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Abstract: This study systematically reviewed the application of machine learning (ML) models in landslide prediction, 
synthesizing advances, limitations, and emerging directions. Using the PRISMA framework, eight studies published 
between 2019 and 2024 were selected from major databases following rigorous inclusion criteria. Results revealed 
that ML models varied from standalone to ensemble, hybrid, and optimized approaches, with ensemble and hybrid 
frameworks often demonstrating superior reliability across diverse geospatial contexts. Performance metrics such as 
training and validation AUC, accuracy, and recall indicated generally strong predictive capacity, though 
inconsistencies in reporting limited cross-study comparability. Conditioning factors and preprocessing strategies were 
highly variable, reflecting both regional specificity and methodological divergence, while validation techniques ranged 
from random splits to cross-validation. Key challenges included imbalanced datasets, a lack of standardized metrics, 
and limited integration of geophysical and environmental factors, which constrained model transferability and 
generalizability. Emerging technologies such as explainable AI, transfer learning, advanced GIS integration, and multi-
temporal remote sensing were identified as promising avenues to address these gaps. Overall, the findings highlight the 
capacity of ML to advance landslide susceptibility mapping while underscoring the need for methodological 
standardization and cross-regional datasets, with broader implications for disaster risk reduction, sustainability, and 
science education. 
Keywords: environmental risk management, landslide prediction, machine learning, science education, systematic 
review 
 
INTRODUCTION 
Landslides represent significant geological hazards characterized by the movement of rock, soil, and debris 
down slopes, often initiated by factors such as rainfall, earthquakes, volcanic activity, and human actions, 
including deforestation and construction [1-4]. They result in immediate losses and impose long-term 
social, economic, and environmental costs by disrupting ecosystems, settlements, and land-use systems. 
As a result, significant research has focused on elucidating the drivers, distribution, and prediction of 
these phenomena to mitigate risk and guide sustainable development [5-8]. 
Landslides in the Philippines commonly occur in mountainous and urbanizing areas, where the 
intersection of exposure and development pressures coincides with significant rainfall. Case studies in 
Antipolo, Rizal [2] and Baguio City [3] demonstrate that slope instability and changes in land use increase 
susceptibility. Central and Eastern Visayas have experienced significant destructive events, such as the 
2018 Naga City landslide [9] and the 2022 Toledo City slope failure [10], both of which were influenced 
by hydrometeorological and anthropogenic factors. Additional incidents reported in Talisay, Sudlon II, 
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and Tisa exemplify rainfall-induced slope failures in peri-urban areas, highlighting the critical necessity 
for predictive tools that account for local environmental and socio-economic factors. 
Prediction has thus become integral to disaster risk reduction, environmental planning, and climate 
adaptation. Conventional susceptibility and hazard models incorporate factors such as rainfall, 
topography, lithology, soils, and land use to identify vulnerable areas and inform interventions like slope 
stabilization, drainage systems, and resettlement [11-13]. Improvements in geographic information 
systems (GIS) and remote sensing have enhanced spatial analysis and enabled semi-automated mapping. 
Additionally, statistical methods such as logistic regression (LR) and bivariate techniques have historically 
established baselines for evaluating susceptibility [4, 14]. Nonetheless, these methods frequently 
encounter challenges in addressing nonlinear relationships and incorporating various environmental 
datasets [15-16]. 
Machine learning (ML) has recently gained prominence due to its ability to model complex, nonlinear 
interactions among multiple predictors. Methods including random forest (RFs), support vector machine 
(SVM), and adaptive neural-based fuzzy inference system (ANFIS) demonstrate enhanced efficacy in 
susceptibility mapping, especially when integrated with GIS and remote sensing [17-21]. Hybrid methods 
that combine various algorithms are being increasingly utilized to enhance predictive accuracy and 
minimize uncertainty [21]. However, gaps persist: restricted landslide inventories, inconsistent data 
preprocessing, and diverse validation methods impede comparability and generalization across studies 
[22-24]. The identified limitations highlight the necessity of systematic reviews to integrate findings and 
pinpoint avenues for methodological improvement. 
This review synthesizes the use of ML models in landslide prediction, analyzing their strengths, 
limitations, and adaptability across different contexts. This underscores the impact of preprocessing, 
sampling, and validation decisions on predictive results. The review highlights the importance of 
advancing hazard science in relation to environmental management and science education. Enhanced 
predictive modeling contributes to ecosystem protection, resilient land-use planning, and disaster 
preparedness. Furthermore, incorporating this knowledge into curricula can promote environmental 
literacy, data-analytic reasoning, and innovation in geohazard research. The synthesis serves as a 
framework for student science investigatory projects (SIPs), especially in the physical and applied sciences, 
robotics and intelligent machines (RIMs), and technological innovations, by demonstrating the 
integration of data, algorithms, and field evidence to tackle significant environmental issues. 
 
MATERIALS AND METHODS 
This study employed a systematic review methodology to consolidate existing knowledge on machine 
learning (ML) models in landslide prediction. A systematic review was deemed appropriate as it ensures 
transparency, replicability, and rigor in synthesizing evidence. Guided by a systematic review protocol 
[25], the process involved collecting, coding, and evaluating studies to identify effective approaches for 
susceptibility mapping and disaster risk reduction. 
Strict inclusion criteria were applied: studies published between 2019 and 2024, written in English, 
appearing in peer-reviewed journals, and explicitly addressing ML applications in landslide prediction. 
Only quantitative or quasi-experimental studies with sufficient data for comparison were considered, 
while reviews, qualitative research, abstracts, and theses were excluded to maintain relevance and quality. 
The search strategy covered Scopus, Crossref, Google Scholar, and Elsevier, employing Boolean 
combinations of keywords such as “machine learning models,” “landslide prediction,” and “landslide 
susceptibility.” Publish or Perish [26] supported retrieval, complemented by manual searches. Study 
selection followed the PRISMA protocol from meta-analytical studies [27-28]: from 1,678 identified 
articles, 1,556 were excluded as duplicates or irrelevant, 88 failed to meet criteria, and 34 were screened. 
After further exclusion, 20 full texts were assessed, 10 were discarded, and 8 qualified for the final 
synthesis. 
Extracted data were analyzed thematically and comparatively. Key variables included locale, landslide 
count and type, and data split; ML model categories; performance metrics such as training and validation 
area under the curve (AUC), accuracy, and recall/sensitivity (SST); conditioning factors; preprocessing 
and validation techniques; and regional specificity. The review also synthesized challenges, research gaps, 
and emerging technologies, providing a comprehensive appraisal of current ML applications in landslide 
prediction. 
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RESULTS AND DISCUSSION 
 
Characteristics of the Studies 
The systematic review included eight studies and their characteristics, including locale, landslide count 
and type, and data split, are shown in Table 1. 
 
Table 1. Characteristics of the studies included in the systematic review 
Author Locale Landslide Count Landslide Type Data Split 
Kulsoom et al. [29] Pakistan 303 Debris flow, 

rockslide 
70:30 

Sahin [23] Turkey 105 Shallow landslides 70:30 
Song et al. [30] China >580,000 pts Various Training/testing 
Chen et al. [17] Greece 335 Various Training/testing 
Arabameri [31] Iran 241 Various 4-fold cross 

validation 
Chen and Song [21] China 34,893 Shallow landslides 70:30 
Tran et al. [24] Vietnam 76 Shallow landslides 70:30 
Lee et al. [12] South Korea 151 Shallow landslides 70:30 

 
Based on Table 1, there is variability in dataset size, landslide typology, and regional focus, emphasizing 
the complexities inherent in predictive modeling within geohazard research. Sample sizes varied from 
modest inventories, including 76 shallow landslides in Vietnam [24] and 105 in Turkey [23], to large 
datasets comprising over 35,000 cases in Sichuan Province [21] and nearly 580,000 in China [17]. Smaller 
datasets require meticulous model calibration to reduce overfitting, while large-scale datasets necessitate 
computationally efficient methods that can address heterogeneity and imbalance. Research on landslide 
typology has examined various processes, such as debris flows and rockslides in Pakistan [29], shallow 
landslides in Turkey [23], South Korea [12], Vietnam [24], and China [21], and mixed types in Iran [31] 
and Greece [17]. The distinctions suggest that the geomorphological characteristics of the study area likely 
influence predictive accuracy and model transferability. 
 The diversity of validation strategies and data partitioning methods employed is equally notable. The 
majority of studies used the standard 70:30 train-test split, which is a pragmatic option for datasets of 
moderate size, whereas larger datasets permitted more adaptable partitioning strategies [30]. Arabameri 
[31] employed k-fold cross-validation to enhance generalizability and mitigate bias in performance 
estimates. The methodological differences underscore the necessity of aligning validation techniques with 
the characteristics of the dataset, as improper partitioning may either exaggerate accuracy in smaller 
datasets or fail to capture variability in larger ones. The variation in sample sizes, landslide types, and 
validation strategies demonstrates the flexibility of machine learning techniques in landslide prediction. 
However, it also highlights that the scale, quality, and representativeness of the input data significantly 
influence the robustness and reliability of models. 
 
Standalone Models for Landslide Prediction 
After examining dataset characteristics, the next focus is on standalone ML models, which operate 
independently and provide a baseline for assessing predictive performance [24]. Table 2 presents the 
models and their description and application context. 
 
Table 2. Standalone ML models in predicting landslides 
Model Description and Application Context Reference 
Logistic Regression 
(LR) 

A foundational model used to establish baseline performance 
metrics. 

[30] 

Artificial Neural 
Network (ANN) 

A foundational model used for baseline performance, often with 
various activation functions. 

[12,17,29] 

Hyperpipes (HP) A straightforward and fast classification algorithm used as a base 
classifier. 

[24] 

Support Vector 
Machine (SVM) 

A non-parametric kernel-based technique for classification. [17] 
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Credal Decision 
Tree (CDT) 

A decision tree model used to deal with classification problems; 
noted as an unstable classifier on its own. 

[31] 

Naive Bayes (NB) A supervised learning method that employs the Bayes theorem. [29] 
K-Nearest Neighbor 
(KNN) 

An unsupervised pattern detection algorithm. [29] 

Convolutional 
Neural Network 
(CNN) 

A deep learning model used for feature extraction and pattern 
recognition. 

[21] 

 
As presented in Table 2, the standalone models underscore the variety of ML approaches utilized in 
landslide prediction, encompassing basic statistical classifiers and sophisticated deep learning frameworks. 
These models operate autonomously, establishing a fundamental benchmark for comparison with more 
intricate ensemble or hybrid methodologies.  ANNs emerged as the most prevalent choice, recognized for 
their capacity to model nonlinear relationships between geo-environmental factors and the occurrence of 
landslides. Multi-layer architectures enable ANNs to capture complex interactions within datasets, thereby 
enhancing predictive accuracy in diverse contexts [12,17,29]. CNNs similarly enhanced these benefits by 
directly extracting spatial features from high-dimensional inputs, while optimization techniques improved 
performance in large-scale applications [21]. 
Additional standalone models fulfilled supplementary functions. LR established a benchmark for 
predictive performance in imbalanced datasets [30], whereas SVMs demonstrated competitive accuracy 
via kernel-based classification and feature selection methods [17]. Algorithms like NB and KNN provide 
efficient solutions in particular contexts, although they exhibit limitations in managing complex patterns 
[29]. Similarly, CDTs were utilized in susceptibility mapping; however, their inherent instability 
frequently required integration with ensemble methods [31]. HP was introduced as a rapid baseline 
classifier; however, it exhibited limited accuracy independently, highlighting the necessity for model 
improvement [24]. The results indicate that standalone models are essential for landslide susceptibility 
analysis, primarily serving as baseline comparisons and components for more sophisticated predictive 
frameworks. 
 
Ensemble Models 
Building on the standalone approaches, ensemble models integrate multiple algorithms to enhance 
robustness and predictive accuracy in landslide susceptibility mapping [24,31]. Table 3 showcases the 
ensemble methods applied in the reviewed studies. 
 
Table 3. Ensemble ML models in predicting landslides 
Model Description and Application Context Reference 
AdaBoost-HP 
(ABHP) 

Combines the HP algorithm with the AdaBoost ensemble 
technique. 

[24] 

Bagging-HP (BHP) Combines the HP algorithm with the Bagging ensemble 
technique. 

[24] 

Dagging-HP Combines the HP algorithm with the Dagging ensemble 
technique. 

[24] 

Decorate-HP Combines the HP algorithm with the Decorate ensemble 
technique. 

[24] 

Real AdaBoost-HP 
(RABHP) 

Combines the HP algorithm with the Real AdaBoost technique. [24] 

CDT-Bagging Combines the CDT with Bagging to reduce model variance. [31] 
CDT-Multiboost Combines the CDT with Multiboost to reduce variance and bias. [31] 
CDT-SubSpace Combines the CDT with SubSpace to prevent overfitting. [31] 
Random Forest 
(RF) 

A decision tree-based ensemble method known for high accuracy 
and robustness. 

[23,29-30]  

Gradient Boosting 
Machines (GBM) 

An ensemble method that builds a strong learner from a series of 
weak prediction models. 

[23] 

Extreme Gradient 
Boosting 
(XGBoost) 

A powerful decision tree-based ensemble method known for high 
performance. 

[23,29] 
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LightGBM A framework that implements a gradient boosting decision tree 
algorithm. 

[30] 

 
According to Table 2, various ensemble machine learning models are utilized in landslide susceptibility 
mapping, emphasizing their capacity to improve predictive accuracy through the reduction of variance 
and bias relative to individual classifiers. RF emerged as the most prevalent ensemble method, consistently 
exhibiting superior performance across various contexts. The dependence on numerous decision trees 
enhances its efficacy in managing complex and heterogeneous datasets, resulting in dependable and 
generalizable susceptibility maps [23,29-30]. XGBoost has become a widely utilized ensemble method, 
recognized for its computational efficiency and robust predictive performance. Research indicates that 
optimized versions of XGBoost enhance classification performance by emphasizing the most significant 
causative factors, highlighting its versatility in diverse landslide-prone settings [23,29]. GBM and its 
variant LightGBM were utilized, especially in scenarios necessitating effective management of imbalanced 
datasets, demonstrating enhanced recall and predictive stability [23,30]. 
In addition to tree-based boosting methods, various ensemble techniques have shown novel combinations 
to enhance the performance of less common classifiers.  For example, HP was combined with AdaBoost, 
Bagging, Dagging, and Decorate to improve classification robustness [24], whereas CDTs were integrated 
with Bagging, Multiboost, and SubSpace to reduce overfitting and enhance model reliability [31]. These 
studies demonstrate that ensemble learning enhances the predictive capabilities of established models 
while also broadening the applicability of unconventional algorithms in landslide susceptibility mapping. 
Ensemble approaches emphasize the significance of integrating multiple learners to address complex 
nonlinearities in geospatial data effectively. RF and XGBoost are particularly noted for their reliability 
and frequent application in enhancing landslide hazard prediction. 
 
Hybrid/Optimized Models 
Beyond ensemble methods, hybrid and optimized models combine or refine algorithms to enhance 
accuracy and address data limitations. Table 4 presents the hybrid and optimized models applied in 
landslide susceptibility mapping. 
 
Table 4. Hybrid/optimized ML models in predicting landslides 
Model Description and Application Context Reference 
ANN-PSO, SVM-
PSO 

Couple a base model (e.g., ANN, SVM) with a metaheuristic 
algorithm called particle swarm optimization (PSO) to fine-tune 
structural parameters. 

[17] 

CNN-BWO Couples a CNN with beluga whale optimization (BWO) to enhance 
prediction accuracy. 

[21] 

CNN-COA Couples a CNN with coati optimization algorithm (COA) to 
enhance prediction accuracy. 

[21] 

 
As presented in Table 5, hybrid and optimized models that enhance the capabilities of standalone and 
ensemble methods by integrating base learners with metaheuristic algorithms to refine parameters and 
improve prediction accuracy. ANN and SVM, when combined with PSO, have shown enhanced 
structural tuning and robustness in landslide susceptibility mapping [17]. CNNs optimized using BWO 
and COA improved predictive accuracy through hyperparameter refinement and enhanced spatial feature 
extraction [21]. These methods demonstrate that hybridization and optimization can address the 
shortcomings of traditional models, especially in managing complex, nonlinear relationships among 
causative factors, thus enhancing the reliability and resolution of susceptibility maps. 
 
Performance Metrics of the Best Models 
To assess the predictive reliability of the reviewed approaches, each study reported performance metrics 
for its best-performing model, offering a basis for comparing accuracy and robustness across methods. 
Table 5 highlights the performance metrics of the best model identified in each study. 
 
Table 5. Performance metrics of the best model in each study 
Best Model Training AUC Validation AUC Accuracy (%) Recall/SST Reference 
XGBoost 0.997 - - - [29] 
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XGBoost_Opt - 0.898 85.01 - [23] 
O_RF - 0.932 90.70 0.705 [30] 
ANN 0.969 0.800 - - [17] 
CDT-
Multiboost 

0.995 0.993 97.30 0.967 [31] 

CNN-COA 0.946 0.919 90.90 0.889 [21] 
ABHP 0.933 0.922 84.38 0.768 [24] 
ANN (Tan-sig) 0.968 0.879 90.00 92.38 [12] 

 
As highlighted in Table 5, the performance metrics of the top models in each study validate the enhanced 
accuracy and robustness of machine learning methods for landslide susceptibility mapping. High AUC 
values in both training and validation datasets across studies indicate the models' strong discriminative 
ability, frequently surpassing 0.90. The CDT-Multiboost attained a validation AUC of 0.993 and an 
overall accuracy of 97.30%, demonstrating its effectiveness in reflecting the impact of various geo-
environmental factors [31]. The CNN-COA model demonstrated robust performance, underscoring the 
advantages of integrating optimization algorithms with deep learning to improve predictive accuracy [21]. 
The oversampled RF (O_RF) demonstrated a validation AUC of 0.932 and an accuracy of 90.70%, 
indicating that the balancing of imbalanced datasets enhances recall and improves the detection of 
landslide-prone areas [30]. 
 Alternative models, despite exhibiting marginally reduced validation performance, displayed significant 
strengths as well. XGBoost and its optimized variant demonstrated consistently high training and 
validation AUCs, with the optimized version attaining an AUC of 0.898 and an accuracy of 85.01% in 
Turkey, thereby confirming its adaptability across varying data conditions [23,29]. ANNs have 
demonstrated competitive performance, as evidenced by a training AUC of 0.969 [17] and validation 
AUC of 0.879 and an accuracy of 90.00% [12] through the use of optimized activation functions. 
Ensemble models, such as ABHP, demonstrated balanced performance, achieving a validation AUC of 
0.922, thereby underscoring the advantages of integrating weak learners [24]. The results indicate that no 
single model consistently outperforms others; instead, model performance is contingent upon the 
characteristics of the dataset, optimization strategies, and feature selection. This highlights the necessity 
of customizing model selection and optimization to specific geohazard conditions to produce dependable 
susceptibility maps for disaster risk mitigation. 
 
Conditioning Factors in Landslide Prediction 
Given that model performance is highly context-dependent, the review also examined the conditioning 
factors used to capture the environmental and geological drivers of landslides. Table 6 shows the 
conditioning factors applied across the reviewed studies. 
 
Table 6. Conditioning factors in predicting landslides 
Factor Specific Factor References 
Topographical Slope [12,17,21,23-24,29-31] 

Elevation [12,17,21,23-24,29-31] 
Curvature plan and profile [12,17,21,23-24,29-31] 
Slope aspect [12,17,21,23-24,30-31] 
Topographic ruggedness index (TRI) [12,21,23,29-30] 

Hydrological Proximity to stream or river [12,17,23-24,29-31] 
Topographic wetness index (TWI) [12,17,23-24,29-31] 
Precipitation or rainfall [21,23-24,29-31] 
Stream power index (SPI) [17,21,23,29,31] 
Drainage density [23-24,31] 

Geological Lithology [17,21,23-24,29-31] 
Proximity to fault [17,21,24,29,31] 
Weathering [12,24] 

Anthropogenic Proximity to road [12,21,24,29,31] 
Land use or land cover [12,21,23,3-31] 

Other Factors Seismic intensity or earthquake [21,29-30] 
Soil type, depth, or texture [12,31] 
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According to Table 6, conditioning factors employed in landslide susceptibility modeling encompass 
topographical, hydrological, geological, anthropogenic, and various environmental domains, illustrating 
the intricate interaction of physical and human influences on slope instability. Topographical factors, 
including slope, elevation, curvature, aspect, and terrain roughness, were most commonly utilized and 
consistently recognized as key determinants of landslide occurrence. The parameters significantly affect 
slope stability by regulating gravitational forces, drainage patterns, and stress distributions, rendering 
them essential components in machine learning models [17, 29, 31]. Their prevalence in research 
underscores the importance of digital elevation data as a fundamental component of susceptibility 
assessments, especially when incorporated into high-resolution terrain models. 
Geological factors are critical conditioning variables, particularly lithology and proximity to fault lines, 
which define the material and structural conditions that predispose slopes to failure.  Weak rock units, 
including clay-rich formations and highly weathered profiles, are frequently associated with heightened 
susceptibility, whereas faults serve as structural weaknesses that increase the likelihood of failure [21,24]. 
Some studies have examined weathering processes, contributing to the understanding of the long-term 
degradation of slope materials, which diminishes shear strength and stability [12]. The findings emphasize 
the importance of integrating geological and tectonic datasets with topographic metrics to capture both 
static and dynamic influences on slope behavior effectively. 
Hydrological conditioning factors further strengthened the influence of water in initiating landslides. 
Proximity to streams, rainfall and precipitation records, topographic wetness indices, and drainage density 
have been extensively utilized, with research consistently highlighting their significance in slope failure 
processes [23,30]. Rainfall is often identified as a triggering factor due to its ability to saturate soils, 
diminish cohesion, and elevate pore water pressure, which collectively contribute to the initiation of slope 
movement. Derived indices, including SPI and TWI, enhanced predictive performance by quantifying 
surface runoff and soil moisture dynamics [17,31]. The hydrological inputs highlight the importance of 
integrating both long-term climatic conditions and short-term rainfall events into susceptibility models to 
reflect temporal variability in slope responses accurately. 
Human activities and external hazards introduce additional complexity, demonstrating how they disrupt 
natural slope equilibrium. Proximity to roads and changes in land use or land cover were often examined, 
highlighting the destabilizing impacts of construction, deforestation, and urbanization on slope systems 
[12,29]. Seismic intensity and soil characteristics are additional factors that contextualize regions where 
earthquakes or soil heterogeneity significantly influence slope failure [21,31]. Although utilized less often, 
these parameters underscore the complex nature of landslide conditioning, indicating that susceptibility 
cannot be comprehensively understood without accounting for both natural processes and human 
influences. These findings confirm that effective landslide prediction necessitates the integration of 
various conditioning factors, allowing ML models to encompass the complete range of geophysical and 
environmental influences on slope instability. 
 
Regional Specificity in Landslide Prediction 
Because conditioning factors and model performance vary with local environments, the review also 
examined regional specificity to understand how geographic and geomorphological contexts shape 
landslide prediction. Table 7 summarizes the regional settings of the reviewed studies. 
 
Table 7. Conditioning factors in predicting landslides 
Locale Most Influential Factors Identified Reference 
Nam Dam, Vietnam Distance from roads, elevation, river density [24] 
Taleghan-Alamut, Iran Distance from roads, slope, lithology, rainfall [31] 
Sichuan, China Annual maximum 24-hour rainfall, lithology, road density, 

slope angle 
[21] 

Mt. Umyeon, South 
Korea 

Slope, sediment transport index (STI), TRI [12] 

Achaia, Greece Lithological cover, slope angle [17] 
Ayancik, Turkey Slope, elevation, TWI, STI, drainage density [23] 
Karakoram Highway, 
Pakistan 

Proximity to road, slope, roughness, proximity to fault, 
precipitation, elevation 

[29] 
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As summarized in Table 7, the factors conditioning landslides are notably context-dependent, differing 
based on local geomorphology, climate, and anthropogenic influences. Slope and elevation are 
consistently dominant predictors in most study areas, underscoring their fundamental role in slope 
stability [17,23-24,29]. Regional variations influenced the significance of various factors; for example, road 
density served as a key driver in Vietnam and Pakistan, where extensive infrastructure interacts with 
unstable terrain [24,29]. In contrast, rainfall became a predominant factor in Iran and China, both noted 
for their intense precipitation events [21,31]. Geological conditions significantly influenced susceptibility, 
especially in Greece and Iran, where lithological diversity and proximity to faults were prominent factors 
[17,31].  The findings indicate that although fundamental factors like slope are essential, it is necessary 
to include localized drivers, such as climatic, geological, or anthropogenic influences, for precise regional 
modeling. 
Furthermore, regional studies emphasized the importance of customizing models to accurately reflect the 
distinct interactions between natural and human systems in each area. In mountainous regions like 
Pakistan’s Karakoram Highway and Turkey’s Ayancik district, various interacting factors, such as slope, 
roughness, precipitation, and proximity to roads, necessitated the use of ensemble or optimized models 
to address complexity [23,29]. Conversely, in urbanized locations such as Mt. Umyeon in South Korea, 
terrain indices such as TRI and STI were essential for analyzing shallow landslides induced by rainfall 
[12]. The Sichuan region of China focused on hydrological and seismic influences [21], whereas Greece 
and Iran underscored geological controls [17,31]. These examples emphasize the necessity of regional 
specificity in the development of effective landslide susceptibility models, emphasizing the selection of 
conditioning factors based on both their general relevance and their local importance in influencing 
hazard dynamics. 
 
Preprocessing and Validation Techniques in Landslide Prediction 
Data preprocessing and validation are critical for ensuring reliable landslide prediction models. Table 8 
gleaned the key techniques employed across the reviewed studies. 
 
Table 8. Preprocessing and validation techniques in predicting landslides 
Technique Description/Purpose Reference 
Data 
Partitioning 

Randomly splitting data into training and validation 
subsets, typically at a 70:30 ratio. Ensures model is tested 
on unseen data to prevent overfitting. 

[12,17,21,23-24,29-
30] 

Cross-validation K-fold cross-validation is used to ensure model reliability 
by training and validating on different data folds. 

[31] 

Oversampling Techniques like synthetic minority oversampling 
technology (SMOTE) are used to create synthetic samples 
for the minority class (landslides) to balance the dataset. 

[30] 

Undersampling Randomly removing samples from the majority class (non-
landslides) to create a balanced dataset. 

[30] 

Feature 
Selection 

Identifies most predictive and least correlated features 
using methods like One-R, information gain ratio (IGR), 
SU (symmetrical uncertainty), RF, linear support vector 
machine (LSVM), or genetic algorithms (GA) to improve 
model efficiency and reliability. 

[12,17,21,23-
24,29,31] 

Multicollinearity 
Analysis 

Diagnoses high correlation between input variables using 
variance inflation factors (VIFs)  and tolerance (TOL) 
measures to prevent model instability. 

[12,17,23,30-31] 

External 
Validation 

Compares model output to real-world physical 
phenomena, such as using small baseline subste-
interferometric synthetic aperture radar (SBAS-InSAR) to 
measure surface deformation. 

[29] 

 
Preprocessing and validation techniques and their critical importance in the development of robust and 
reliable landslide prediction models are gleaned in Table 8. Random data partitioning, commonly 
executed with a 70:30 training-to-testing ratio, was extensively utilized to mitigate overfitting and assess 
model performance on unseen data [23,29-30]. Cross-validation methods, especially k-fold techniques, 
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enhanced model reliability through the systematic rotation of training and validation subsets [31]. In 
studies addressing class imbalance, oversampling and undersampling techniques, such as SMOTE, were 
utilized to mitigate the limited representation of landslide occurrences compared to stable areas [30]. The 
preprocessing strategies employed ensured that machine learning algorithms were trained on 
representative datasets, thereby enhancing generalizability across diverse geomorphological and climatic 
contexts [12,17,14]. 
 Feature selection has become a vital preprocessing step, commonly employed to identify the most 
predictive variables and reduce multicollinearity [17,29]. Techniques, including RF importance measures, 
IGR, and genetic algorithms, enabled researchers to eliminate redundant or highly correlated features, 
thereby enhancing model efficiency and interpretability [21,23,31]. Complementary analyses of 
multicollinearity, employing VIFs and tolerance measures, were conducted to mitigate instability in model 
outputs [12,30]. These approaches ensured that landslide susceptibility maps were reliable and actionable, 
emphasizing the critical factors influencing slope instability in each study area. 
 Validation techniques have expanded from internal checks to encompass external comparisons with real-
world measurements, including the use of SBAS-InSAR for the detection of surface deformation [29]. 
This external validation confirmed the model's accuracy and increased confidence in susceptibility 
predictions, aiding decision-making and mitigation planning. The findings indicate that effective 
landslide modeling depends on a combination of robust data partitioning, careful feature selection, and 
rigorous validation, which ensures that machine learning models are statistically sound and practically 
relevant across various terrains and environmental conditions [21,24]. 
 
Challenges in Landslide Prediction 
Landslide prediction faces multiple technical and data-related challenges. Table 9 illustrates the primary 
challenges identified across the study in the systematic review. 
 
Table 9. Limitations and challenges in predicting landslides 
Category Limitation/Challenge Explanation 
Data 
Limitations 

Subjective non-
landslide sampling 

The selection of non-landslide samples lacks a standardized, 
objective protocol, which can introduce bias into the 
model. 

Imbalanced datasets Landslide events are a minority class, which can lead to 
models with high overall accuracy but low recall, making 
them unreliable for practical use. 

Lack of time-variant 
data 

Most current models are static, but landslide triggers like 
rainfall and seismic activity are dynamic over time. 

Data resolution The spatial resolution of input data, such as digital elevation 
models (DEMs), can impact the accuracy of the model 
outputs. 

Computational 
Limitations 

High computational 
cost 

Advanced hybrid and deep learning models require 
significant computational resources, which can be a 
drawback for time-sensitive applications. 

Hyperparameter 
tuning 

The process of finding optimal parameters for complex 
models can be time-consuming and computationally 
expensive. 

Model 
Limitations 

Overfitting Models can perform very well on training data but poorly 
on validation data, indicating a lack of generalizability. 

“Black box” nature Complex models like deep learning are often difficult to 
interpret, which hinders a clear understanding of the 
physical processes. 

Lack of adaptability Models trained for one specific region may not be easily 
adapted to a new area without significant recalibration. 

 
Table 9 illustrates significant data limitations, including subjective sampling of non-landslide areas, 
imbalanced datasets, and the absence of time-variant information. Such issues may introduce bias into 
models and diminish their reliability, particularly given that landslides occur infrequently in comparison 
to stable terrain [17,24]. The spatial resolution of input data, including DEMs, significantly influences 
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model outputs, as coarse resolutions may neglect local slope variations essential for susceptibility 
assessment. To address these limitations, it is necessary to integrate high-resolution remote sensing, 
temporal monitoring, and standardized sampling protocols to ensure that datasets effectively capture both 
static and dynamic triggers of slope failure. 
Constraints related to models and computations exacerbate the challenges. Hybrid CNN models and 
deep learning ensembles demonstrate high predictive performance; however, they frequently compromise 
interpretability, scalability, and computational efficiency [17]. Overfitting is a significant issue when 
models exhibit strong performance on training data yet demonstrate inadequate results on unseen 
validation datasets, thereby restricting their applicability to new regions. Additionally, hyperparameter 
tuning and significant processing requirements limit the operational viability of these models in resource-
constrained environments. The environmental specificity of numerous predictive models limits their 
generalizability, as parameters optimized for one region, such as slope, lithology, rainfall, and human 
activities, may not apply to another area without recalibration [21,24]. These challenges highlight the 
necessity for balanced strategies that incorporate effective data collection, model transparency, and 
computational efficiency to improve the practical implementation of landslide susceptibility prediction. 
 
Gaps and Emerging Technologies in Landslide Prediction 
The review also identified key research gaps and emerging technologies in landslide prediction, 
highlighted in Table 10. 
 
Table 10. Research gaps and emerging technologies in predicting landslides 
Research Gap Proposed Solution Emergent Technology 
Subjective non-
landslide 
sampling 

Develop and standardize objective 
protocols for selecting non-landslide 
samples. 

Advanced statistical and sampling 
algorithms. 

Static, grid-
based mapping 

Shift from grid-cell-based models to 
physically meaningful mapping units, such 
as slope units. 

Terrain segmentation, advanced GIS 
analysis. 

Lack of time-
dependent 
modeling 

Incorporate multi-temporal data on 
landslide triggers and conditioning factors 
to create dynamic susceptibility maps. 

Advanced remote sensing (e.g., multi-
temporal satellite imagery) and time-
series data analysis. 

Poor model 
generalizability 

Use transfer learning techniques to adapt 
models from a well-studied region to a new 
area. 

Transfer learning frameworks for 
machine learning. 

Model 
opaqueness 

Develop new, more robust, and 
interpretable deep learning architectures. 

Explainable AI (XAI) and advanced 
deep learning model design. 

 
As highlighted in Table 10, the review identified various research gaps and emerging technological 
opportunities in landslide prediction. Identified gaps encompass the subjective selection of non-landslide 
samples, dependence on static, grid-based mapping, restricted time-dependent modeling, inadequate 
model generalizability, and the lack of transparency in complex deep learning models. The identified 
limitations underscore the need for methodological refinement, the inclusion of additional input 
variables, and the implementation of advanced computational frameworks to enhance the accuracy, 
interpretability, and scalability of landslide susceptibility models [17,29]. 
Emerging technologies present potential solutions to these challenges. Advanced statistical and sampling 
algorithms standardize non-landslide selection, while terrain segmentation and enhanced GIS analysis 
facilitate the creation of more physically meaningful mapping units, surpassing simplistic grid-cell 
methodologies. The integration of multi-temporal remote sensing with time-series analyses mitigates the 
deficiency in dynamic modeling, while transfer learning frameworks facilitate the adaptation of models 
to new regions, thereby enhancing generalizability. Explainable AI (XAI) and advanced deep learning 
architectures can mitigate the “black-box” problem, offering interpretable insights into the drivers of slope 
instability. The integration of these technologies can address existing research gaps and improve predictive 
performance, operational applicability, and decision-making in landslide risk mitigation [12,23-24]. 
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Implications for Environmental Risk Management 
The review's findings have considerable implications for environmental risk management, particularly in 
areas prone to landslides. The identification of topographical, geological, hydrological, and anthropogenic 
factors as primary drivers of slope instability underscores the importance of incorporating 
multidisciplinary data into hazard assessment frameworks [1-4,17,32]. Environmental managers can 
utilize these insights to prioritize monitoring and mitigation efforts in high-risk areas, concentrating on 
locations where critical factors such as steep slopes, unstable lithology, and high precipitation intersect 
[11,13]. The regional specificity of influential factors, as indicated in Table 7, underscores the necessity 
for risk management strategies to be customized to local environmental and socio-economic contexts 
instead of depending exclusively on generic models [21,23,33]. 
The research emphasizes the significance of advanced modeling, preprocessing, and validation techniques 
in enhancing the reliability of landslide predictions. Methods including feature selection, random 
sampling, and cross-validation improve model accuracy and serve as effective tools for decision-making in 
disaster preparedness and mitigation [12,15,30-31,34]. Environmental managers may employ 
susceptibility maps generated from these models to guide infrastructure planning, land-use zoning, and 
early warning systems [35-36]. The integration of remote sensing, GIS, and time-series data enables the 
dynamic monitoring of environmental changes, facilitating proactive interventions that mitigate exposure 
and vulnerability to landslides [21,29]. 
The identified research gaps and emerging technologies in the study offer opportunities to enhance 
environmental risk management frameworks. Terrain segmentation, transfer learning, and explainable 
AI improve the generalizability and interpretability of predictive models, enabling managers to make data-
driven decisions in previously unmonitored or resource-constrained areas [17-18,24]. Implementing these 
innovations enables agencies to improve immediate operational responses and long-term planning, 
ensuring that risk mitigation strategies are adaptable, scientifically based, and equipped to tackle the 
changing challenges presented by climate variability, urbanization, and other human-induced pressures 
[21,29,37-38]. 
 
Inputs for Science Education 
The review's findings hold significant implications for science education, especially in promoting 
environmental literacy and understanding of geohazards. Students can contextualize the complex 
interactions between natural and human-induced processes by examining the topographical, geological, 
hydrological, and anthropogenic drivers of landslides [1-4]. This knowledge can be incorporated into 
curricular activities that promote critical thinking and civic engagement, including investigatory projects 
[39] and field-based learning on local hazards, such as earthquakes [40]. Highlighting the socio-
environmental consequences of geological hazards, such as community displacement, infrastructure 
damage, and ecosystem disruption, fosters the development of informed and environmentally responsible 
individuals [41-42]. 
The incorporation of predictive modeling, machine learning, and artificial intelligence within educational 
settings presents opportunities to enhance scientific inquiry, data analysis, and innovation. Techniques 
including GIS-based mapping, hybrid modeling, and AI-assisted simulations can be integrated into 
investigatory projects and practical activities within physical and applied sciences, robotics, and intelligent 
systems [15,17,39,43-44]. These methods enable students to examine intricate datasets, investigate real-
world environmental issues, and suggest data-informed solutions, thereby enhancing interdisciplinary 
understanding, technological proficiency, and problem-solving abilities [44-45]. Integrating these activities 
into the classroom promotes academic and civic engagement, especially in areas such as disaster risk 
reduction, climate change adaptation, and sustainable practices, thereby connecting theoretical 
knowledge with practical applications. 
Addressing gaps in predictive modeling and utilizing emerging technologies enhances the significance of 
innovation, inquiry, and scientific reasoning within science education. Engagement with explainable AI, 
terrain segmentation, and high-resolution remote sensing offers students the opportunity to design 
experiments, simulate hazard prediction, and assess mitigation strategies [21,24,44]. The integration of 
various representations, interactive simulations, and game-based activities enhances conceptual 
understanding, critical thinking, and analytical reasoning [43,45-47]. These educational strategies equip 
learners to tackle complex, real-world problems by integrating scientific inquiry, data analysis, technology, 
and interdisciplinary knowledge, thereby promoting innovation, resilience, and environmental 
stewardship. 
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CONCLUSION 
The review underscores that machine learning approaches for landslide prediction are most effective 
when they are adaptable, context-sensitive, and rigorously validated, reflecting the interplay of 
methodological choices, regional variability, and data complexity. The generalizability of models depends 
not only on their structure, whether standalone, ensemble, hybrid, or optimized, but also on the 
systematic integration of preprocessing and validation techniques that enhance robustness across diverse 
conditions. Furthermore, the review highlights that addressing current challenges and research gaps, 
including data limitations and model interpretability, requires the adoption of emerging technologies and 
interdisciplinary approaches, suggesting that future predictive frameworks should be flexible, scalable, 
and capable of informing proactive environmental risk management, with potential applications in 
science education to enhance student understanding of geohazards, data analysis, and technological 
problem-solving. 
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