ISSN: 2229-7359 Vol. 11 No. 7, 2025

https://www.theaspd.com/ijes.php

The Role Of AI In Strengthening Student Personal Brand Equity In Higher Education: A Narrative Review And Conceptual Framework

Mohammad Ibrahim Alarda^{1*}, Assist. Prof. Dr. Reema Rasem Nofal²,

¹Department of Marketing, Girne American University, Northern Cyprus Mohammad.alarda@gmail.com ²Head of Marketing Department, Girne American University, Northern Cyprus Reemanofal@gau.edu.tr

Abstract

Generative AI has become a vital partner in higher education, prompting critical inquiries about how individuals formulate, express, and convey identity under algorithmic frameworks. This study proposes a conceptual model that investigates how deliberate, iterative collaboration with artificial intelligence (AI) across the creative cycle (from conception to drafting, evaluation, and portfolio creation) influences students' personal brand equity. We hypothesize that the effects of using AI are not direct; instead, they operate through intermediary mechanisms. Media and algorithmic literacy encompassing provenance awareness, bias identification, platform and audience comprehension, and ethical production—constitute essential avenues that enhance learners' capacity to critically interact with AI products. These literacies serve in improving self-perception by enhancing confidence and self-efficacy. We argue that smart learning environments, which include transparency, understandable feedback, reflective prompts, and disclosure standards, influence these processes by enhancing or limiting their effects. We believe that students' ability to generate attraction, achieve differentiation, and gain recognition represents the outcomes of personal brand equity. This study combines AI application, literacy improvement, behavioral self-processes, and surrounding variables into a single framework, improving the discussion on artificial intelligence's role in creating identities within higher education and establishing a research agenda for examining these causal relationships.

Keywords: Artificial Intelligence, Generative AI, Personal Branding, Smart Learning Environments, , Algorithmic Literacy, Personal Identity , Student Branding.

1 INTRODUCTION

Artificial intelligence is shifting from a supporting tool to a main component in the higher education environment that enhances the importance of examination of: Under what conditions may AI boost the creation and construction of students' personal brand equity (PBE) to achieve differentiation and recognition without affecting creativity or encouraging dependency? (Blumer, 1986; Goffman, 1959; Leary & Kowalski, 1990) A student attempting to present themselves to two audiences: their colleagues and algorithmic platforms, whose rating systems influence credibility and visibility (Jordan & Tsai, 2024). In this context, process transparency, encompassing provenance documentation and rational modifications, indicates legitimacy more reliably than merely refined results (Buckingham Shum et al., 2023). Adoption methods such as the Technology Acceptance Model (Davis, 1989) elucidate student engagement with AI, although they do not address how the quality of usage influences identification results. Recent evidence indicates that iterative, elucidative feedback coupled with reflection enhances authorship clarity and confidence more effectively than mere frequency of use (Fleckenstein et al., 2023). Simultaneously, media literacy has evolved into algorithmic literacy, necessitating the assessment of ranking bias, verification of provenance, and understanding of metadata-citation dynamics(Gagrčin et al., 2024; Hobbs, 2010; Kellner & Share, 2005). However, these elements remain disjointed and infrequently linked to standardized PBE outcomes (Aaker, 1997; Gorbatov et al., 2021; Szántó et al., 2025). This review synthesizes existing literature and proposes a mediated-moderated framework: deliberate, iterative AI utilization encourages media and computational literacy, which improves self-perception (confidence, self-efficacy, and clarity of authorship), hence strengthening PBE. A diminished residual direct effect of AI use on PBE is recognized. Smart Learning Environments (SLEs) characterized by

ISSN: 2229-7359 Vol. 11 No. 7, 2025

https://www.theaspd.com/ijes.php

transparency, elucidative feedback, reflective prompts, and disclosure norms are posited to influence the AI-self-perception relationship while facilitating literacy advancement (Jing et al., 2023; Silvola et al., 2025). This model redefines integrity as a prioritization of transparency in collaborative creativity, offering both a theoretical foundation and practical design principles for higher education.

2 REVIEW METHODOLOGY

This paper used a transparent, explicit, methodical research and assessment approach to ensure rigor without claiming comprehensiveness. The investigation used six primary databases—Scopus, Web of Science, ERIC, PsycINFO, IEEE Xplore, and Google Scholar—covering the period from 2010 to 2025. The inclusion criteria mandated that sources be peer-reviewed journal articles or authoritative books and theories that hypothesize or empirically investigate AI-mediated identity and branding processes in higher education or related fields of knowledge activity. Contributions are also required to elucidate at least one aspect of the proposed framework, specifically media/algorithmic literacy, self-perception, personal brand equity (PBE), or smart learning environments (SLEs). The exclusion criteria removed simply technical AI studies lacking socioeducational constructs, non-scholarly commentary devoid of analytical value, and duplicate entries. The evidence was consolidated into synthesis tables and thoroughly aligned with the conceptual model. Potential bias was alleviated through triangulation and the meticulous documentation of all inclusion and exclusion criteria.

3 LITERATURE REVIEW

3.1 Identity as Interpretation and Performance in Algorithmic Publics

Identity is a negotiated performance: symbolic interactionism positions the self within collective meanings (Blumer, 1986), while self-presentation conceptualizes it as impression management (Goffman, 1959; Leary & Kowalski, 1990). Al-mediated platforms intensify this phenomenon by creating the "statistical individual," where algorithms evaluate and classify student work into composite profiles (Bjerring & Busch, 2025), and by forming "algorithmic publics" whose ranking systems act as quasi-audiences that affect credibility and visibility (Jordan & Tsai, 2024). Generative agents and avatars allow feedback-intensive stages for the creation of branding personas (Fink et al., 2024; Park et al., 2023). In higher education, students are currently presenting their work to two audiences—peers and computing systems—making transparency regarding the process (provenance notes, version trails, rationale-tagged revisions) an essential identity marker alongside refined outputs, facilitating inferences about authorship, integrity, and competence. (Buckingham Shum et al., 2023). Consequently, AI transitions from a rudimentary instrument to a pivotal co-author in the collaborative development of student identity.

3.2 From Adoption to Usage Quality: Beyond TAM

Studies on technology adoption have primarily concentrated on the Technology Acceptance Model (TAM), which posits that perceived usefulness and ease of use are the key factors influencing adoption(Davis, 1989). (Extensions of this model quantify AI "usage intensity" by assessing frequency, duration, and feature diversity(Shahzad et al., 2024). (Li, 2023) advances the Technology Acceptance Model (TAM) in education by presenting the ease of use, student attitude to AI-based systems, and perceived usefulness as main variables that affect the leaning modification and the actual use of AI-based systems. Simultaneously, (Ma & Huo, 2023) introduce AIDUA—Accessibility, Interactivity, Design, Usability, Anxiety—highlighting significant effects on the propensity to embrace ChatGPT-style applications. Nevertheless, these models clarify initiation more proficiently than identity outcomes. Evidence indicates that the quality of usage—specifically, the conditions and design of interaction—impacts identity gains: a meta-analysis of automated writing evaluation reports demonstrates medium positive effects on writing solely when feedback is iterative and comprehensible (Fleckenstein et al., 2023), and comprehensible feedback fosters internal attributions and clarity of authorship rather than dependence on the tool (Buckingham Shum et al., 2023). The attributes of

ISSN: 2229-7359 Vol. 11 No. 7, 2025

https://www.theaspd.com/ijes.php

adoption are essential prerequisites; the revolutionary potential of AI hinges on the caliber of its design and execution—determining whether it facilitates autonomous enhancement or functions merely as an opaque instrument.

3.3 Media and Algorithmic Literacy as Cognitive Infrastructure

Media literacy is vital for individual understanding of symbolic messages in order to create their identities, the capacity to be available, scrutinize, assess, and generate content across various modalities (Audrew & Herdiansyah, 2024; Hobbs, 2010), and the ideological framework that exposes the relationships of power inherent in texts (Kellner & Share, 2005). In Al-mediated contexts, this foundation encompasses algorithmic literacy, the ability to comprehend how algorithms prioritize, rank, and contextualize information. Recent studies underscore the need for identifying ranking bias, validating provenance, and analyzing metadatacitation interactions as hidden co-audiences that affect visibility and recognition. (Gagrčin et al., 2024; Jordan & Tsai, 2024; Tinmaz et al., 2022; Zhang et al., 2024) Empirical research validates these constructs: Marin & Nilă (2021) listed verification, analysis, invention, audience awareness, and ethical reasoning as fundamental components, whereas Haque et al. (2025) illustrated that Al-specific literacy entails investigating chatbot outputs and assessing platform transparency. In the absence of these skills, students may uncritically accept algorithmic recommendations, jeopardizing authorship and reputation. In the suggested paradigm, literacy mediates the connection between Al usage and self-perception, acting as the cognitive framework that converts Al engagement into credible, unique, and defensible personal brand equity. (Gagrčin et al., 2024)

3.4 Smart Learning Environments and Policy as Boundary Conditions

Smart Learning Environments (SLEs) elucidate the relationship between artificial intelligence utilization and identity outcomes. Self-learning environments (SLEs) are adaptive systems that continually modify material and task complexity in response to student feedback. (Jing et al., 2023) and provide "Al-assigned purposes" that serve as explicit developmental reasons for proposed activities that encourage participation and metacognitive thinking. (Silvola et al., 2025). Present AI as a developmental framework instead of just an observational tool by utilizing transparent, targeted efforts, providing explicit feedback, offering credible evidence, and establishing clear disclosure criteria. Consequently, the design of smart learning environments influences the enhancement of AI literacy and self-perception: adaptive, feedback-rich environments augment self-efficacy and confidence, whereas punitive or ambiguous systems undermine both. (Zhang et al., 2024). When functioning at optimal efficiency, SLEs serve as identification incubators, generating portfolio-ready proof of appeal, uniqueness, and recognition—the fundamental components of personal brand equity. (Aaker, 1997; Szántó et al., 2025)

3.5 Personal Brand Equity (PBE) in Higher Education

The establishment of personal brand equity involves three essential goals pertinent to student portfolios attractiveness, distinctiveness, and acknowledgment and promotes standardization to enable benchmarking among cohorts (Aaker, 1997; Gorbatov et al., 2021; Szántó et al., 2025). Integrating course requirements with performance-based education ensures that practices aimed at enhancing learning, such as iterative writing, ethical disclosure, and dependable sourcing, simultaneously generate persuasive evidence of branding. In the context of AI reliance, identities exhibiting procedural transparency, such as provenance annotations, reflective comments, and rationale-tagged alterations, serve as more credible indicators of authenticity and competency than mere refined outputs. (Gorbatov et al., 2021)

Table 1 presents a summary of the key studies that inform the conceptual framework.

Authors &	Country/Cont	Technology /	Theoretical /	Key Findings	Influencing Factors
Year	ext	Focus Area	Methodological		
			Approach		
Blumer (1969)	U.S	Symbolic	Classic sociological	Identity forms through	Social interaction,
	Sociology	Interactionism	theory	interpretation of social	meaning-making
				symbols	

ISSN: 2229-7359 Vol. 11 No. 7, 2025

https://www.theaspd.com/ijes.php

Goffman (1959); Leary & Kowalski (1990)	Global – Psychology	Self- Presentation/Imp ression Management	Dramaturgical & impression management frameworks	Identity as performance calibrated to audience expectations	Audience norms, impression strategies
Bjerring & Busch (2024/2025)	Europe - Philosophy/AI	Algorithmic identity	Conceptual theory	AI platforms create the 'statistical individual,' redefining identity	Algorithmic ranking, datafication
Jordan & Tsai (2024)	Global - Higher Education	Algorithmic publics	Mixed methods	Recommender/ranking systems act as quasi- audiences shaping credibility	Platform design, ranking logics
Park et al. (2023); Fink, Robinson & Ertl (2024)	Global - Education/AI	Generative agents, avatars	Empirical & conceptual	AI avatars and generative agents scaffold impression management.	Feedback loops, virtual rehearsal
Buckingham Shum, Lim & Boud (2023)	Global - Higher Education	Automated feedback tools	Mixed methods	Explainable, open feedback fosters agency & literacy	Transparency, rationale clarity
Davis (1989)	U.S. – Information Systems	Technology Acceptance Model (TAM)	Theory + survey	Usefulness & ease predict adoption	Perceived utility, perceived ease
Shahzad et al. (2024)	Pakistan – Business AI	AI usage scale	Survey ($\alpha = .96$)	Validated TAM-based use-intensity scale	Frequency, duration, diversity
Li (2023)	China – Education	AI adoption scale	Survey (α = .915– .973)	Usefulness & ease predict student AI adoption	Utility, simplicity
Ma & Huo (2023)	China - AI chatbots	AIDUA framework	SEM	Accessibility, interactivity, usability predict adoption	Design, anxiety
Fleckenstein, Keller & Schmidt (2023)	Global - Higher Education	Automated writing evaluation (AWE)	Meta-analysis	Medium effects on writing; stronger with explainability & iteration	Iteration, transparency
Hobbs (2010)	U.S Media literacy	Digital/media literacy	Policy/plan	Evaluation and creation	Critical thinking, creativity
Kellner & Share (2005)	U.S Media literacy	Critical media literacy	Conceptual	Reveals hidden agendas & ideologies	Power, ideology
Marin & Nilă (2021)	Romania – Education	Media literacy scale	Empirical (survey)	Five-part scale	Reliability, validity
Haque, Islam & Mikalef (2025)	Global - AI	AI-specific literacy	Empirical	Explanations demanded; literacy predicts trust/use	Transparency, control
Gagr č in, Naab & Grub (2024)	Global - Media studies	Algorithmic literacy	Integrative review	Links media literacy to algorithmic sense-making	Bias diagnosis, provenance

ISSN: 2229-7359 Vol. 11 No. 7, 2025

https://www.theaspd.com/ijes.php

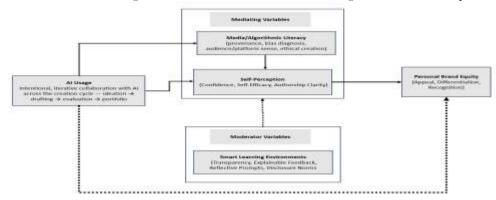
Jones & Pittman (1982)	U.S. – Psychology	Impression management strategies	Behavioral framework	Self-promotion, supplication defined	Identity goals, social context
Audrew & Herdiansyah (2024)	Indonesia – Higher Education	Self-perception & branding	Path analysis	Self-perception mediates literacy/self-esteem → branding	Confidence, authenticity
Zheng & Huang (2023)	China - AI clones	AI self-clones & perception	Empirical study	Enhances self-awareness; reduces anxiety	Social comparison, feedback
Wang et al. (2023)	China – Higher Education	Smart learning environments	Survey/SEM	Adaptability boosts confidence & independence	Adaptability, personalization
Silvola et al. (2025)	Finland – Higher Education	Generative AI feedback	Empirical	"AI-assigned purposes" foster reflection & metacognition	Transparency, formative feedback
Zhang, Zhang & Zhang (2024)	South Korea – University	AI dependency	Survey + SEM	Stress/expectations shape dependency; self- efficacy indirect	Stress, self-efficacy
Aaker (1997)	Global - Marketing	Brand personality	Scale validation	Five brand personality dimensions	Differentiation, signaling
Gorbatov, Khapova & Lysova (2021)	Global – HR/Branding	Personal brand equity	Scale development	Appeal-differentiation- recognition (ADR) validated	Appeal, differentiation, recognition
Szántó, Papp- Váry & Radácsi (2025)	Hungary/Glob al - Branding	PBE standardization	Conceptual & empirical	Standardized PBE framework	Benchmarking, comparability

Note: APA 7 format; abbreviations: PBE = Personal Brand Equity; SLE = Smart Learning Environments; ADR = AI-documented rationale.

4 CONCEPTUAL FRAMEWORK

Utilizing identity-as-performance theories (Goffman, 1959; Leary & Kowalski, 1990), investigations into technology adoption and usage quality (Buckingham Shum et al., 2023; Davis, 1989; Fleckenstein et al., 2023), and modern discussions of media and algorithmic literacy in higher education. (Hobbs, 2010; Jordan & Tsai, 2024; Kellner & Share, 2005; Zhang et al., 2024), we conceptualize the influence of AI collaboration on students' personal brand equity (PBE). We assert that deliberate, iterative AI use predominantly impacts indirectly by enhancing media and computational literacy, hence reinforcing self-perception (confidence, self-efficacy, and clarity of authorship). These socio-cognitive advancements result in enhanced PBE—appeal, distinctiveness, and recognition (Aaker, 1997; Gorbatov et al., 2021; Szántó et al., 2025). We, as SLEs, facilitate literacy advancement by integrating feedback-as-explanation into our standard production practices. A minor direct pathway from AI use to PBE is preserved to indicate residual benefits not conveyed by the mediators. Figure 1 illustrates the resultant mediated-moderated structure and the proposed pathways.

 Table 2. Proposed Conceptual Framework and Relationships


Variable Type	Variables	Description	Supporting Theory/Source
Independent	AI Usage	Intentional, iterative collaboration with AI	Davis (1989); Buckingham Shum et
Variable (IV)		across the creation cycle—ideation → drafting	al. (2023); Fleckenstein et al. (2023)
		→ evaluation → portfolio—emphasizes	
		cadence, explainable feedback, and reflection.	

ISSN: 2229-7359 Vol. 11 No. 7, 2025

https://www.theaspd.com/ijes.php

Mediating Variable (M ₁)	Media/Algorithmic Literacy	Provenance checks, bias/ranking diagnosis, audience/platform awareness, and ethical authorship/citation practices.	Potter (2004); Hobbs (2010); Kellner & Share (2005); Jordan & Tsai (2024); Gagrčin et al. (2024); Marin & Nilă (2021); Haque et al. (2025)
Mediating Variable (M ₂)	Self-Perception	Explained improvement and reflective production are the sources of confidence, academic self-efficacy, and authorship clarity.	Buckingham Shum et al. (2023); Audrew & Herdiansyah (2024); Zheng & Huang (2023)
Moderator	Smart Learning Environments (SLEs)	Transparency, understandable feedback, reflective prompts, and disclosure norms shape how AI use translates into self-perception and literacy.	Silvola et al. (2025); Wang et al. (2023)
Dependent Variable (DV)	Personal Brand Equity (PBE)	Portfolio-level identity value operationalized as Appeal, Differentiation, and Recognition (ADR).	Aaker (1997); Gorbatov et al. (2021); Szántó et al. (2025)
Relationship (Serial Mediation)	AI Usage → Media/Algorithmic Literacy → Self-Perception → PBE	Primary causal chain: AI usage builds literacy; literacy enhances self-perception; perception of oneself increases PBE.	Potter (2004); Hobbs (2010); Aaker (1997); Gorbatov et al. (2021)
Relationship (Direct, residual)	AI Usage → PBE	A smaller direct effect is retained for completeness; it is expected to attenuate after mediators enter the model.	Davis (1989); Fleckenstein et al. (2023)
Relationship (Moderation)	SLEs × AI Usage → Self-Perception	SLEs strengthen the AI→Self-Perception path when transparency and reflective practices are high.	Silvola et al. (2025)
Relationship (Support)	SLEs → Media/Algorithmic Literacy	SLEs support literacy development by embedding feedback as an explanation in routine production.	Buckingham Shum et al. (2023); Jordan & Tsai (2024)

Figure 1. Conceptual model illustrating the mediating roles of literacy and self-perception and the moderating role of Smart Learning Environments (SLEs) in the AI Usage-PBE relationship.

5 DISCUSSION

This study elucidates the circumstances and mechanisms via which AI utilization enhances students' personal brand equity (PBE). The analysis indicates that the effects of AI are predominantly indirect, functioning through two mediators—media/algorithmic literacy and self-perception—within the constraints established by

ISSN: 2229-7359 Vol. 11 No. 7, 2025

https://www.theaspd.com/ijes.php

smart learning environments (SLEs). This process-oriented viewpoint surpasses adoption frameworks, offering a detailed explanation of AI-assisted identity formation.

5.1 Mechanism

Media and algorithmic literacy, alongside self-perception, function as the socio-cognitive mechanisms via which AI usage affects identity outcomes. Literacy enables pupils to examine origins, hierarchical frameworks, and metadata, thus promoting informed decision-making that takes into account the audience and medium. These literacies, consequently, enhance self-perception—confidence, self-efficacy, and clarity of authorship—facilitating the generalization of competence beliefs from specific activities to a broader identity. Dramaturgical viewpoints are revised for algorithmic publics, where transparency via version trails, rationales, and disclosures indicates authenticity to both human and computer audiences. When feedback is both iterative and elucidated, students enhance their outputs and construct transferable proof of identity appeal, distinctiveness, and recognition implemented within assessment portfolios.

5.2 Theoretical Implications

This framework integrates four research strands that are seldom examined concurrently: (1) identity as interpretation and performance, (2) adoption and the quality of technology utilization, (3) media and algorithmic literacy as cognitive scaffolding for engagement, and (4) the design of smart learning environments (SLEs) as the contextual boundary. The methodology goes further standard adoption theories by incorporating several points of view. It recognizes a slight immediate connection between usage and results and demonstrates the way serial mediation AI use influences literacy, which in turn affects self-perception and ultimately PBE. It interprets integrity as a collaborative creation process that is transparent. In accordance with the theory, identity development is strongest when major life events provide clear feedback, encourage reflection, and call for structured disclosure procedures.

5.3 Practical Implications

The framework defines many implementable strategies for educators and institutions. Developing AI systems with built-in explainability and integrating reflective artifacts—such as provenance annotations or succinct "what-changed/why" notes—can improve students' understanding of authorship and accountability. Providing explicit instruction on algorithmic literacy, including ranking dynamics, metadata, and citation standards, enables learners to critically evaluate AI outputs rather than accept them uncritically. Assessment should shift to process-oriented portfolios aligned with Performance-Based Education (PBE), incorporating rubrics that promote evidence-based adjustments, ethical clarity, and audience-aware presentation. These factors collectively redirect the evaluation focus from just polished products to transparency, reflection, and process as the essential drivers of credibility and legitimacy.

5.4 Policy and Boundary Conditions

Identity contraction are influenced by the institutional environment and technological innovation. Smart learning environments (SLEs) that provide adaptive, clear feedback that promotes reflection usually enhance the positive correlation between AI use and self-perception. In contrast, transparent or surveillance-focused systems can reduce these benefits and potentially foster dependency. Consequently, policies should prioritize transparency-oriented indicates and the educational use of AI, ensuring that technological support augments human judgment. These techniques create fair conditions for identity development while reducing the risks associated with excessive assessment or punitive monitoring.

6 CONCLUSION AND RECOMMENDATION.

Institutions must adopt a transparency-first approach to develop smart learning environments (SLEs), guaranteeing the integration of teaching, assessment, and policy with identity-enhancing results. AI assist systems have to include internal explainability, ensuring a transparent reasoning and a reliable source for each suggestion. Students must include analytical and attributing artifacts, such as version histories, rationale-tagged revisions, and disclosure statements in their portfolios to furnish verifiable evidence of learning and

ISSN: 2229-7359 Vol. 11 No. 7, 2025

https://www.theaspd.com/ijes.php

authorship. Curricula must contain algorithmic literacy, allowing learners to verify provenance, recognize ranking bias, evaluate audience and platform dynamics, and analyze information related to citation visibility. Evaluation methods should shift towards process-oriented portfolios that correlate with PBE elements such as appeal, distinctiveness, and recognition, supported by guidelines that emphasize transparency, ethical disclosure, and audience-aware framing rather than simply refined outputs. Institutions must implement explicit criteria for ethical AI collaboration, safeguard reflective artifacts from punitive exploitation, and ensure equal access to understandable AI technologies and professional training. Ultimately, course-integrated experiments (e.g., A/B configurations of SLEs) must be conducted to assess impacts on literacy, self-perception, and PBE, supported by dashboards and fairness evaluations that ensure instructional decisions are data-driven, verifiable, and centered on student identity development.

7 Limitations and future research.

This study prioritizes explanatory coherence above comprehensive coverage. Causal inference about the suggested pathways necessitates course-embedded studies, including the randomization of explicable versus opaque feedback and the examination of mediation effects. Future research should prioritize four areas: (1) operationalizing dimensions of AI-specific literacy and validating their predictive capacity for integrity and PBE; (2) adapting and testing PBE rubrics for cross-cultural consistency; (3) conducting longitudinal studies that connect portfolio-level identity advancements to internships and early career outcomes; and (4) experimentally assessing SLE features such as transparency and reflection prompts as moderators within preregistered frameworks. These directives collectively transform the perception of AI from a mere expedient or a potential liability to a transparency-oriented co-authoring methodology. This recontextualization renders progress observable, assignable, and ethically justifiable, while synchronizing learning results with transferable branding benefits that accompany students throughout courses, peer groups, and into initial professional settings.'

REFERENCES

- ➤ Aaker, J. L. (1997). Dimensions of Brand Personality. *Journal of Marketing Research*, 34(3), 347-356. https://doi.org/10.1177/002224379703400304
- Audrew, E., & Herdiansyah, H. (2024). The impact of self-esteem and media literacy on personal branding strategies on instagram among generation Z. ETTISAL: Journal of Communication, 9(2).
- ➤ Bjerring, J. C., & Busch, J. (2025). Artificial intelligence and identity: the rise of the statistical individual. *AI & SOCIETY*, 40(2), 311-323.
- ➤ Blumer, H. (1986). Symbolic Interactionism: Perspective and Method. University of California Press. https://books.google.ps/books?id=HVuognZFofoC
- Buckingham Shum, S., Lim, L.-A., Boud, D., Bearman, M., & Dawson, P. (2023). A comparative analysis of the skilled use of automated feedback tools through the lens of teacher feedback literacy. *International Journal of Educational Technology in Higher Education*, 20(1), 40.
- ➤ Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
- Fink, M. C., Robinson, S. A., & Ertl, B. (2024). Al-based avatars are changing the way we learn and teach: benefits and challenges. Frontiers in Education,

ISSN: 2229-7359 Vol. 11 No. 7, 2025

https://www.theaspd.com/ijes.php

- Fleckenstein, J., Liebenow, L. W., & Meyer, J. (2023). Automated feedback and writing: A multi-level meta-analysis of effects on students' performance. Frontiers in Artificial Intelligence, 6, 1162454.
- ➤ Gagrčin, E., Naab, T. K., & Grub, M. F. (2024). Algorithmic media use and algorithm literacy: An integrative literature review. new media & society, 14614448241291137.
- Goffman, E. (1959). The presentation of self in everyday life, Double Day Anchor. Garden City, NY.
- Gorbatov, S., Khapova, S. N., Oostrom, J. K., & Lysova, E. I. (2021). Personal brand equity: Scale development and validation. *Personnel Psychology*, 74(3), 505-542.
- ➤ Haque, A. B., Islam, N., & Mikalef, P. (2025). To explain or not to explain: An empirical investigation of Al-based recommendations on social media platforms. *Electronic Markets*, 35(1), 2.
- ➤ Hobbs, R. (2010). Digital and Media Literacy: A Plan of Action. A White Paper on the Digital and Media Literacy Recommendations of the Knight Commission on the Information Needs of Communities in a Democracy. ERIC.
- ➤ Jing, Y., Zhao, L., Zhu, K., Wang, H., Wang, C., & Xia, Q. (2023). Research landscape of adaptive learning in education: A bibliometric study on research publications from 2000 to 2022. Sustainability, 15(4), 3115.
- ➤ Jordan, K., & Tsai, S. (2024). Keywords, citations, and 'algorithm magic': exploring assumptions about ranking in academic literature searches online. *Learning*, *Media and Technology*, 1-15. https://doi.org/10.1080/17439884.2024.2392108
- Kellner, D., & Share, J. (2005). Toward Critical Media Literacy: Core concepts, debates, organizations, and policy. Discourse: Studies in the Cultural Politics of Education, 26(3), 369-386. https://doi.org/10.1080/01596300500200169
- Leary, M. R., & Kowalski, R. M. (1990). Impression management: A literature review and two-component model. *Psychological bulletin*, 107(1), 34.
- Li, K. (2023). Determinants of College Students' Actual Use of AI-Based Systems: An Extension of the Technology Acceptance Model. Sustainability, 15(6), 5221. https://www.mdpi.com/2071-1050/15/6/5221
- Ma, X., & Huo, Y. (2023). Are users willing to embrace ChatGPT? Exploring the factors on the acceptance of chatbots from the perspective of AIDUA framework. *Technology in Society*, 75, 102362. https://doi.org/https://doi.org/10.1016/j.techsoc.2023.102362
- Marin, G. D., & Nilă, C. (2021). Branding in social media. Using LinkedIn in personal brand communication: A study on communications/marketing and recruitment/human resources specialists perception. Social Sciences & Humanities Open, 4(1), 100174.
- ➤ Park, J. S., O'Brien, J., Cai, C. J., Morris, M. R., Liang, P., & Bernstein, M. S. (2023). Generative agents: Interactive simulacra of human behavior. Proceedings of the 36th annual acm symposium on user interface software and technology,
- ➤ Shahzad, M. F., Xu, S., & Javed, I. (2024). ChatGPT awareness, acceptance, and adoption in higher education: The role of trust as a cornerstone. *International Journal of Educational Technology in Higher Education*, 21(1), 46.
- ➤ Silvola, A., Kajamaa, A., Merikko, J., & Muukkonen, H. (2025). AI-mediated sensemaking in higher education students' learning processes: Tensions, sensemaking practices, and AI-assigned purposes. *British Journal of Educational Technology*.
- Szántó, P., Papp-Váry, Á., & Radácsi, L. (2025). Research Gap in Personal Branding: Understanding and Quantifying Personal Branding by Developing a Standardized Framework for Personal Brand Equity Measurement. Administrative Sciences, 15(4), 148. https://www.mdpi.com/2076-3387/15/4/148
- ➤ Tinmaz, H., Lee, Y.-T., Fanea-Ivanovici, M., & Baber, H. (2022). A systematic review on digital literacy. Smart Learning Environments, 9(1), 21.

ISSN: 2229-7359 Vol. 11 No. 7, 2025

https://www.theaspd.com/ijes.php

➤ Zhang, S., Zhao, X., Zhou, T., & Kim, J. H. (2024). Do you have AI dependency? The roles of academic self-efficacy, academic stress, and performance expectations on problematic AI usage behavior. International Journal of Educational Technology in Higher Education, 21(1), 34. https://doi.org/10.1186/s41239-024-00467-0