be used to build the models, and then the testing dataset will be used to measure 
the accuracy of the models via predictions from the models with previously unseen data. 

Base Learners in This Stacking Model 
Multi-Layer Perceptron (MLPClassifier): The MLP is a type of feedforward neural network, and the MLP is 
configured with a hidden layer containing 50 neurons. It can learn complex, nonlinear distributions from 
the data. Each neuron in the hidden layer utilizes an activation function (usually ReLU), and backpropagation 
is used to optimize the model by minimizing the loss. In the end, the MLP returns a probability distribution 
over the three congestion classes.   
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Support Vector Classifier (SVC): The SVC uses a kernel to identify the best hyperplane separating the classes. 
The SVC should be very good with high-dimensional feature spaces. The SVC returns probabilities 
(probability=True), which will be important for stacking a meta-learner to learn how confident each base 
model is in its predictions.  These two distinct base learners were specifically chosen to realize their distinct 
capabilities—MLP with learning nonlinear distributions, and SVC for its performance with well-separated 
classes and margin maximization.Meta Learner in Stacking : In this model, the meta-learner is Logistic 
Regression. The meta-learner receives the class probabilities from the base learners and learns to assign 
optimal weights to each prediction. Logistic Regression is a reasonable choice for a meta-learner due to its 
simplicity, interpretability, and general efficiency. When the meta-learner is Logistic Regression, the base 
learners have predicted outputs for the meta-learner; it can be quickly trained to learn the relationship 
between the base model predictions and the actual target class. Like most stacking models, the stacking 
classifier is set up with 5-fold cross-validation (cv=5), meaning that the meta-learner will be trained on out-of-
fold predictions and avoid data leakage as the meta-learner will not fit to the predictions from the base learners 
on the same data as where they were trained. 

Other Comparative Models Used 
Bagging Classifier with Logistic Regression: This model introduces bootstrapping (sampling with 
replacement) to train a set of several logistic regression models on random subsets of data. The predictions 
from these models are aggregated to form the final output based on voting. The bagging classifier is useful in 
reducing variance and addressing overfitting. 
XGBoost Classifier: XGBoost is a strong gradient boosted algorithm that sequentially builds decision trees 
and minimizes classification error by weighting misclassified examples. This technique works very well with 
structured/tabular data. Furthermore, it uses various techniques for regularization that can help prevent 
overfitting. 
LightGBM Classifier: LightGBM is another gradient boosting-based model, but also includes features that 
improve performance and speed. Rather than growing trees (depth-wise), it continues to grow trees but in a 
leaf-wise manner. This practice results in faster convergence and better performance in many cases. 
 
EXPERIMENTS 
The implementation of the proposed model was carried out using the Python programming language in the 
Visual Studio Code (VS Code) environment. Libraries and packages that were required include pandas, 
NumPy, scikit-learn, XGBoost, LightGBM, and matplotlib, which were needed for data preprocessing, model 
development, evaluation, and plotting. The experiments were conducted on a system equipped with an Intel 
Core i7 processor, 16 GB RAM, and a Windows 10 OS, which was powerful enough to process the data set 
and fit multiple ensemble models. 
6.1 Dataset and pre-processing 
In this study, real-time traffic surveillance data were obtained from the Hebbal Flyover, Bengaluru, which 
consisted of about 20 to 25 GB of .asf format video files, where each 1 GB video file represented 13 to 14 
hours of continuous video. The large video files were broken up into segments of 2-minute clips to make 
video processing manageable. The proposed system used the YOLOv8 model for high detection accuracy and 
employed the Deep SORT algorithm to address the problem of multi-object tracking. Each video segment 
was processed frame-by-frame, being extracted from each raw video to detect the type of vehicles, namely cars, 
buses, and trucks. The detection of the objects was labelled with individual bounding box coordinates, 
detection confidence, and corresponding class labels. Then Deep SORT uniquely identified the detected 
objects across video frames, allowing for individual object trajectory tracking and speed measurement.  
The proposed model is not only able to detect and track standard vehicles, but it also demonstrates the 
potential to identify unwanted or unusual objects on the roadway that could contribute to traffic disruptions 
or crashes. The Deep SORT algorithm generates unique object IDs that allow for individual objects to be 
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consistently tracked across frames. This feature is useful for detecting and tracking large vehicles, stationary 
objects, or atypical objects that could be causing congestion or endangering crash situations. With a deeper 
analytics approach, extra object-level features, such as bounding box size, overall object size, and aspect ratio, 
are captured and stored for each detected object. This extra spatial information, when stored and overlaid 
with trajectories, can provide the ability to identify high-congestion locations while simultaneously allowing 
for deep analysis of traffic flow patterns for an intelligent transportation system (ITS) and a real-time traffic 
management system. The training dataset comprises a total of 6,846 samples. The dataset includes various 
features, such as frame number, object ID, speed, object size, weather conditions, temperature, humidity, and 
vehicle count, all of which serve as contextual information that will allow for accurate prediction of traffic. 
The method then takes the training data and, by default, runs for 50 epochs, allowing the model to learn 
representations using receiver patterns that pass through the training data multiple times. The model also 
uses a batch size of 32, meaning that the model updates weights after 32 samples are processed. Along with 
that, 20% of our training dataset will be kept aside for our validation test set to evaluate the model's 
performance on unseen data during training. 

 
Figure 2: traffic flow over time 
Fig. 2. The four-line plots clearly show traffic flow over time. The vehicle count plot shows how many vehicles 
are present each second, indicating traffic density. The average speed plot reveals how fast vehicles are moving, 
helping detect congestion. The object size plot reflects vehicle size or closeness, with bigger sizes suggesting 
larger or nearer vehicles. The temperature plot shows weather conditions that may affect traffic flow. These 
plots together give a quick and clear view of traffic behavior over time. Table 2 shows the hyperparameter 
settings for the stacking ensemble model, including two base learners (MLP Classifier and SVC) and a meta 
learner (Logistic Regression). It also includes the configuration for the Stacking Classifier using 5-fold cross-
validation and all available CPU cores. 
 
Table 2: Perfect hyperparameter configuration 
MODEL TYPE ALGORITHM HYPERPARAMETER VALUE 
BASE LEARNER 1 MLPClassifier hidden_layer_sizes (100,)   

Activation 'relu'   
Solver 'Adam'   
Alpha 0.0001   
learning_rate 'constant'   
max_iter 300 



 

576 
 

International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 8s, 2025 
https://theaspd.com/index.php 

 
  

random_state 42 
BASE LEARNER 2 SVC Kernel 'rbf'   

C 1.0   
Gamma 'scale'   
Probability True   
random_state 42 

META LEARNER LogisticRegression Penalty 'l2'   
Solver 'lbfgs'   
C 1.0   
max_iter 1000   
random_state 42 

STACKING MODEL StackingClassifier Cv 5 (5-fold cross-validation)   
n_jobs -1 (use all available cores) 

 
 
SETTING FOR EXPERIMENTS 
The experiments were conducted using an ensemble model implemented with TensorFlow Keras. The 
preprocessed dataset was split into training and testing sets using an 80:20 ratio. Input features were 
normalized using a Standard Scaler to ensure effective training. The ensemble model architecture included a 
feedforward neural network with three hidden layers comprising 128, 64, and 32 neurons, each activated by 
ReLU functions. Dropout layers with rates of 0.3 and 0.2 were added to reduce overfitting. The model was 
trained for 50 epochs with a batch size of 32 and a validation split of 20%. The Adam optimizer with a 
learning rate of 0.001 was used to minimize mean squared error (MSE), while model performance was 
evaluated using MSE, MAE(mean absolute error), and Root Mean Squared Error (RMSE)  metrics.  
The definitions of MSE, MAE, and RMSE are 
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Where 𝑛 = Number of observations, 𝑦𝑖 = Actual traffic value, 𝑦̂𝑖 = Predicted traffic value 
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Figure 3: Model MAE Performance During Training 
The model's performance was tested using a variety of error metrics and statistics. The set of error metrics 
and supporting descriptive statistics can help evaluate how accurate and reliable the model's predictions are. 
Error Metrics: The model's prediction performance was assessed using typical regression metrics. The results 
are: 

• Mean Absolute Error (MAE): 0.0157 
• Mean Squared Error (MSE): 0.0059 
• Root Mean Squared Error (RMSE): 0.0765 
• R² Score: 0.9438 

This metric suggests that the model has provided quality predictions in this case, with a reasonably low 
amount of errors. The R² suggests that the model explains 94.38% of the variance in the data, which shows 
the model's strong predictive power of prediction. 
Descriptive Statistics: Table 2 provides descriptive statistics for the actual, predicted, and residual values. The 
summary statistics demonstrate that the predicted values from the model have a close fit to the actual data: 
Table 2: Descriptive Statistics 

Statistic Actual Predicted Residual 
Count 1370.0000 1370.0000 1370.0000 
Mean 0.8949 0.8978 -0.0029 
Std 0.3230 0.3165 0.0765 
Min 0.0000 -0.0176 -1.0067 
25% 1.0000 1.0061 -0.0107 
50% 1.0000 1.0095 -0.0095 
75% 1.0000 1.0107 -0.0060 
Max 2.0000 1.1552 1.0243 

The average of the residuals is near zero, which means that either the model does not favor over- or 
underestimating the real values. In addition, the standard deviation is not particularly large, which suggests 
that the errors are consistently in a similar range across the dataset. 
Correlation Matrix: The correlation matrix for the actual, predicted, and residual values is provided in Table 
2. From an inspection of this matrix, discern the following relationships: 
Table 3:  Correlation Matrix 
Variable Actual Predicted Residual 
Actual 1.0000 0.9716 0.2027 
Predicted 0.9716 1.0000 -0.0348 
Residual 0.2027 -0.0348 1.0000 

The extremely high correlation (0.9716) between the actual and predicted values demonstrates that the 
predictions of this model are very close to the actual values. The weak correlation of the residuals with both 
the actual (0.2027) and the predicted (-0.0348) values suggests that the residuals are not, on average, 
systematically biased or related to the predictions. 
6.4 Discussions of the Results 
The experimental assessment evaluated the predictive power of the proposed stacking ensemble model, which 
in this case combined two distinct base learners (MLPClassifier and SVC) and Logistic Regression as a meta-
learner. This architecture was selected to capture both linear and non-linear relationships in the traffic dataset 
for short-term forecasting of traffic volume. 
The performance of the base learners, the MLPClassifier, with a hidden layer of 100 neurons and a ReLU 
activation function, underperformed, with an MAE of 0.0261 and an R2 score of 0.8912. Although the 
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MLPClassifier was able to represent non-linear patterns reasonably well, it had issues with overfitting in some 
horizons. The SVC, with an RBF kernel and probability estimates on, narrowly outperformed the 
MLPClassifier by doing an MAE of 0.0235 and an R2 score of 0.9027, however, its performance was limited 
by the fact that there was no handling of sequential memory. As a result, for long-term forecasting, its 
performance is suboptimal. 
Proposed Stacked Ensemble Model: The stacked ensemble model improved prediction robustness and 
accuracy by taking the predictions of the MLP and SVC, combining them, and feeding them to the Logistic 
Regression meta-learner. The model was trained with 5-fold cross-validation and optimized to be 
computationally efficient by utilizing all available cores. 
The proposed ensemble model achieved the following evaluation scores: 

• MAE: 0.0157 
• MSE: 0.0059 
• RMSE: 0.0765 
• R2 Score: 0.9438 

These results illustrate that the model can combine different decision boundaries and learning capabilities, 
which allows for predictions that are less variable across traffic conditions and time horizons. 
Uniformity of Prediction Performance Across Time Horizons. To further assess the robustness of the 
proposed model, performed a comparative analysis across multiple time horizons (10, 20, 30, 40, 50, and 60 
minutes), using standard error metrics. For this comparison, we included conventional machine learning 
techniques (Linear Regression, Decision Tree, KNN) and deep learning models (LSTM, GRU, CNN). 
Table 4: The Proposed Stacking Ensemble Model Comparison with Traditional Models 

Horizon (min) LR DT KNN LSTM GRU CNN Proposed Model 
10 0.0381 0.0364 0.0323 0.0296 0.0283 0.0279 0.0157 
20 0.0412 0.0397 0.0341 0.0328 0.0309 0.0302 0.0169 
30 0.0439 0.0413 0.0368 0.0346 0.0325 0.0318 0.0178 
40 0.0465 0.0431 0.0389 0.0361 0.0343 0.0335 0.0189 
50 0.0483 0.0454 0.0410 0.0382 0.0362 0.0348 0.0194 
60 0.0509 0.0472 0.0428 0.0398 0.0377 0.0365 0.0203 

 
Table 4 indicates that the proposed stacking ensemble model outperforms all of the other models for all time 
horizons with lower MAE values overall. As time increases, the performance of both traditional and deep 
learning models decreases modestly, whilst the proposed stacking ensemble appears to yield more stable and 
dependable results.Traditional models such as Linear Regression (LR), Decision Tree (DT), and KNN, as well 
as deep learning models like LSTM, GRU, and CNN, were also tested. Observed that the performance of 
these models became poorer as the prediction horizons increased. The MAE increased with time horizons for 
LSTM, GRU, and CNN, while the proposed stacking ensemble model was stable in its prediction accuracy 
(MAE).The stacking ensemble model significantly outperforms base models (MLP Classifier and SVC) and 
traditional machine learning models (Linear Regression, Decision Tree, KNN) and deep learning models 
(LSTM, GRU, CNN) across all time horizons. This shows the effectiveness of the stacking of incorporating 
multiple base producers in a shared ensemble of learners to increase accuracy and robustness, especially for 
short-term traffic forecasting.The stacking ensemble method improves prediction accuracy, especially when it 
comes to longer time horizons, where single models will likely fade. Applying base learners that will each 
capture different pieces of the data and stacking them together smartly means that each of them is 
contributing to the ensemble model's generalization and accuracy. This substantiates the use of the framework 
proposed for short-term forecasting of traffic volume and its capabilities for application within intelligent 
transport systems (ITS).Figure 4 (a,b,c) displays the performance of the four models (MLP Regressor, SVR, 
Logistic Regression, and Stacked Model) using the MSE, MAE, and R² Score metrics. The MLP Regressor 
and Stacked Model have the lowest values for MSE and MAE, which indicates better prediction performance. 
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However, all models have low R² scores at around 0.04 - 0.06, which demonstrates a limited ability to explain 
the variance in traffic speed. Overall, the Stacked Model provides slightly better-balanced performance 
compared to the models. This reporting is based on a traffic prediction for weekdays, as the Stacked Model 
does a better job of modelling weekday, weekend, and rush hour traffic patterns than the separate models. 
This demonstrates that using ensemble methods can provide an additional level of reliability with time-series 
traffic data. 

 
(a) 

 
(b) 

 
 (c) 

Figure 4: Comparison of the outcome of the prediction. A prediction outcome on weekdays. b Prediction 
outcome on weekends. c Prediction outcome on rush hours. 
6.5 Actual vs prediction outcome 
One effective approach for visually comparing the performance of a predictive model is to create an Actual 
vs. Predicted plot, which demonstrates how the model performs compared to the actual values in the dataset. 
The importance of visualizations is vital to any research study using data analytics and predictive analytics. 
The graphs that can be found in Figures 5,6, and 7 illustrate the actual and predicted results for varying values 
of prediction horizons. The value of prediction horizons for the traffic speed dataset was 10,20,30,40,50, and 
60 minutes, respectively. The graph illustrates actual vs. predicted traffic speed for the overall data. The long-
term comparison of expected vs actual traffic speeds.  The orange dashed line describes the expected speed, 
while the blue line describes the actual speed.  High accuracy in forecasting is indicated by the two curves 
remaining near each other. 
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Figure 5: Visualization of actual versus predicted data for the 10-minute 

 
Figure 6: Visualization of actual versus predicted data for the 20-minute time horizon 
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Figure 7: Visualization of actual versus predicted data for the 30-minute time horizon 
The traffic speed predicted graphs used different time series datasets but show a similar deviation between 
the predicted and actual speed values, indicating the stacking-based ensemble approach is a more suitable 
approach for prediction tasks on traffic speed. That the stacking-based ensemble approach was able to predict 
traffic congestion correctly using traffic speed data shows the usefulness of the stacking-based ensemble 
approach for predicting traffic in real-time. Applications of traffic speed forecasts could be made for 
navigation systems, real-time traffic control, and assessment of infrastructure changes. The sprint using 
resourcing and optimizing resource tracking helps transportation agencies enhance traffic routing and curtail 
traffic congestion, as well as the ability for drivers to make better decisions on the best paths to take based on 
expected traffic velocities. The error predictions from each model were compared using a one-way ANOVA 
test. When comparing the predicting method to the baseline methods, quantitative analysis shows 
improvements in predicting performance. 
Conclusion and Future Work 
Forecasting traffic speeds is crucial for enhancing the efficiency of transportation, lowering issues associated 
with congestion, and encouraging sustainable urban expansion. By harnessing the power of data and 
predictive algorithms, traffic speed estimates open the door to smarter, more responsive, and more connected 
cities.This study formulates the traffic speed forecasting problem as a pure regression. Short-term traffic speed 
forecasting plays a crucial role in the field of traffic speed forecasting. This work suggested a new ensemble 
based on deep stacking. This study proposed the stacking ensemble model models both linear and non-linear 
correlations in the data using two different base learners: a Support Vector Classifier (SVC) and a Multilayer 
Perceptron (MLPClassifier). The meta-learner, which integrates the predictions of the two models to get the 
final prediction, uses Logistic Regression to merge the underlying models. For a comparison examination, 
additional models are also constructed and utilized, such as LightGBM, XGBoost, and Bagging with Logistic 
Regression models. The predictions made by these base models were used as input features by a meta-learner, 
which knowledgeably combines their outputs to obtain final predictions. The highest attribute of stacking 
ensemble is in its ability to minimize the weaknesses of several models and maximize their good features 
together. Two publicly available real urban road network-based datasets are used to evaluate the proposed 
methodology. The results show that using datasets with different prediction horizons, the proposed model is 
significantly better than our baseline. Results showed that the proposed model improved the machine's ability 
for the machine to generalize a learning model that is able to forecast short-term traffic speed with greater 
accuracy.In future research, external factors, such as weather conditions and real-world events that strongly 
impact traffic speed and congestion, will be incorporated into our prediction framework. Additionally, the 
MLP meta-learner used here will be extended to investigate deeper learning models including Long Short-
Term Memory (LSTM), Gated Recurrent Unit (GRU), CNN (Convolutional Neural Networks), and deep 
ensemble learning, as these models are expected learn temporal dependencies even better and will provide 
more accurate predictions under dynamic traffic conditions than shallow learning approaches. 
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