
International Journal of Environmental Sciences 

ISSN: 2229-7359 
Vol. 11 No. 7, 2025 

https://www.theaspd.com/ijes.php 

2058 

 

 

Impact of Climate Variability on Marine Fisheries: Some Panel 

Evidence from Coastal Odisha 

Biswajit Sarangi1 
1Department of Economics, MSCB University, Baripada, Odisha, India, 757003. 

sarangibiswajit36@gmail.com, 0009-0006-4117-8798 

 

Abstract 

The study aims to analyse how climate variability affects marine fish production in Odisha, a key coastal region of 

India. To substantiate the objective, data on annual marine fish production from all six coastal districts of Odisha, 

sourced from the Directorate of Fisheries, Govt. of Odisha. However, the explanatory variables for the study, 

representing climate variability, include annual average precipitation, temperature, relative humidity, surface 

pressure, wind speed, and wind direction, with data sourced from the NASA Power Data Access Viewer. The study 

spans from 2000 to 2022, covering the period for which data is available. Log transformation is applied to mitigate 

multicollinearity, and then the presence of unit root in the panel data is examined using both common and 

individual stationarity tests at the intercept and trend level. After confirming the stationarity of the variables at 

different levels, the Pooled Mean Group (PMG) model is employed. Following this, the first stage heteroscedastic 

Fully Modified Ordinary Least Squares (FMOLS) is used for robustness analysis. The study found that marine 

fishery production in Odisha is positively affected by relative humidity, temperature, surface pressure, and negatively 

affected by frost days, clear-sky days, precipitation, wind direction, and wind speed. Thus, to optimise production, a 

robust climate monitoring system should be established to forecast key climatic variables and integrate these insights 

into fishery management plans and fishing schedules. 
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1. INTRODUCTION 

The fisheries sector is a crucial component of India‘s primary economy at global, national, and regional 

levels, providing employment, sustaining livelihoods, contributing to food security through protein 

supply, earning foreign exchange, and fostering economic integration both at backward and forward 

stages (Nayak, 2022). The fisheries sector is generally classified into inland and marine fisheries, each 

with distinct ecological and economic characteristics. Among these, marine fisheries assume a 

particularly critical role at the global level, as they contribute significantly to food security, provide 

employment opportunities, support the livelihoods of millions of coastal communities, and drive 

economic growth (Xu et al., 2024; Teh & Sumaila, 2013). Despite their significance, these fisheries are 

highly vulnerable to climate variability (Banerjee & Mohapatra, 2023; Bahinipati & Sahu, 2012), given 

that the livelihoods of coastal communities are intimately dependent on stable and predictable climatic 

conditions. 

Savitsky (2017) defines climatic variability as short-term fluctuations in climate occurring over periods 

ranging from one month to thirty years. The fishery sector faces mounting challenges due to climate 

variability, including high and changing temperatures (Sethi et al., 2025), fluctuating precipitation, and 

shifting wind patterns, which disrupt marine ecosystems (Kumar et al., 2017), alter fish migration and 

affect productivity. The marine fisheries sector is also affected by climate variability in many ways, 

including rising sea surface temperatures, shifting ocean circulation, acidification, and the increasing 

frequency and intensity of extreme weather events (Badjeck et al., 2010). These environmental changes 

directly affect critical biological functions in fish, including migration, breeding patterns, growth rates, 

mortality, and reproductive success (Brander, 2008). As a result, species distribution, abundance, and 

composition have been altered, leading to a decline in marine biodiversity (Vivekanandan, 2010). All 

these cause a reduction in fish harvests and compel fishers to seek alternative livelihoods, often in 

inland areas (Vivekanandan, 2010). These changes not only diminish the availability of marine resources 

but also threaten the income, livelihood security, and long-term resilience of fishing communities, 

thereby undermining the socioeconomic well-being of coastal populations (Priyadarshi et al., 2019). 

Therefore, climate variability exacerbates existing issues like overfishing, pollution, and habitat loss by 
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altering ocean conditions (Xu et al., 2024), especially in terms of temperature and biogeochemical 

properties (Barange et al., 2018; Sumaila et al., 2011). 

The India Network for Climate Change Assessment (INCCA) report 2010, published by the Ministry of 

Environment and Forests, Government of India, identifies Odisha as one of 13 coastal states in the 

country highly vulnerable to sea level rise and cyclonic activity. The report emphasizes that a significant 

proportion of Odisha‘s coastal population depends on climate-sensitive sectors such as marine fisheries 

and agriculture for their livelihoods. In fact, Odisha is often described as the “cyclone capital of India”, 

given the frequent occurrence of severe cyclonic events along its coastline (Kumar et al., 2010; Sharma 

& Patwardhan, 2008). Historically, such cyclones have caused widespread devastation, affecting not only 

agriculture and fisheries but also critical infrastructure sectors, including telecommunications and 

energy (Annual Report on Natural Calamities, 2019-20). In response to these recurring threats, the state 

government has adopted a range of adaptation measures, such as the development of advanced early 

warning systems and the construction of multipurpose cyclone shelters. Despite these interventions, the 

intensity and frequency of extreme climatic events have continued to disrupt the livelihoods of 

communities that depend heavily on fragile coastal economies (Bahinipati & Sahu, 2012). 

Consequently, the influence of climate variability on marine fisheries is particularly pronounced in 

Odisha. This underscores the urgent need to investigate the complex relationship between climate 

variability and marine fishery production in Odisha to develop resilient fisheries management strategies. 

The present study, therefore, seeks to examine the influence of various climate variability factors on 

marine fishery production in Odisha. In order to ensure a comprehensive and regionally representative 

assessment, the analysis encompasses all six coastal districts of Odisha, thereby capturing the spatial 

diversity of climatic conditions and their implications for marine fisheries across the state‘s coastline. To 

the best of my knowledge, there exist very few proper studies either in Odisha or in India that have 

specifically analyzed the influence of climate variability on marine fishery production through the 

application of econometric techniques. In the absence of such region-specific empirical studies, the 

present work draws substantially on insights and evidence available in the international body of 

literature, which provides the principal foundation for supporting and contextualizing its findings. 

Furthermore, this study incorporates a set of variables to capture climate variability that have either 

been rarely employed or, in some cases, scarcely explored in existing research. Since limited empirical 

investigations have been conducted on these dimensions, the findings of the present work are 

necessarily interpreted in light of theoretical considerations and conceptual frameworks rather than 

being strongly anchored in prior empirical or analytical evidence. 

 

2. LITERATURE REVIEW 

A growing body of literature has explored how climatic and environmental variables influence marine 

fish catch and production across different regions. Ajibade et al. (2024) conducted a long-term empirical 

investigation in Nigeria covering the period from 1980 to 2019, aiming to assess the impacts of marine 

pollution and climate factors on small-scale fisheries. Utilizing the Engle-Granger Cointegration Test 

and an Error Correction Model, the study revealed that strong winds, elevated sea temperatures, and 

plastic waste, both current and lagged, significantly reduced small-scale fish catch. This suggests a 

combined effect of climate dynamics and anthropogenic pollution on deteriorating marine resource 

availability. 

Focusing on Saudi Arabia's natural fisheries, Alnafissa et al. (2021) applied a Multiple Regression model 

to analyze data from 2000 to 2019. Their findings underscore that an increase in industrial fishing boats 

and labour force contributed positively to fish output, whereas strong winds negatively impacted 

production. Moreover, the low output elasticity of 0.10 (<1) indicates that the fisheries sector operated 

under diminishing returns, implying inefficiencies in input utilization. 

The Korean coastline offers another perspective, as explored by Cho et al. (2025), who employed the 

ARDL Cointegration Test over 30 years (1993–2023) to examine the effects of sea surface temperature, 

CO₂ emissions, and rainfall variability on coastal and offshore fish production (COFP). The results 

were alarming: a 1 per cent increase in each of these variables led to respective declines in fish 

production by 3.52 per cent, 0.82 per cent, and 0.34 per cent, indicating severe consequences from 

ocean warming, acidification, and hydrological instability. 

http://www.theaspd.com/ijes.php


International Journal of Environmental Sciences 

ISSN: 2229-7359 
Vol. 11 No. 7, 2025 

https://www.theaspd.com/ijes.php 

2060 

 

 

A more localized study by Demirci (2025) in Iskenderun Bay for the period 2017–2023 used Multiple 

Linear Regression to analyze the effects of wind dynamics on trawl fishing. The findings highlighted a 

direct negative relationship, where stronger winds reduced fishing effort by approximately 0.367 hours, 

underlining how even moderate environmental fluctuations can limit fishing operations. Similarly, 

Farquhar et al. (2022) looked at the impact of weather changes on small-scale fisheries in Madagascar, 

analysing data from 1979 to 2020. Using mean and linear regression techniques, they identified a 

gradual loss of 21.7 fishing hours annually, with seasonal variations showing more favourable conditions 

during the rainy season (November-April) compared to the dry season (May-October), which illustrates 

how seasonal climate cycles can shape local fishing economies and access. 

An ecological dimension is added by Hu et al. (2021), who applied Empirical Dynamic Modelling 

(EDM) to determine the environmental drivers of hairtail catch in the East China Sea. Their analysis 

showed that monsoon winds, sea salt levels, rainfall, sea temperature, and cyclone strength influence 

nutrient dynamics, which in turn regulate fish availability, indicating a complex biophysical feedback 

loop in the marine ecosystem. 

Looking further back, Sutcliffe et al. (1977) investigated commercial fish catch data from the Gulf of 

Maine (1940-1959). Using correlation analysis, they found that sea temperature positively influenced the 

catch levels of 10 out of 17 species. Interestingly, despite species-specific changes, the total commercial 

catch remained stable, suggesting a form of ecological equilibrium or species compensation. 

Across these studies, a consistent theme emerges, i.e., climatic and oceanographic variables, particularly 

temperature, wind, rainfall, and pollution, significantly impact marine fishery yields, although the 

direction and magnitude of these effects vary by region. Therefore, the inclusion of relative humidity, 

number of frost days and clear sky days will provide new insights into the nexus between climate 

variability and marine fisheries. Methodologies range from time-series econometrics (cointegration) to 

regression and correlation techniques, showcasing the scarcity of panel data-related literature to uncover 

these relationships. 

 

3. MATERIALS & METHODS 

3.1 Fishery Profile of Odisha 

Odisha is one of India‘s coastal states and has rich marine water resources. Its coastline spans 480 

kilometres along the Bay of Bengal, making up 8 per cent of India‘s total shoreline. The state‘s 

continental shelf up to 200 meters depth covers 24,000 square kilometres or 4.5 per cent of India‘s 

continental shelf area, stretches up to 120 km in the north and 40 km in the south from the coast, 

offering considerable potential for marine fisheries (Nayak, 2022). According to the Annual Activity 

Report 2021-22 of the Fisheries & Animal Resources Development Department, Government of 

Odisha, Odisha ranked as India‘s fourth-largest fish-producing state in 2021-22, with a total output of 

9.91 lakh metric tons, contributing 6 per cent to the country‘s overall fish production. The fishery 

sector contributes 2.43 per cent to Odisha‘s Gross State Domestic Product (GSDP), with an estimated 

fisher population of 15.18 lakh, comprising 5.96 lakh marine and 9.21 lakh inland fishers. Odisha also 

has one of the highest fish consumption rates in the country. As per NFHS-5 (2019-21), 94.75 per cent 

of its population consumes fish, resulting in a notable per capita fish consumption of 16.34 kg. 

 

Fig. 1: Coastal Map of Odisha 
 

Source: Annual Activity Report 2021-22, pp. 08 

 

The present study employs a diagnostic research design to investigate the impact of climate variability on 
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marine fishery production across all six coastal districts of Odisha—Balasore, Bhadrak, Jagatsinghpur, 

Puri, Ganjam, and Kendrapara—as illustrated in Figure 1, spanning the period from 2000 to 2022. The 

period of study is chosen based on data availability. 

3.2 Variables & Data Source 

The study is purely based on secondary data, with marine fish production data collected from the 

Directorate of Fisheries, Government of Odisha, and climate-related variables including Precipitation, 

Relative Humidity, Wind Speed, Wind Direction, Earth Skin Temperature, Surface Pressure, Number 

of Frost and Sky Clear Days, sourced from the NASA Power Data Access Viewer. The description of all 

variables, along with the rationale for their selection, is presented in Table 1. 

Table 1: Variables of the Study 

Variables Description Relation to Climate 

Variability 

Relation to Fish Production 

Precipitation 

(mm) 

Total annual 

rainfall measured in 

millimetres. 

It fluctuates with climate 

patterns like monsoons, 

cyclones, and seasonal 

variability. 

It affects salinity, nutrient 

runoff, and habitat 

conditions; it also impacts 

phytoplankton growth, which 

forms the base of the marine 

food web. 

Relative 

Humidity (per 

cent) 

Measure of 

atmospheric 

moisture as a 

percentage. 

Varies with temperature and 

air circulation patterns, 

thereby influencing 

evaporation rates and cloud 

cover. 

Influences water temperature 

stability and light 

penetration, both crucial for 

photosynthesis, habitat 

suitability and thus, plankton 

growth. 

Wind Speed 

(at 2m) (m/s) 

The speed of wind 

is measured at 2 

meters above 

ground level. 

Changes in atmospheric 

pressure systems, such as 

monsoons and storms, 

influence upwelling and 

ocean currents. 

Drives upwelling of nutrient- 

rich waters, enhancing fish 

productivity; strong winds 

can disrupt fishing activities. 

Wind 

Direction (at 

2m) 

Direction from 

which the wind 

originates, 

measured at 2 

meters above 

Shifts are due to seasonal 

and regional atmospheric 

pressure changes. 

Alters the direction of ocean 

currents and nutrient 

distribution, influencing fish 

migration and availability in 

fishing zones. 
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 ground level.   

Earth Skin 

Temperature/ 

Temperature 

(°C) 

Surface temperature 

of the Earth, 

including land and 

sea. 

Directly influenced by 

global warming, seasonal 

variations, and atmospheric 

conditions. 

Affects fish metabolism, 

growth, and reproduction; 

drives species to migrate to 

optimal temperature zones, 

altering their distribution. 

Number of 

Frost Days 

Annual count of 

days with minimum 

temperature below 

freezing (0°C). 

Represents extreme cold 

events linked to seasonal 

and regional climatic 

patterns. 

Sudden temperature drops 

can stress warm-water species 

and suppress plankton 

growth, reducing the food 

supply for fish. 

Number of 

Clear Sky Days 

Annual count of 

days with little or 

no cloud cover. 

Affected by atmospheric 

moisture levels, cloud 

formation, and climatic 

oscillations. 

Enhances light penetration, 

promoting photosynthesis 

and phytoplankton growth; 

prolonged clear skies can 

overheat water, driving fish 

to cooler depths. 

Surface 

Pressure (hPa) 

Atmospheric 

pressure at the 

Earth's surface. 

Reflects weather systems like 

cyclones (low pressure) & 

anticyclones (high pressure), 

which are influenced by 

climate variability. 

Affects water mixing and 

stratification; low pressure 

can bring storms that disrupt 

fishing activities, while high 

pressure stabilises ecosystems. 

Marine 

Fishery 

Production 

(tons) 

Quantity of fish 

harvested annually, 

measured in tons. 

Influenced by climate 

variability through changes 

in habitat, food availability, 

and species migration. 

Dependent variable, 

indicating the total output of 

marine fisheries. 

Source: Author‘s Own 

 

3.3 METHODS 

Panel data is well-suited for this study for the spatial and temporal dimensions of the research. Panel 

data offers a methodological advantage by allowing the simultaneous observation of multiple cross- 

sections (districts) over time, thereby improving the robustness and reliability of the estimations through 

the inclusion of both temporal dynamics and district-level heterogeneity. In addition, as there are eight 

independent variables in the study, all the variables are first transformed into logarithmic form to 

reduce the issue of multicollinearity (Jena, 2021). 

To ensure the appropriate modelling of the data, the study begins with panel unit root testing to 

determine the stationarity properties of the variables involved. Stationarity is a crucial requirement in 

time series and panel data analysis because the presence of unit roots (non-stationarity) can lead to 

spurious regression results. Therefore, both individual and common unit root tests are conducted. For 

individual unit root tests, the Im, Pesaran and Shin (IPS) test, and Fisher-type tests such as the 

Augmented Dickey-Fuller (ADF) test and the Phillips-Perron (PP) test are employed. These tests allow for 

heterogeneous autoregressive roots across cross-sections, accommodating the differences in climatic and 

economic conditions among the six districts by separately testing the case of a unit root for each variable 

in each cross-section. Additionally, common unit root tests such as the Levin, Lin & Chu (LLC) test and 

the Breitung test are used. These tests assume a common unit root process across districts and provide 

an alternative robustness check to validate the stationarity findings from the individual tests. The 

combination of these tests ensures a thorough understanding of the order of integration of each variable 

and helps in deciding the appropriate econometric modelling strategy. 

Since the variables exhibit a mix of integration orders, the log of marine fishery production is stationary 

at first difference, I(1) and others at level I(0), the Panel Autoregressive Distributed Lag (Panel ARDL) 

model is selected for further analysis. The Panel ARDL framework is particularly useful in such 

scenarios because it accommodates different orders of integration [I(0) or I(1)] among the variables, 

unlike traditional cointegration models that require all variables to be integrated of the same order. In 

this study, the Panel ARDL model is estimated using the Pooled Mean Group (PMG) method under the 
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+ ∑ 𝛼 

𝑗=1 

j=1 j=1 j=1 j=1 

j=1 j=1 j=1 

assumption of unrestricted trend and constant. The PMG approach allows for the short-run coefficients 

and error variances to differ across districts while constraining the long-run coefficients to be 

homogeneous (Pesaran et al., 1999). This is a reasonable assumption in the present context, as short- 

term fluctuations in fishery production due to climate variability may vary widely among districts 

depending on local adaptation strategies, fishing infrastructure, and socio-economic factors. However, 

the long-run relationship between climate variables and marine fisheries is expected to follow a common 

pattern across the state. The long and short-run equations of this model are shown in equations 1 and 
2, respectively. 𝑝 𝑝 𝑝 𝑝 

𝐿𝑀𝐹𝑃𝑖𝑡 = 𝛼0𝑖 + ∑ 𝛼1𝑖𝑗𝐿𝑀𝐹𝑃𝑖𝑡−1 + ∑ 𝛼2𝑖𝑗𝐿𝑃𝑟𝑒𝑖𝑡−1 + ∑ 𝛼3𝑖𝑗𝐿𝑇𝑖𝑡−1 + ∑ 𝛼4𝑖𝑗𝐿𝑅𝐻𝑖𝑡−1 

+ ∑𝑗 =𝑝1  𝛼5𝑖𝑗 𝐿𝑆𝑃 𝑖𝑡−1 
𝑝𝑗=1 

6𝑖𝑗 𝐿𝑊𝑆𝑖𝑡−1 + ∑𝑝 𝑗=𝛼1 
7𝑖𝑗 𝐿𝑊𝐷 𝑖𝑡−1 + ∑𝑗=𝑝1 𝛼8𝑖𝑗 𝐿𝐹𝐷𝑖𝑡−1 

𝑗=1 𝑗=1 𝑗=1 𝑗=1 

+ ∑𝑝  𝛼9𝑖𝑗𝐿𝑆𝐶𝐷𝑖𝑡−1 + 𝜇𝑖𝑡 … … (𝟏) 

∆𝐿𝑀𝐹𝑃𝑖𝑡 = 

𝛽0𝑖 + ∑
p  
𝛽1𝑖𝑗 ∆𝐿𝑀𝐹𝑃𝑖𝑡−1 + ∑

p  
𝛽2𝑖𝑗 ∆𝑃𝑟𝑒𝑖𝑡−1 + ∑

p  
𝛽3𝑖𝑗 ∆𝐿𝑇𝑖𝑡−1 + ∑

p  
𝛽4𝑖𝑗 ∆𝐿𝑅𝐻𝑖𝑡−1 + 

p 
j=1 𝛽5𝑖𝑗 ∆𝐿𝑆𝑃𝑖𝑡−1 + ∑

p 𝛽6𝑖𝑗 ∆𝐿𝑊𝑆𝑖𝑡−1 + ∑
p 𝛽7𝑖𝑗 ∆𝐿𝑊𝐷𝑖𝑡−1 + ∑

p 𝛽8𝑖𝑗 ∆𝐿𝐹𝐷𝑖𝑡−1 + 
p 
j=1 𝛽9𝑖𝑗 ∆𝐿𝑆𝐶𝐷𝑖𝑡−1 + 𝛽10𝑖𝑗𝐸𝐶𝐶𝑡−1 + 𝛿𝑖𝛥𝑇𝑡 + 𝜇𝑖𝑡 … … … … … (𝟐) 

In the equations, LMFP = Log of marine fishery production for panel unit ‗i‘ at time ‗t‘, j = number of 

lags (which is 1 in the model, selected as per Standard VAR), LPre = Log of Precipitation, LT = Log of 

Temperature, LRH = Log of Relative Humidity, LSP = Log of Surface Pressure, LWS = Log of Wind 

Speed, LWD = Log of Wind Direction, LFD = Log of no. of Frost Days, LSCD = Log of no. of Sky 

Clear Days, μ = error term, ECC = error correction coefficient, T = time and ∆ = first difference 

operator of the variables. α and β are the long and short-run coefficients, respectively. 

To further validate the findings of the Panel ARDL estimates, a robustness check is conducted by 

estimating the heterogeneous first-stage long run coefficients through the Fully Modified Ordinary Least 

Squares (FMOLS) method. FMOLS was developed by Phillips and Hansen (1990) to provide an 

efficient estimation of cointegrating regressions, especially if the variables are I(1). However, in this 

study, the Pedroni (2001) heterogeneous FMOLS estimator is applied for panel cointegration analysis, as 

it effectively addresses issues of endogeneity and serial correlation (Khan et al., 2019; Ozcan, 2013), 

which are common in panel data. Pedroni‘s version of FMOLS is a non-parametric estimator that 

accounts for individual-specific intercepts and incorporates heterogeneity across panel units (Leng et al., 

2024). It is thus the most appropriate technique for panels involving heterogeneous cointegration 

(Hamit-Haggar, 2012). Therefore, in this study, to counter the mixed order of the variables [I(0) & I(1)], 

non-normality, endogeneity, serial correlation and heteroscedasticity, the heterogeneous first-stage 

FMOLS is used to ensure whether the long-run relationships established through the Panel ARDL 

model are statistically significant. 

In addition to the estimations, a series of diagnostic tests has been conducted to ensure the robustness 

of the model. The Jarque-Bera test is applied to assess whether the residuals are normally distributed, 

indicating the validity of standard statistical inferences. To detect any presence of heteroscedasticity, i.e., 

unequal variances across cross-sectional units, the Likelihood Ratio test for panel heteroscedasticity is 

employed. Furthermore, the Wald Chi-Square test is used to determine whether the set of independent 

variables, when considered together, has a statistically significant impact on marine fishery production. 

 

4. RESULTS AND DISCUSSION 

The panel unit root test results in Table 2 indicate that most variables in the study are stationary at level 

or integrated of order zero or I(0), while only one variable, LMFP (Log of Marine Fishery Production), is 

non-stationary at level but becomes stationary after first differencing, indicating it is integrated of order 

one or I(1). This conclusion is based on the significance of various common (LLC & Breitung) and 

individual (IPS, ADF & PP) unit root test statistics. Variables such as LPre, LRH, LT, LSP, LWS, LWD, 

LFD, and LSCD reject the null hypothesis of ―presence of a unit root‖ in most of the tests, confirming 

their stationarity at the level. Hence, the coexistence of both I(0) and I(1) variables indicates that the 

Panel ARDL model is the most appropriate analytical approach for the study. 

Table 2: Panel Unit Root Test 

Variables Common Unit Root Test Individual Unit Root Test Level of 

∑ 

∑ 
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 LLC Breitung IPS ADF PP Stationarity 

LMFP 3.49420 2.90092 2.57644 4.03226 7.48922 At 1st 

Difference ΔLMFP -0.14417 -1.87403** -2.27456** 24.5851** 105.051*** 

LPre 3.23626 -4.12570*** -2.47859*** 24.3568** 95.4557*** At level 

LRH -1.86729** -2.24714** -0.03890 9.66405 32.3436*** At level 

LT -5.58496*** -4.33076*** -3.06771*** 28.9223*** 57.7001*** At level 

LSP -1.69795** -1.30426* -3.17871*** 29.6137*** 16.4012 At level 

LWS 5.90638 -2.59555*** -1.37289* 16.6006 76.3681*** At level 

LWD -1.68457** 0.84075 -2.20055** 22.8188** 65.1434*** At level 

LFD -1.90584** -4.42810*** -1.59356* 18.9024* 51.9544*** At level 

LSCD 4.33326 -4.35238*** -3.69764*** 34.6035*** 144.200*** At level 

Note: (***), (**), (*) represent statistically significant at 1, 5 & 10 per cent levels. 

Source: Author‘s Compilation 

Table 3 presents the PMG long-run and short-run results. In the short-run equation, the negative and 

statistically significant lagged error correction coefficient (ECC) confirms a stable long-run relationship, 

with about 18 per cent of the short-term deviations correcting each year. In the long run, the results 

show that a 1 per cent increase in precipitation (LPre) leads to a 0.38 per cent decline in marine fishery 

production for the sample period, possibly because excessive rainfall alters salinity and disrupts marine 

habitat conditions. This finding is corroborated by Cho et al. (2025). Their article explains that heavy 

rainfall reduces the salinity of seawater as large volumes of freshwater enter coastal and estuarine areas, 

which can stress marine species adapted to stable salt levels. Additionally, rainwater carries sediments 

and pollutants into the sea, increasing turbidity or water cloudiness. This murkiness blocks sunlight, 

which in turn hampers the growth of phytoplankton, tiny algae that form the foundation of the marine 

food chain. With reduced phytoplankton availability, the entire ecosystem is affected, leading to lower 

fish availability and thus reduced fishery production. 

A 1 per cent rise in wind speed (LWS) reduces fishery output by 4.54 per cent, since strong winds 

disturb sea conditions and hinder fishing operations. This finding is backed by Alnafissa et al. (2021), 

who observed that in Saudi Arabia‘s coastal fisheries, a 10 per cent rise in wind speed caused a 6.8 per 

cent drop in fish production. This mainly happened because strong winds created rough sea conditions, 

making it harder for fishers to go out and operate their boats effectively. Similarly, Demirci (2025) 

showed that in Turkey‘s Iskenderun Bay, each unit rise in wind speed reduced daily fishing time by 

approximately 0.367 hours, as strong winds made it difficult for trawl boats to operate effectively. 

Therefore, fishermen are averse to high winds and waves (Sainsbury et al., 2021). Ajibade (2024) also 

concluded the inverse relationship between the two in the context of Nigeria. 

Surface pressure (LSP) has a strong positive effect, where a 1 per cent increase corresponds to a 222.88 

per cent rise in fishery production (LMFP), suggesting that stable atmospheric conditions create 

favourable environments for fishing. Though there is no proper study claiming that surface or 

atmospheric pressure has a positive impact on marine fishery, but a study conducted in the Aransas 

Channel Inlet of the Gulf of Mexico by Bolser et al. (2023) found that increases in barometric (air) 

pressure were positively associated with higher fish acoustic backscatter, which is used as a proxy for fish 

density. Specifically, a rise in atmospheric pressure of +2 mb, typically following winter cold fronts, was 

identified as the second most important factor influencing fish presence after temperature. This 

suggests that higher air pressure may indirectly enhance marine fish availability during certain seasonal 

conditions by influencing water temperature and movement patterns. 

Likewise, a 1 per cent increase in temperature (LT) results in a 25.68 per cent increase in production, as 

warmer waters may support greater biological activity and expanded fish habitats. The result is 

supported by Sutcliffe et al. (1977), who found that in the Gulf of Maine, sea temperature was positively 

correlated with fish catch in 10 out of 17 species, suggesting that seasonal warming could enhance fish 

availability and catch rates. Moreover, a study on the East China Sea by Hu et al. (2021) demonstrated 

that sea surface temperature contributed to improved fish catch by enhancing nutrient availability and 

primary productivity, which in turn supported the growth of fish stocks, unlike Ajibade et al. (2024). In 

contrast, the number of frost days (LFD) and sky clear days (LSCD) negatively impact fishery production 

by 38.04 per cent and 8.24 per cent, respectively. Though there is no proper study concluded that clear- 
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sky days (i.e., periods with no cloud cover) have a negative impact on marine fishery production, yet a 

study on small-scale fisheries in Madagascar by Farquhar et al. (2022) noted that fishing effort was 

actually higher during the rainy season compared to dry, clearer periods, but this was attributed to socio- 

economic and seasonal factors rather than the presence or absence of clouds. Also, there is no existing 

literature supporting the impact of frost days on fisheries. 

Additionally, the results reveal that a 1 per cent increase in relative humidity (LRH) leads to a 

substantial 36.55 per cent rise in fishery output, likely because higher humidity enhances marine 

ecosystems by promoting plankton growth, which supports fish breeding and survival, but no direct 

literature evidence is available to support the effect of humidity on fishery output. Finally, the impact of 

wind direction (LWD) in the long run is not statistically significant. However, in the short run, except 

for wind direction, which has an adverse impact on MFP, all other variables are found to be statistically 

insignificant. A study on the California coast by Scientists at UC San Diego (2008) showed that changes 

in wind-driven upwelling affected the availability of plankton, sardines, and anchovies, leading to a drop 

in fishery productivity, supporting the result of this study. 

The Wald Chi-square test shows strong statistical significance (p < 0.01), confirming that the 

explanatory variables jointly influence marine fishery production in Odisha for the sample period. 

However, the significance of the Jarque-Bera test suggests that the residuals deviate from normality, 

while the significant Likelihood Ratio test for panel heteroscedasticity indicates that the variance of 

residuals is not consistent across cross-sectional units. In light of these issues, the study employs the first- 

stage heterogeneous FMOLS approach as a robustness check, effectively addressing the problems of non- 

normal residuals, as it is a non-parametric tool, and heteroscedasticity to ensure more reliable and 

consistent estimates. 

 

Table 3: PMG Results 

Long-run Estimation Short-run Estimation 

Variables Coefficient P-Value Variables Coefficient P-Value 

LPRE -0.376427* 0.0916 ΔLPRE 0.002123 0.9636 

LRH 36.55395*** 0.0029 ΔLRH -0.993213 0.8664 

LSCD -8.245364*** 0.0001 ΔLSCD -0.071911 0.9472 

LSP 222.8782*** 0.0000 ΔLSP -14.48257 0.7476 

LT 25.67523** 0.0109 ΔLT -1.462807 0.7323 

LWD 1.191070 0.3239 ΔLWD -0.855700*** 0.0064 

LWS -4.539877*** 0.0002 ΔLWS -0.023304 0.9571 

LFD -38.04350*** 0.0035 ΔLFD 1.137175 0.8515 

Intercept -89.21302* 0.0584 

TREND 0.001339 0.3577 

ECC(-1) -0.183974* 0.0586 

Log-Likelihood 296.1421 

Jarque – Bera 28.30101 (0.000001) 

LR Test [6] 78.26975 (0.0000) 

Wald Chi [8] 60.69887 (0.0000) 

Note: (***), (**), (*) represent statistically significant at 1, 5 & 10 per cent levels. 

The values in the brackets [] show the degrees of freedom for the respective test. 

Source: Author‘s Compilation 

 

The heterogeneous first-stage FMOLS results in Table 4 provide robust evidence for the long-run 

relationships between various climatic factors and marine fishery production. The results show that 

LRH, LSP, LWD, and LSCD have statistically significant effects on marine fishery production. 

Specifically, LRH has a positive coefficient of 4.76 and is significant at the 10 per cent level, while LSP 

has a large positive effect of 134.47, with statistically significant at the 1 per cent level. LWD and LSCD 

have negative coefficients of -1.91 and -4.38, respectively, and both are significant at the 1 per cent level. 

The consistency of the signs of the statistically significant coefficients with those of the PMG long-run 

results further validates the reliability for relative humidity, sky clear days and surface pressure. The 
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model has an R2 of 0.926 and an adjusted R2 of 0.918, along with a minimal standard error of 

regression at 0.079126, indicating a good fit. 

Table 4: Heterogeneous First-Stage FMOLS Results 

Variable Coefficient P-Value 

LPRE 0.057357 0.5588 

LRH 4.756332* 0.0975 

LSP 134.4736*** 0.0003 

LT -1.248054 0.6331 

LWD -1.909129*** 0.0000 

LWS -0.494447 0.2328 

LSCD -4.376755*** 0.0000 

LFD -2.386245 0.4083 

R2 0.926595 

Adj. R2 0.918507 

S.E. Regression 0.079126 

Note: (***), (**), (*) represent statistically significant at 1, 5 & 10 per cent levels. 

Source: Author‘s Compilation 

 

5. CONCLUSION 

The present study empirically investigates the impact of climate variability on marine fishery production 

in Odisha, a prominent coastal state of India, over the period 2000–2022. Recognising the increasing 

vulnerability of fisheries to changing climatic conditions, such as rising sea temperatures, erratic rainfall, 

shifting wind patterns, and extreme weather events, the study aims to identify the influence of specific 

climate variables on marine fish production across all six coastal districts of Odisha, namely Balasore, 

Bhadrak, Jagatsinghpur, Puri, Kendrapara, and Ganjam. Using annual panel data for marine fish 

production from the Directorate of Fisheries, Government of Odisha, and climate data from the NASA 

Power Data Access Viewer, the research employs a rigorous econometric approach. After ensuring the 

stationarity of the data through both common and individual panel unit root tests, the PMG model is 

used to estimate both long-run and short-run relationships, with robustness tested through the 

heterogeneous first-stage FMOLS model. 

The study reveals a nuanced relationship between climatic variables and marine fishery production in 

Odisha. Specifically, the long-run estimates suggest that temperature, surface pressure, and relative 

humidity have statistically significant positive effects on marine fish production in Odisha. Conversely, 

precipitation, wind speed, number of frost days, and clear sky days exert a negative influence on fish 

production. The short-run dynamics, however, are statistically insignificant except for wind direction, 

indicating that fishery responses to climate variability are more pronounced over the long term. The 

FMOLS results also validate the long-run results for relative humidity, surface pressure and frost days. 

However, a limitation of the study is that climate variability data are available only in calendar year 

format and limited to district headquarters, while data on marine fishery production follow the 

financial year format, leaving the researcher constrained to use the available dataset due to a lack of 

control over data accessibility. To avoid potential data inaccuracies and significant information loss, no 

method has been applied to convert data between calendar and financial year formats or to generalise 

the district headquarters data to the entire district level. Therefore, the study leaves the scope for future 

research to convert the available data to appropriate formats by changing calendar year data to financial 

year format and generalising headquarters-level data to the district level, enabling comparison with the 

present findings to derive more meaningful and robust conclusions, even though headquarters-level 

climate data are often considered as the best available proxy given the constraints in data availability and 

infrastructure, as district headquarters typically serve as the administrative and economic centres, where 

reliable and continuous climate monitoring stations are typically located, and generally exhibit climatic 

conditions that are broadly indicative of the district as a whole. 

The findings of the study underscore the critical need to integrate climate sensitivity into marine fishery 

policy frameworks. One of the foremost policy implications is the establishment of a robust climate and 

ocean monitoring system to generate real-time data on key environmental indicators such as sea surface 
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temperature, wind conditions, and precipitation trends. This system should be linked with the existing 

early warning systems in Odisha for more accurate prediction of extreme weather events like cyclones 

and erratic monsoons, which often disrupt fishing cycles and endanger livelihoods. Second, adaptive 

fishery management strategies must be adopted. These include adjusting fishing schedules based on 

seasonal climate forecasts, identifying climate-resilient species for sustainable harvesting, and developing 

marine spatial plans that recognise shifting fish habitats due to ocean warming. Finally, the study 

recommends targeted capacity-building programs for fishers to interpret weather and oceanographic 

data effectively. Training workshops and mobile-based advisories can play a pivotal role in making 

climate information more accessible and actionable for local fishing communities in Odisha. 
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