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Abstract 
This paper establishes a novel framework for analyzing nonlinear Volterra integral equations with hereditary 
effects within complete b-metric spaces. We investigate the existence and uniqueness of solutions to equations of 

the form: 𝑥(𝑡) = 𝑔(𝑡) + 𝜆 ∫  
𝑏

𝑎
𝐾(𝑡, 𝑠)𝛷(𝑠, 𝑥(𝑠), ∫  

𝑠

𝑠−𝜏
 𝑥(𝑢)𝑑𝑢)𝑑𝑠 under Lipschitz continuity and local 

boundedness conditions. Our approach introduces explicit a priori bounds and verifies operator continuity, 
constructing invariant sets where Agrawal's fixed-point theorem applies with computable constants satisfying 𝑘 +
2𝑐𝑠 < 1. The theoretical advancements address significant limitations in global boundedness assumptions while 
maintaining verifiable convergence criteria. Practical applications to population dynamics and RLC circuits 
demonstrate the framework's efficacy, with explicit radius calculations ensuring consistency with hereditary system 
constraints. 
Keywords: Fixed point theorem, b-metric space, Volterra integral equation, hereditary systems, invariant set 
 
1. INTRODUCTION 
Fixed point theory in generalized metric spaces provides fundamental tools for the analysis of 
functional equations exhibiting hereditary effects, where past states influence present behavior. In 
particular, the relaxation of the triangle inequality in b-metric spaces, with 𝑠 ≥ 1 as introduced by 
Bakhtin [2], allows the treatment of systems in which classical metric structures fail to capture 
memory-dependent interactions, as discussed in several studies [13, 14]. This generalization has 
proven especially valuable for integral equations modeling biological, physical, and engineering 
systems with time-lagged responses [15], thereby extending the applicability of fixed point techniques 
to complex real-world phenomena. 
Recent developments in fixed point theory have further expanded classical results to more general 
frameworks. Agrawal and collaborators [1] proposed an innovative contractive condition that not 
only generalizes Banach's classical principle [3] but also accommodates geometric complexities 
inherent in systems with hereditary properties [10, 11]. Building upon earlier work by Czerwik [6, 7] 
and others, these developments have created a rich theoretical foundation for analyzing nonlinear 
systems. Specifically, the contractive inequality 

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘max{𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), 𝑑(𝑥, 𝑦)} + 𝑐[𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)], 
with the constraint 𝑘 + 2𝑐𝑠 < 1, enables a more flexible approach to contractions, which is 
particularly relevant when analyzing systems where memory effects introduce asymmetries in operator 
behavior [11] . 
Despite these theoretical advances, significant challenges remain in applying fixed point results to 
integral equations involving delay terms. Often, global boundedness assumptions on nonlinear 
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kernels ( Φ, 𝑓 ) are imposed, which may be unrealistic for unbounded domains [12]. In addition, the 
continuity of associated operators is frequently assumed without rigorous verification [4], potentially 
undermining the applicability of standard fixed point arguments. This issue has been noted in various 
contexts, including the work of Bota et al. [4] on Ekeland's variational principle. Moreover, the 
generalized contractive condition is sometimes underutilized by setting 𝑐 = 0, thereby neglecting 
scenarios in which a positive 𝑐 could relax constraints and capture asymmetric memory 
effects more effectively [1], a limitation also observed in the multivalued contractions studied by 
Boriceanu [5] and in the study of almost contractions sequences by Pacurar [9]. 
This study addresses these challenges by deriving explicit a priori bounds for invariant radii 𝑅0, 
replacing global boundedness assumptions with locally verifiable conditions. Furthermore, operator 
continuity is rigorously established through the application of composition principles and the 
dominated convergence theorem, ensuring that the integral operators under consideration are well-
defined. This approach extends beyond conventional methods and incorporates insights from recent 
advances in almost contraction theory [9] and Ekeland's variational principle in b-metric spaces [4]. 
In addition, the contractivity conditions are optimized by identifying situations in which the choice 
of 𝑐 > 0 improves the contraction framework, thereby accommodating systems with pronounced 
asymmetric memory effects. 
The theoretical framework developed herein is illustrated through applications to delayed population 
dynamics [13] and RLC circuits with memory-dependent charge accumulation 14. By explicitly 
computing invariant radii 𝑅0 and contractive constants 𝑘 = 𝐴𝑝, the results are rendered 
computationally verifiable, thus providing a significant advancement in the practical analysis of 
hereditary systems with time-lagged interactions [15]. The comprehensive nature of this analysis draws 
upon foundational works in well-known fixed point theorems [8] and nonlinear set-valued 
contractions [7]. 
2. Preliminaries 
This section presents the foundational concepts necessary for our main results. We begin by recalling 
the structure of b-metric spaces and their key properties, then state the fixed-point theorems that will 
be employed in our analysis. 
Throughout this paper, we consider the integral equation 

𝑥(𝑡) = 𝑔(𝑡) + 𝜆 ∫  
𝑏

𝑎

𝐾(𝑡, 𝑠)Φ (𝑠, 𝑥(𝑠), ∫  
𝑠

𝑠−𝜏

 𝑥(𝑢)𝑑𝑢) 𝑑𝑠 

under the following assumptions: 
(1) 𝑔: [𝑡0 − 𝜏, 𝑡0] → ℝ is continuous and bounded with |𝑔(𝑡)| ≤ 𝑀𝑔. 
(2) Φ(𝑠, 𝑥, 𝜉) is continuous and satisfies the Lipschitz condition: 

|Φ(𝑠, 𝑥1, 𝜉1) − Φ(𝑠, 𝑥2, 𝜉2)| ≤ 𝐿Φ(|𝑥1 − 𝑥2| + |𝜉1 − 𝜉2|) 
and is locally bounded: |Φ(𝑠, 𝑥, 𝜉)| ≤ 𝑀Φ(𝑅) for ‖𝑥‖∞ ≤ 𝑅. The local boundedness assumption 
(as opposed to global boundedness) is more realistic in applications, as many functions are bounded 
only on finite intervals. 
(3) 𝐾(𝑡, 𝑠) is continuous and bounded: |𝐾(𝑡, 𝑠)| ≤ 𝑀𝐾. 
(4) There exists 𝑅0 > 0 such that 

𝑀𝑔 + |𝜆|𝑀𝐾𝑀Φ(𝑅0)(𝑏 − 𝑎) ≤ 𝑅0 
(5) Define 

𝐴 = |𝜆|(𝑏 − 𝑎)(1 + 𝜏)𝑀𝐾𝐿Φ 
(6) Assume 𝐴 < 1 (necessary for existence of 𝑝 > 1 with 𝐴𝑝 < 1 ). The condition 𝐴 < 1 ensures 
that there exists 𝑝 > 1 such that 𝐴𝑝 < 1, which is necessary for the contraction condition 𝑘 + 2𝑐𝑠 <
1 to hold with 𝑘 = 𝐴𝑝 and 𝑐 = 0. 
(7) 𝑎 = 𝑡0, ensuring the domain of the delayed term [𝑠 − 𝜏, 𝑠] ⊆ [𝑡0 − 𝜏, 𝑏] for all 𝑠 ∈ [𝑎, 𝑏]. 
Remark 2.1. The choice 𝑎 = 𝑡0 for the lower limit of integration is standard in delay Volterra 
equations. It is not merely a simplifying assumption but a necessary condition for the consistency of 
the problem. It ensures that for any 𝑠 ∈ [𝑎, 𝑏] = [𝑡0, 𝑏], the interval of the delayed term [𝑠 − 𝜏, 𝑠] is 
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entirely contained within the solution domain [𝑡0 − 𝜏, 𝑏], thus guaranteeing that the term 
∫  

𝑠

𝑠−𝜏
𝑥(𝑢)𝑑𝑢 is well-defined. 

Definition 2.2 (b-Metric Space [2]). Let 𝑋 be a nonempty set and let 𝑠 ≥ 1 be a real number. A 
function 

𝑑: 𝑋 × 𝑋 ⟶ ℝ+ 
is called a b-metric if, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, the following hold: 
(1) (Positive definiteness) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦. 
(2) (Symmetry) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). 
(3) (Relaxed triangle inequality) 𝑑(𝑥, 𝑧) ≤ 𝑠[𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)]. 
The triple ( 𝑋, 𝑑, 𝑠 ) is called a b-metric space. When 𝑠 = 1, this reduces to an ordinary metric space. 
Definition 2.3 (Convergence and Completeness in a b-Metric Space [10]). Let ( 𝑋, 𝑑, 𝑠 ) be a b -metric 
space. 
(1) A sequence {𝑥𝑛} ⊂ 𝑋 converges to 𝑥 ∈ 𝑋 if 

lim
𝑛→∞

 𝑑(𝑥𝑛, 𝑥) = 0 

(2) The sequence {𝑥𝑛} is Cauchy if 
lim

𝑚,𝑛→∞
 𝑑(𝑥𝑚, 𝑥𝑛) = 0 

(3) The space ( 𝑋, 𝑑, 𝑠 ) is complete if every Cauchy sequence converges to some point in 𝑋. 
Theorem 2.4 (Fixed Point Theorem in a b-Metric Space 1]). Let ( 𝑋, 𝑑, 𝑠 ) be a complete 𝑏-metric 
space, and let 𝑇: 𝑋 → 𝑋 be a mapping for which there exist constants 𝑘, 𝑐 ≥ 0 satisfying 

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘max{𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), 𝑑(𝑥, 𝑦)} + 𝑐[𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)], ∀𝑥, 𝑦 ∈ 𝑋, 
and assume 

𝑘 + 2𝑐𝑠 < 1. 
Then 𝑇 has a unique fixed point in 𝑋, and for any initial 𝑥0 ∈ 𝑋, the Picard iteration 𝑥𝑛+1 = 𝑇(𝑥𝑛) 
converges to this unique fixed point. 
 
3. MAIN RESULTS 
This section presents the core theoretical findings of the paper. It formulates the integral equation 
under study and proves the main theorem which guarantees the existence of a unique solution within 
an explicitly defined invariant set under computable contractivity conditions. 
Lemma 3.1. Let 𝑋 = 𝐶([𝑡0 − 𝜏, 𝑏], ℝ) with the 𝑏-metric 

𝑑(𝑥, 𝑦) = ( sup
𝑡∈[𝑡0−𝜏,𝑏]

 |𝑥(𝑡) − 𝑦(𝑡)|)

𝑝

, 𝑝 > 1. 

Then ( 𝑋, 𝑑, 𝑠 ) with 𝑠 = 2𝑝−1 is complete. 
Proof. First, consider positive definiteness and symmetry. For any 𝑥, 𝑦 ∈ 𝑋, 𝑑(𝑥, 𝑦) = 0 if and only 
if sup

𝑡∈[𝑡0−𝜏,𝑏]
 |𝑥(𝑡) − 𝑦(𝑡)| = 0, which implies 𝑥(𝑡) = 𝑦(𝑡) for all 𝑡 ∈ [𝑡0 − 𝜏, 𝑏]. Moreover, it is 

evident that 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), satisfying symmetry. 
Next, consider the relaxed triangle inequality. Take any 𝑥, 𝑦, 𝑧 ∈ 𝑋 and define 

𝐴 = sup
𝑡∈[𝑡0−𝜏,𝑏]

 |𝑥(𝑡) − 𝑧(𝑡)|, 𝐵 = sup
𝑡∈[𝑡0−𝜏,𝑏]

 |𝑥(𝑡) − 𝑦(𝑡)|, 𝐶 = sup
𝑡∈[𝑡0−𝜏,𝑏]

 |𝑦(𝑡) − 𝑧(𝑡)|. 

By the classical triangle inequality of the supremum norm, 𝐴 ≤ 𝐵 + 𝐶. Since 𝑝 > 1, the function 
𝑓(𝑢) = 𝑢𝑝 is convex on [ 0, ∞ ), and applying Jensen's inequality yields 

(𝐵 + 𝐶)𝑝 ≤ 2𝑝−1(𝐵𝑝 + 𝐶𝑝) 
Therefore, 𝐴𝑝 ≤ (𝐵 + 𝐶)𝑝 ≤ 2𝑝−1(𝐵𝑝 + 𝐶𝑝) = 𝑠(𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)), which establishes the 
relaxed triangle inequality with 𝑠 = 2𝑝−1. 
Finally, completeness is verified as follows. Let {𝑥𝑛} be a Cauchy sequence in ( 𝑋, 𝑑 ). Then for every 
𝜖 > 0, there exists 𝑁 such that for all 𝑚, 𝑛 ≥ 𝑁, 

𝑑(𝑥𝑚, 𝑥𝑛) = ( sup
𝑡∈[𝑡0−𝜏,𝑏]

 |𝑥𝑚(𝑡) − 𝑥𝑛(𝑡)|)

𝑝

< 𝜖 
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which implies sup
𝑡∈[𝑡0−𝜏,𝑏]

 |𝑥𝑚(𝑡) − 𝑥𝑛(𝑡)| < 𝜖1/𝑝. Hence, {𝑥𝑛} is uniformly Cauchy in the supnorm. 

Since 𝐶([𝑡0 − 𝜏, 𝑏]) is complete under the sup-norm, there exists 𝑥 ∈ 𝑋 such that 𝑥𝑛 → 𝑥 uniformly. 
To show convergence in ( 𝑋, 𝑑 ), observe that for any 𝜖 > 0, one can choose 𝑁 such that for 𝑛 ≥ 𝑁, 

sup
𝑡∈[𝑡0−𝜏,𝑏]

 |𝑥𝑛(𝑡) − 𝑥(𝑡)| < 𝜖1/𝑝 

which gives 𝑑(𝑥𝑛, 𝑥) = ( sup
𝑡∈[𝑡0−𝜏,𝑏]

 |𝑥𝑛(𝑡) − 𝑥(𝑡)|)

𝑝

< 𝜖. Therefore, 𝑥𝑛 → 𝑥 in (𝑋, 𝑑), and the 

space is complete. 
Lemma 3.2 (Continuity of T). The operator 𝑇: 𝑋 → 𝑋 defined by 

𝑇(𝑥)(𝑡) = 𝑔(𝑡) + 𝜆 ∫  
𝑏

𝑎

𝐾(𝑡, 𝑠)Φ (𝑠, 𝑥(𝑠), ∫  
𝑠

𝑠−𝜏

 𝑥(𝑢)𝑑𝑢) 𝑑𝑠 

is continuous. 
Proof. To establish continuity of the operator T , we employ the dominated convergence theorem. 
Let {𝑥𝑛} be a sequence in 𝑋 converging uniformly to 𝑥. We need to show that 𝑇(𝑥𝑛) → 𝑇(𝑥) 
uniformly. 
For each fixed 𝑡 ∈ [𝑡0 − 𝜏, 𝑏], consider the difference: 
|𝑇(𝑥𝑛)(𝑡) − 𝑇(𝑥)(𝑡)|

≤ |𝜆|∫𝑎

𝑏
 |𝐾(𝑡, 𝑠)||Φ(𝑠, 𝑥𝑛(𝑠), ∫𝑠−𝜏

𝑠
 𝑥𝑛(𝑢)𝑑𝑢) − Φ(𝑠, 𝑥(𝑠), ∫𝑠−𝜏

𝑠
 𝑥(𝑢)𝑑𝑢)|𝑑𝑠 

By the Lipschitz condition on Φ and boundedness of 𝐾, we have: 

|𝑇(𝑥𝑛)(𝑡) − 𝑇(𝑥)(𝑡)| ≤ |𝜆|𝑀𝐾𝐿Φ ∫  
𝑏

𝑎

(|𝑥𝑛(𝑠) − 𝑥(𝑠)| + |∫  
𝑠

𝑠−𝜏

  (𝑥𝑛(𝑢) − 𝑥(𝑢))𝑑𝑢|) 𝑑𝑠 

Since 𝑥𝑛 → 𝑥 uniformly, for any 𝜖 > 0, there exists 𝑁 such that for all 𝑛 > 𝑁 and all 𝑢 ∈
[𝑡0 − 𝜏, 𝑏], |𝑥𝑛(𝑢) − 𝑥(𝑢)| < 𝜖. Thus: 

|𝑇(𝑥𝑛)(𝑡) − 𝑇(𝑥)(𝑡)| ≤ |𝜆|𝑀𝐾𝐿Φ ∫  
𝑏

𝑎

(𝜖 + 𝜏𝜖)𝑑𝑠 = |𝜆|𝑀𝐾𝐿Φ(𝑏 − 𝑎)(1 + 𝜏)𝜖 

This establishes uniform convergence of 𝑇(𝑥𝑛) to 𝑇(𝑥), proving the continuity of operator T . 
Remark 3.3. The continuity of the operator 𝑇 is established here using a direct 𝜖 − 𝛿 argument based 
on the uniform convergence of 𝑥𝑛 to 𝑥. While the Dominated Convergence Theorem is a common 
and powerful tool for proving continuity of integral operators, the direct method is more 
straightforward and is sufficient in this context, given the finite interval [𝑎, 𝑏] and the continuity 
(and hence boundedness) of the kernel 𝐾(𝑡, 𝑠) on its domain. 
Theorem 3.4. Under the stated assumptions, let 𝑇: 𝑋 → 𝑋 be the operator defined by 

𝑇(𝑥)(𝑡) = 𝑔(𝑡) + 𝜆 ∫  
𝑏

𝑎

𝐾(𝑡, 𝑠)Φ (𝑠, 𝑥(𝑠), ∫  
𝑠

𝑠−𝜏

 𝑥(𝑢)𝑑𝑢) 𝑑𝑠 

Then, there exists 𝑝 > 1 such that 𝐴𝑝 < 1. For such a 𝑝, the operator 𝑇 satisfies the contractive 
condition of Theorem 2.3 with constants 𝑘 = 𝐴𝑝 and 𝑐 = 0, and hence admits a unique fixed point. 
Moreover, the sequence defined by Picard iteration 𝑥𝑛+1 = 𝑇(𝑥𝑛) converges to this unique fixed 
point for any initial guess 𝑥0 ∈ 𝑋. 
Proof. We first show that 𝑇 maps the closed ball 𝐵𝑅0

= {𝑥 ∈ 𝑋: ‖𝑥‖∞ ≤ 𝑅0} into itself. For any 𝑥 ∈

𝐵𝑅0
, we have: 

|𝑇(𝑥)(𝑡)| ≤ |𝑔(𝑡)| + |𝜆| ∫  
𝑏

𝑎

|𝐾(𝑡, 𝑠)| |Φ (𝑠, 𝑥(𝑠), ∫  
𝑠

𝑠−𝜏

 𝑥(𝑢)𝑑𝑢)| 𝑑𝑠 

Using the boundedness conditions (assumptions 1,3 , and 4 ): 
|𝑇(𝑥)(𝑡)| ≤ 𝑀𝑔 + |𝜆|𝑀𝐾𝑀Φ(𝑅0)(𝑏 − 𝑎) ≤ 𝑅0 

Thus, ‖𝑇(𝑥)‖∞ ≤ 𝑅0, so 𝑇(𝑥) ∈ 𝐵𝑅0
. 

Since 𝐵𝑅0
 is closed in the complete space 𝑋 (by Lemma 3.1), it is itself a complete b-metric space. 

Now, for any 𝑥, 𝑦 ∈ 𝐵𝑅0
, we estimate: 
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|𝑇(𝑥)(𝑡) − 𝑇(𝑦)(𝑡)|

≤ |𝜆| ∫  
𝑏

𝑎

|𝐾(𝑡, 𝑠)| |Φ (𝑠, 𝑥(𝑠), ∫  
𝑠

𝑠−𝜏

 𝑥(𝑢)𝑑𝑢) − Φ (𝑠, 𝑦(𝑠), ∫  
𝑠

𝑠−𝜏

 𝑦(𝑢)𝑑𝑢)| 𝑑𝑠 

Using the Lipschitz condition (assumption 2) and boundedness of  : 

|𝑇(𝑥)(𝑡) − 𝑇(𝑦)(𝑡)| ≤ |𝜆|𝑀𝐾𝐿Φ ∫  
𝑏

𝑎

(|𝑥(𝑠) − 𝑦(𝑠)| + 𝜏‖𝑥 − 𝑦‖∞)𝑑𝑠 

Since ∫  
𝑏

𝑎
𝑑𝑠 = 𝑏 − 𝑎 and ‖𝑥 − 𝑦‖∞ is constant with respect to 𝑠, we obtain: 

‖𝑇(𝑥) − 𝑇(𝑦)‖∞ ≤ |𝜆|𝑀𝐾𝐿Φ(𝑏 − 𝑎)(1 + 𝜏)‖𝑥 − 𝑦‖∞ = 𝐴‖𝑥 − 𝑦‖∞ 
Now consider the b-metric 𝑑(𝑥, 𝑦) = (‖𝑥 − 𝑦‖∞)𝑝. Then: 

𝑑(𝑇(𝑥), 𝑇(𝑦)) ≤ 𝐴𝑝𝑑(𝑥, 𝑦) 
Since 𝐴 < 1 (assumption 6), we can choose 𝑝 > 1 such that 𝑘 = 𝐴𝑝 < 1. Then: 

𝑑(𝑇(𝑥), 𝑇(𝑦)) ≤ 𝑘𝑑(𝑥, 𝑦) ≤ 𝑘max{𝑑(𝑥, 𝑇(𝑥)), 𝑑(𝑦, 𝑇(𝑦)), 𝑑(𝑥, 𝑦)} 
With 𝑐 = 0, we have 𝑘 + 2𝑐𝑠 = 𝑘 < 1. By Agrawal's theorem (Theorem 2.3), 𝑇 has a unique fixed 
point in 𝐵𝑅0

, and the Picard iteration converges to this fixed point. 
4. Examples and Applications 
This section presents two examples illustrating the application of Theorem 3.4, under explicit 
parameter settings. Both examples are modeled using nonlinear integral equations with memory 
effects. 
4.1. Example: Delayed Logistic Model with Explicit 𝑅0. Consider the population dynamics model 
with delayed regulation, where the population at time 𝑡 is given by 

𝑃(𝑡) = 𝑃0 + 𝜆 ∫  
𝑇

0

𝑒−(𝑡+𝑠) (𝑃(𝑠) + 𝛼 ∫  
𝑠

𝑠−𝜏

 𝑃(𝑢)𝑑𝑢) 𝑑𝑠 

with parameters 𝜆 = 0.1, 𝜏 = 0.3, 𝑇 = 1, 𝛼 = 0.8, 𝑃0 = 0.5, and 𝑀𝐾 = 1, since |𝑒−(𝑡+𝑠)| ≤ 1. 
The nonlinear term and the kernel are defined as Φ(𝑠, 𝑃, 𝜂) = 𝑃 + 𝛼𝜂 and 𝐾(𝑡, 𝑠) = 𝑒−(𝑡+𝑠), 
respectively. For a bounded function 𝑃 such that ‖𝑃‖∞ ≤ 𝑅, it follows that 

𝑀Φ(𝑅) = sup|𝑃 + 𝛼𝜂| ≤ 𝑅 + 0.8 ⋅ (0.3𝑅) = 1.24𝑅 
The condition for the invariant radius 𝑅0 becomes 

0.5 + 0.1 ⋅ 1 ⋅ (1.24𝑅0) ⋅ 1 ≤ 𝑅0 
which gives 

0.5 + 0.124𝑅0 ≤ 𝑅0 
Thus, choosing 𝑅0 = 0.7 satisfies the inequality because 0.5 + 0.124 × 0.7 ≈ 0.587 < 0.7. 
The Lipschitz constant of Φ is 𝐿Φ = 1 + 𝛼 = 1.8. Consequently, the contractivity constant is 
computed as 

𝐴 = 0.1 ⋅ 1 ⋅ 1 ⋅ 1.8 ⋅ (1 + 0.3) = 0.234 
Choosing 𝑝 = 1.5 yields 𝑘 = 𝐴𝑝 ≈ 0.113 and 𝑠 = 20.5 ≈ 1.414, and therefore, 

𝑘 + 2𝑐𝑠 = 0.113 + 0 = 0.113 < 1 
It follows that all conditions of Theorem 3.4 are satisfied, ensuring the existence of a unique solution 
in the ball 𝐵0.7. 
4.2. Example: Nonlinear Circuit with Memory and Quadratic Feedback. Consider an electrical 
system with nonlinear feedback and memory effects, where the voltage 𝑥(𝑡) is governed by: 

𝑥(𝑡) = 𝑉0 + 𝜆 ∫  
𝑇

0

𝑒−(𝑡+𝑠) [𝑥(𝑠) + 𝛿𝑥(𝑠)2 + 𝛾 ∫  
𝑠

𝑠−𝜏

 𝑥(𝑢)𝑑𝑢] 𝑑𝑠 

with parameters 𝜆 = 0.1, 𝜏 = 0.3, 𝑇 = 1, 𝛿 = 0.2, 𝛾 = 0.5, and 𝑉0 = 0.5. 
Here, the nonlinear function is Φ(𝑠, 𝑥, 𝜂) = 𝑥 + 𝛿𝑥2 + 𝛾𝜂, and the kernel is 𝐾(𝑡, 𝑠) = 𝑒−(𝑡+𝑠), 
with |𝐾(𝑡, 𝑠)| ≤ 1 so 𝑀𝐾 = 1. The input is constant with 𝑀𝑔 = 0.5. For ‖𝑥‖∞ ≤ 𝑅, we have |𝜂| ≤

𝜏𝑅 = 0.3𝑅, thus: 
|Φ(𝑠, 𝑥, 𝜂)| ≤ 𝑅 + 0.2𝑅2 + 0.5 ⋅ (0.3𝑅) = 0.2𝑅2 + 1.15𝑅 

Thus, 𝑀Φ(𝑅) = 0.2𝑅2 + 1.15𝑅. The invariant radius 𝑅0 must satisfy: 
0.5 + 0.1 ⋅ 1 ⋅ (0.2𝑅0

2 + 1.15𝑅0) ⋅ 1 ≤ 𝑅0 
which simplifies to: 
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0.02𝑅0
2 − 0.885𝑅0 + 0.5 ≤ 0 

Solving this quadratic inequality yields 𝑅0 ∈ [0.636,39.3]. Choose 𝑅0 = 0.64. 
The Lipschitz constant is computed locally for |𝑥| ≤ 𝑅0 : 

|Φ(𝑠, 𝑥1, 𝜂1) − Φ(𝑠, 𝑥2, 𝜂2)| ≤ |(𝑥1 + 0.2𝑥1
2) − (𝑥2 + 0.2𝑥2

2)| + |𝛾||𝜂1 − 𝜂2|

 ≤ (1 + 0.4𝑅0)|𝑥1 − 𝑥2| + 𝛾|𝜂1 − 𝜂2|
 

Noting that |𝜂1 − 𝜂2| ≤ 𝜏sup
𝑢

 |𝑥1(𝑢) − 𝑥2(𝑢)| = 𝜏‖𝑥1 − 𝑥2‖∞, we get: 

𝐿Φ = (1 + 0.4𝑅0) + 𝛾𝜏 = (1 + 0.4 × 0.64) + (0.5 × 0.3) = 1.256 + 0.15 = 1.406 
The contractivity constant is: 

𝐴 = |𝜆|𝑀𝐾𝐿Φ(𝑏 − 𝑎)(1 + 𝜏) = 0.1 ⋅ 1 ⋅ 1.406 ⋅ 1 ⋅ (1 + 0.3) = 0.18278 
Choose 𝑝 = 1.1, so 𝑘 = 𝐴𝑝 ≈ 0.182781.1 ≈ 0.168 and 𝑠 = 2𝑝−1 = 20.1 ≈ 1.0718. Then: 

𝑘 + 2𝑐𝑠 = 0.168 + 0 = 0.168 < 1 
All conditions of Theorem 3.4 are satisfied, ensuring a unique solution in 𝐵0.64. 
Remark 4.1. This example demonstrates the flexibility of our framework in handling nonlinearities 
beyond linear and memory terms. The quadratic term 𝛿𝑥2 introduces additional complexity in the 
estimation of both the local bound 𝑀Φ(𝑅) and the Lipschitz constant 𝐿Φ. The successful application 
of our method to this case underscores its robustness for various hereditary systems with diverse 
nonlinear structures. Notably, the invariant radius 𝑅0 is obtained by solving a quadratic inequality, 
which differs from the linear relations in previous examples, showcasing the adaptability of our 
approach to different functional forms. 
 
5. CONCLUSION 
This investigation has established a comprehensive framework for analyzing hereditary integral 
equations in b-metric spaces, addressing three significant limitations in existing literature. First, the 
derivation of explicit invariant radii 𝑅0 via the condition 𝑀𝑔 + |𝜆|𝑀𝐾𝑀Φ(𝑅0)(𝑏 − 𝑎) ≤ 𝑅0 
successfully eliminates global boundedness assumptions, aligning more closely with physical realities 
where solutions remain locally constrained but may exhibit unbounded behavior in extended 
domains. 
Second, our rigorous verification of operator continuity through the application of the dominated 
convergence theorem resolves a frequently overlooked technical gap in fixed-point applications 
to integral equations. This methodological contribution ensures mathematical completeness in 
operational analyses. 
Third, while 𝑐 = 0 proves sufficient for our symmetric memory terms, we have identified asymmetric 
hereditary systems (particularly those with mixed delay types) as promising candidates for future 
exploration of 𝑐 > 0 regimes. The selection of 𝑐 = 0 in our current work represents an optimal 
choice rather than a simplification, as our contractive estimate naturally yields 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘 ⋅
𝑑(𝑥, 𝑦), and since 𝑑(𝑥, 𝑦) consistently constitutes an element of max{𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), 𝑑(𝑥, 𝑦)}, 
the more general condition is satisfied with the optimal constant 𝑐 = 0. 
Applications to delayed logistic models and RLC circuits have demonstrated the framework's 
practical efficacy. The parameterized invariant sets ( 𝑅0 = 0.7 and 𝑅0 = 0.64 ) and contractive 
constants ( 𝑘 ≈ 0.113 and 𝑘 ≈ 0.168 ) provide computationally verifiable criteria consistent with 
biological and electronic constraints, offering concrete validation of our theoretical approach. 
Future research directions will focus on three primary areas: (i) Extension to distributed delays 

∫  
𝑏

𝑎
𝜅(𝜃)𝑥(𝑡 − 𝜃)𝑑𝜃 requiring measure-theoretic adaptations, (ii) Incorporation of stochastic 

perturbations using Ito-integral formulations, and (iii) Development of numerical schemes based on 
Picard iteration with error bounds proportional to (𝑘 + 2𝑐𝑠)𝑛. These advancements position b-
metric fixed-point theory as a versatile tool for hereditary systems, effectively bridging abstract 
mathematical analysis with applied computational science. 
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