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Abstract 
The Evolutionary algorithms have become an essential tool in computer-aided design for addressing 
complex optimization problems. However, their application in analog VLSI design is often constrained 
by high computational cost, large memory demand, and the necessity for fine tuning of parameters. To 
address these limitations, this work presents the design optimization of a two-stage operational 
transconductance amplifier (OTA) using PTM 45 nm CMOS technology. The Modified Teaching 
Learning Based Optimization (MTLBO) algorithm is employed, which eliminates the need for additional 
control parameters by mimicking the natural learning interaction between teachers and learners. The 
algorithm was implemented in Python and executed on an AMD Ryzen™ processor with 16 GB RAM 
under Ubuntu OS. Simulation results show that the optimized two stage OTA achieves the of 83.17 dB, 
higher unity gain bandwidth of 1.71 MHz with least power consumption of 3.24 µW. Comparative analysis 
demonstrates that MTLBO provides faster convergence with fewer iterations and outperforms other 
metaheuristic approaches, establishing it as a strong candidate for efficient, low power, and high 
performance analog CMOS circuit design automation. Future work may include extending the 
methodology to more complex analog and mixed-signal circuits, exploring multi-objective optimization. 
Keywords: RAO Algorithm, PSO Algorithm, TLBO Algorithm, MTLBO Algorithm, Optimization, Operational 
Transconductance Amplifier (OTA). 
 
1. INTRODUCTION  
Analog and mixed-signal design continues to face increasing complexity due to shrinking CMOS nodes, 
nonlinear device behavior, and conflicting design objectives such as gain, bandwidth, power, and area. 
Conventional analytical sizing methods struggle to capture high-dimensional interactions, which has 
motivated the adoption of metaheuristic algorithms for analog VLSI design automation [1], [2]. Among 
these, Teaching Learning-Based Optimization (TLBO) stands out for its parameter less structure, inspired 
by teacher learner knowledge transfer. Unlike Genetic Algorithms or Particle Swarm Optimization, 
TLBO eliminates the need for algorithm specific tuning such as mutation rates, inertia weights, thereby 
simplifying deployment while retaining robustness in complex search spaces [3]. 
Recent studies have refined TLBO for engineering problems: adaptive TLBO with dynamic teaching 
strategies [4], self-adaptive and reinforcement learning TLBO [5], multi-objective TLBO with Pareto-based 
ranking [6], hybrid TLBO integrating PSO or Levy flights [7], and parallel/distributed TLBO for large-
scale design problems [8], [9]. These advances consistently report faster convergence, reduced iteration 
count, and stronger global search capability, making TLBO increasingly suitable for time critical 
applications like analog circuit optimization. 
Building on this, the present work applies a Modified TLBO (MTLBO) for the automated design of a 
bulk-driven two-stage CMOS OTA in PTM-45 nm technology. By fusing and streamlining teacher and 
learner phases, the proposed MTLBO reduces computational overhead while preserving diversity in the 
solution space. Implemented in Python and coupled with SPICE simulations, MTLBO is benchmarked 
against recent metaheuristic baselines to demonstrate its effectiveness in achieving high gain, wide 
bandwidth, and efficient power utilization. 
Section 2 discuss about the teaching learning based optimization algorithm proposed by Rao et al. [13] 
with teacher and learner phase in brief. In section 3 Modified Teaching Learning Based Optimization 
(MTLBO) algorithm with enhanced teaching learning process is discussed. In the section 4 Proposed 
Automated Analog Circuit Design Environment using MTLBO Algorithm framework is discussed and 
applied this automated design frame work to two stage OTA design. In the section 5 results obtained 
from this automated design frame work by applying MTLBO algorithm is discussed. In the section 6 
conclude this work and future scope of the work is discussed. 
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2. Teaching Learning Based Optimization 

Optimization plays a crucial role in solving real world engineering and scientific problems, particularly 
those involving large scale, nonlinear, and complex systems. Traditional mathematical optimization 
techniques often face difficulties when dealing with non-convex, discontinuous, or high dimensional 
problems, thereby motivating the development of robust population based metaheuristic algorithms. The 
Teaching Learning Based Optimization (TLBO) originally proposed by Rao et al. [13] population based 
algorithm. Conventional algorithms such as Genetic Algorithms (GA), Particle Swarm Optimization 
(PSO), and Differential Evolution (DE), TLBO not require algorithm dependent parameters like 
crossover rate, mutation probability, or inertia weight. This parameter independent nature makes 
algorithm easy to implement and overcome the parameters fine tuning. The TLBO algorithm replicate 
the teaching learning process in two phases. 
Teacher Phase: In this phase learners gain knowledge from the teacher which is the best solution in the 
population. Teacher guides the overall progress toward optimal results. 
Learner Phase:  In this phase learners enhance gain knowledge from interacting with peers, facilitating 
exploration and diversity in the search space. 
By incorporating this dual mechanism, TLBO effectively balances exploration (searching new regions) 
and exploitation (refining search areas). The algorithm has demonstrated strong performance on multi-
dimensional benchmark functions and real world applications, including structural design, mechanical 
engineering, scheduling, and optimization problem solving [14]. 
2.1 Teacher Phase 
In this phase, the most competent learner in the population which is the best fitness candidate, is 
designated as the teacher. All other learners adjust their solutions by moving closer to the teacher’s 
position, thereby assimilating knowledge from the teacher. During this process, the personal best of each 
candidate is determined, and the top-performing individual is appointed as the teacher. For initialization, 
two matrices each for teacher and learner are generated randomly for initial population within the 
required bound. The two matrix Px and Py generated for the N number of learner in the range Px with x 
= 1, 2, …, N and Py with y = 1, 2, …, M number of subjects where P is the objective function of the 
individual candidate.  
Matrix Px where x = 1, 2, 3…, N                                                                                                      (1) 
Matrix Py where y = 1, 2, 3…, M                                                                                                      (2) 
After generating these two Px and Py random matrices each individual fitness is calculated by the objective 
function and selecting best individual from the population. In the proceeding step mean of each design 
variable is calculated and learner with best solution is selected as teacher as mentioned in the below 
equation.   
𝐷𝑖𝑓𝑓𝑚𝑒𝑎𝑛𝑥,𝑦,𝑖

= 𝑅𝑖(𝐾𝑥,𝑦𝑏𝑒𝑠𝑡,𝑖 − 𝑇𝐹𝑀𝑗,𝑖)                                                                                       (3) 

Where the random number Ri having value in the range of [0,1] and teaching factor TF having value 
either 1 or 2 and TF is calculated by the formula (4). 
𝑇𝐹 = 𝑟𝑜𝑢𝑛𝑑[1 + 𝑟𝑎𝑛𝑑(0,1)(2 − 1)]                                                                                                        (4) 
Here, TF is randomly selected in the range of 1 or 2 and it is important to note that the teaching factor 
is not algorithm parameter. After finding the difference mean new solution is obtained by the following 
equation. 
𝐾𝑥,𝑦,𝑖

′ = 𝐾𝑥,𝑦,𝑖 + 𝐷𝑖𝑓𝑓_𝑀𝑒𝑎𝑛𝑥,𝑖                                                                                                 (5)    

2.2 Learner Phase 
In this phase, learner gain the knowledge by interacting with peers within the population. This interaction 
is based on a comparative learning mechanism, where a learner updates its solution by learning from 
another randomly selected peer. If the peer exhibits superior performance (i.e., lower fitness value in the 
case of minimization problems), the learner modifies its position toward the peer; otherwise, the update 
is directed away from the peer. 
For the minimization process, 
      𝐾𝑥,𝑎,𝑖

" = 𝐾𝑥,𝑎,𝑖
′ + 𝑅𝑖(𝐾𝑥,𝑎,𝑖

′ − 𝐾𝑥,𝑏,𝑖
′ ),      𝑖𝑓𝐾𝑡𝑜𝑡𝑎𝑙−𝑎,𝑖

′ < 𝐾𝑡𝑜𝑡𝑎𝑙−𝑏,𝑖
′                                                         (6) 

     𝐾𝑥,𝑎,𝑖
" = 𝐾𝑥,𝑎,𝑖

′ + 𝑅𝑖(𝐾𝑥,𝑏,𝑖
′ − 𝐾𝑥,𝑎,𝑖

′ ),      𝑖𝑓𝐾𝑡𝑜𝑡𝑎𝑙−𝑏,𝑖
′ < 𝐾𝑡𝑜𝑡𝑎𝑙−𝑎,𝑖

′                                                          (7) 
For the maximization process, 
𝐾𝑥,𝑎,𝑖

" = 𝐾𝑥,𝑎,𝑖
′ + 𝑅𝑖(𝐾𝑥,𝑎,𝑖

′ − 𝐾𝑥,𝑏,𝑖
′ ),      𝑖𝑓𝐾𝑡𝑜𝑡𝑎𝑙−𝑎,𝑖

′ > 𝐾𝑡𝑜𝑡𝑎𝑙−𝑏,𝑖
′                                                          (8) 
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𝐾𝑥,𝑎,𝑖
" = 𝐾𝑥,𝑎,𝑖

′ + 𝑅𝑖(𝐾𝑥,𝑏,𝑖
′ − 𝐾𝑥,𝑎,𝑖

′ ),      𝑖𝑓𝐾𝑡𝑜𝑡𝑎𝑙−𝑏,𝑖
′ > 𝐾𝑡𝑜𝑡𝑎𝑙−𝑎,𝑖

′                                                 (9) 
 
Depending on the type of the process either equation (6), (7) or (8), (9) are applied to find the updated 
value of the learner phase. 
 
3. The Modified Teaching Learning Based Optimization (MTLBO) Algorithm 

The Modified Teaching Learning Based Optimization (MTLBO) algorithm is a refined extension of the 
standard TLBO framework, specifically designed to improve optimization efficiency by integrating the 
Teacher and Learner phases into a single, unified update mechanism. In contrast to the conventional 
TLBO, where these phases are executed sequentially, MTLBO streamlines the process into a more 
compact yet effective learning strategy, thereby accelerating convergence and enhancing solution quality. 
Drawing its inspiration from the classroom learning environment, MTLBO models students (candidate 
solutions) who continuously improve their knowledge (fitness) either through guidance from the teacher 
(the best-performing solution) or through interaction with peers. The MTLBO algorithm merge the 
knowledge transfer mechanism into unified update equation which incorporates two random variables 
r1, r2 and the teaching factor (TF), to simultaneously balance exploration and exploitation. 
The MTLBO algorithm reduces algorithmic redundancy by consolidating the two phases within the 
population. Which results in the algorithm is capable of achieving faster convergence without 
compromising solution quality, making it more effective for tackling high dimensional, nonlinear, and 
optimization of engineering manufacturing process [15]. 
3.1 Enhanced Teaching Learning Process 

This study demonstrates the Modified Teaching Learning Based Optimization (MTLBO) algorithm, 
updated from the original TLBO framework by enabling simultaneous dual learning from both the 
teacher and peer learners within a single update step to improve optimization. This modification allows 
efficient knowledge transfer and reduces algorithmic redundancy while improving convergence speed. 
The algorithm begins with candidate solutions within the population, where each solution is represented 
by a vector of decision variables and bounded within the search space. Every candidate is evaluated using 
the problem’s cost function which determines the fitness value. At each iteration the best performing 
candidate is identified as teacher and the population mean is computed. The influence of the teacher on 
the learners is moderated by the teaching factor (TF), which is randomly assigned a value of either 1 or 2. 
This factor essentially reflects the variability in teaching effectiveness, ensuring diversity in the learning 
process. In parallel, peer to peer learning is introduced. For each learner, a random peer is selected from 
the population, and a direction coefficient (A) is determined based on their relative performance: 
If the learner outperforms the peer, A = +1, reinforcing the current trajectory. If the peer performs better, 
A = −1, encouraging the learner to move toward the peer’s knowledge. Finally, the learner’s solution is 
updated using a combined strategy that integrates both the teacher’s influence and the peer interaction. 
In this way, each candidate simultaneously benefits from top down knowledge transfer (teacher guided 
exploitation) and lateral exploration (peer guided diversity). This dual mechanism strikes a balance 
between intensifying the search around promising regions and maintaining sufficient exploration of the 
search space, enabling MTLBO to converge efficiently toward optimal solutions. The combine strategy is 
demonstrated by the following equation (10). 
 𝑋 𝑛𝑒𝑤 =  𝑋𝑖 + 𝑟1 ∗ (𝑃𝑜𝑝𝑏𝑒𝑠𝑡 − 𝑇𝐹 ∗ 𝑃𝑜𝑝𝑏𝑒𝑠𝑡) + 𝐴 ∗ 𝑟2 ∗ (𝑋𝑖 − 𝑋𝑘)                                          (10)        
In the MTLBO algorithm two random coefficients r1 and r2 are generated within the interval [0,1]. These 
coefficients regulate the relative contribution of teacher guided learning and peer interaction, ensuring 
stochasticity and diversity in the search space. Through this formulation, each learner simultaneously 
benefits from guidance by the best performing individual (teacher) and adaptive adjustment relative to a 
peer, which balance between exploitation (refinement around promising regions) and exploration 
(discovery of new areas in the search space). 
Once the updated candidate solution is generated, it is projected back within the predefined variable 
bounds to maintain feasibility. The new solution is then evaluated against the objective function. If the 
updated solution demonstrates an improved cost compared to its previous state it is accepted otherwise, 
the original solution is retained. This greedy selection mechanism ensures that the population does not 
deteriorate across iterations within search space. 
After all individuals in the population have been updated, the global best solution is identified and stored 
for reference in subsequent iterations. The algorithm continues this cycle of teaching learning updates 
until a termination criterion is satisfied, which may be either maximum number of iterations or achieving 
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a satisfactory convergence threshold defined by the problem. 
 
4. Optimization of High Gain Low Voltage Two Stage OTA using MTLBO Algorithm 
4.1 Automated Analog Circuit Design Environment using MTLBO Algorithm 
The Modified Teaching Learning Based Optimization (MTLBO) algorithm further applied to optimize 
the design of a two stage CMOS Operational Transconductance Amplifier (OTA), which is widely used 
in analog and mixed signal integrated circuits such as filters, oscillators, and ADC front ends. The OTA 
plays a significant role in signal amplification and conditioning, making its optimum design essential for 
overall system performance. 

 
Figure 1: Automated analog circuit design environment. 

 
The two stage OTA design is a multidimensional optimization problem, which requires the careful 
adjustment of transistor level parameters, primarily the width (W) and length (L) of MOS transistors to 
meet multiple design objectives simultaneously. These include high gain, sufficient bandwidth, low power 
consumption, improved slew rate, and minimal silicon area. Manual design makes it more challenging as 
it becomes multidimensional design problem motivates to automated intelligent design environment with 
the help of metaheuristic algorithm. 
In this study demonstrates the MTLBO algorithm applied to automate transistor sizing in the two stage 
OTA design. Each candidate solution corresponds to a vector of transistor dimensions, which is simulated 
using a SPICE-based environment (Ngspice). This automated simulation framework as shown in Figure 
1 provides accurate circuit level performance evaluations. To drive the optimization process, a fitness 
function is defined using the root mean square (RMS) error [16], which measures the deviation between 
simulated results and target specifications. The fitness function is calculated by equation (11). 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = √∑ (
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑−𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑
)

𝑗

2
𝐷
𝑗=1                                    (11) 

Where, D represents the total number of design specifications considered in the optimization. The root 
mean square (RMS) error formulation ensures that all specifications are treated with equal importance, 
without bias toward any individual parameter. The main objective of the optimizer is to iteratively 
minimize the fitness function value, steering the design closer to the desired specifications. The 
optimization process continues until one of the stopping criteria is satisfied: either the fitness value drops 
below a predefined tolerance (1e-6) or the algorithm reaches the maximum number of iterations (1000). 
This iterative process repeats and gradually refining the design toward optimal results [17]. 
4.2 High Gain, Low Voltage OTA Design 
The two stage Operational Transconductance Amplifier (OTA) is one of the most widely used building 
blocks in analog circuit design [18]. It plays a crucial role in many applications such as active resistors, 
active inductors, voltage controlled oscillators (VCOs), ADCs, DACs, and gm-C filters. With the growing 
demand for low power and low voltage circuits the design of OTA become more critical. 
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Traditional MOSFET circuits face limitations in low voltage operation due to the threshold voltage barrier 
of the transistor. When the supply voltage is close to or below the threshold voltage, MOSFETs cannot 
operate effectively. To overcome this limitations, the bulk driven technique has emerged as a promising 
alternative [19]. In this method, the input is applied to the bulk (substrate) terminal of the MOSFET in 
place of the gate which bypasses the threshold voltage limitation and allow the MOSFETs to function 
properly even under very low supply voltages. A key advantage of this approach is that it does not require 
any modification to the MOSFET structure, making it compatible with standard CMOS fabrication 
technologies [20]. 
The bulk driven technique also have its own drawback: the transconductance gm of bulk driven MOSFETs 
is significantly lower which reduces the achievable gain of bulk driven OTAs, which can limit their 
performance of analog systems. To overcome this issue, the design presented in this work focuses on a 
high gain, low voltage bulk driven OTA. The schematic of the two stage OTA is shown in Figure 2. The 
design incorporates two key strategies: Cross coupled connection of input transistors M1A, M2B and 
M1B, M2A. 
This configuration introduces a negative impedance effect, which effectively enhances the overall 
transconductance of the differential pair which enhance the small signal gain of the OTA [21]. Regulated 
current mirrors M12, M14, Ic and M11, M15, Ic stabilize the biasing currents and significantly improve 
the output resistance, which directly translates into a higher voltage gain for the OTA [22]. Through this 
combination of bulk-driven input stage, cross-coupling for transconductance boosting, and regulated 
current mirrors for gain enhancement, the two stage OTA achieves high performance suitable for low 
voltage applications. 

 
Figure 2: The Two Stage Operational Transconductance Amplifier. 

 
5. RESULTS AND DISCUSSIONS 
The two stage CMOS based Operational Transconductance Amplifier (OTA) was designed using 
automated analog circuit design environment in the PTM 45 nm CMOS process compared manual 
analog circuit design proposed in [23]. Simulations were performed on an AMD Ryzen™ processor with 
16 GB RAM, running a 64-bit Ubuntu operating system. For optimization, four metaheuristic algorithms: 
RAO, PSO, TLBO, and the proposed MTLBO were implemented in Python and circuit level simulation 
carried out in the Ngspice-26 circuit simulator. To ensure a fair comparison across all algorithms, a 
common test setup was established. Each algorithm was initialized with, Population size: 30, Design 
dimensions: 11 (representing the total number of OTA design variables), Maximum iterations: 1000, 
Fitness value: 1e-6, Runs per algorithm: 10 (to capture robustness and consistency) to meet the design 
specifications listed in the Table 1. Within this automated optimization environment, each algorithm 
generated candidate OTA designs, which were then verified in Ngspice. After completing all runs, the 
best performing results from RAO, PSO, TLBO, and MTLBO were compared. The optimized transistor 
level parameters obtained from each algorithm are summarized in Table 2. While the achieved OTA 
design specifications are reported in Table 3 and compared with the previously reported work in [24] for 
same experimental setup, these experimental data show that MTLBO achieves higher gain of 83.17 dB, 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 7, 2025 
https://theaspd.com/index.php 

1804 

 

 

higher unity gain bandwidth of 1.71 MHz with least power consumption of 3.24 µW while achieving all 

design specifications within the range. 
Sr. No. Required Specifications 

1 Voltage Gain  AV > 80 dB 

2 Phase margin > 60° 

3 Unit gain bandwidth (UGB) > 1.5 MHz 

4 Rise Slew Rate (RSR) > 0.1 µV/us 

5 Fall Slew Rate (FSR) > 0.1 µV/us 

6 Power Consumption < 5 µW 

Table 1: Design Specification of two stage OTA. 
 
 

Design Variable 
Variable 
Range 

Obtained 

Parameters 

RAO 

(45 nm) 

Obtained 

Parameters 

PSO 

(45 nm) 

Obtained 

Parameters 

TLBO 

(45 nm) 

Obtained 

Parameters 

MTLBO 

(45 nm) 
M1A, M2A (W / L) 

W: 1 to 100 
(µm) 

L: 0.2 to 2 
 (µm) 

31.5 / 0.28  70.9 / 0.2 4.38 / 0.34 17.5 / 0.2 
M1B, M2B (W / L) 29 / 0.53 27.3 / 0.2 10.2 / 0.22 3.6 / 0.4 

M3, M4 (W / L) 27.6 / 0.2 33.2 / 0.2 1.52 / 0.2 6.01 / 0.2 
M5, M6, M11,M12 (W / L) 100 / 0.2  94.9  / 0.2 16.3 / 0.2  44.9 / 0.2 
M7, M8, M9, M10 (W / L) 96.3 / 0.2 46.8  / 0.2 3.90 / 0.2 4.14 / 0.2  

M13, M14 (W / L) 92 / 0.2 54.5 / 0.2  50.8 / 0.2 69.3 / 0.2 
Ib (µA) 0.1 to 2 µA 1.93 1.43 0.66 0.95 
Ic (µA) 0.1 to 1 µA 0.57 0.1 0.10 0.1 

Table 2: Optimized parameters of two stage OTA for the RAO, PSO, TLBO and MTLBO algorithm. 
 

Sr. 
No. 

Required Specifications 

MPSO 
Algorithm 

(90 nm) [24] 

RAO 
Algorithm 

(45 nm) 

PSO 

Algorithm 

(45 nm) 

TLBO 

Algorithm 

(45 nm) 

MTLBO 
Algorithm 

(45 nm) 

1 AV > 80 dB 80.6 dB 82.82 dB 82.81 dB 80.01 dB 83.17 dB 
2 Phase Margin > 60° 61.20° 66.79° 62.55° 61.29° 61.97° 
3 UGB > 1.5 MHz 1.63  MHz 1.51  MHz 1.43  MHz 1.60  MHz 1.71  MHz 
4 Rise Slew Rate (RSR) > 0.1 µV/us 0.24 µV/us 0.30 µV/us 0.25 µV/us 0.32 µV/us 0.33 µV/us 
5 Fall Slew Rate (FSR) > 0.1 µV/us 0.24 µV/us 0.27 µV/us 0.23 µV/us 0.27 µV/us 0.25 µV/us 
6 Power Consumption < 5 µW 4.16 µW 4.82 µW 4.21 µW 3.53 µW 3.24 µW 

Table 3: Obtained Specification for two stage OTA. 
 

Sr. 
No. 

Performance Parameters 
RAO 

Algorithm 
PSO 

Algorithm 

TLBO 

Algorithm 

MTLBO 
Algorithm 

1 Number of Iteration (Max. 1000) 31 57 46 23 
2 Swarm Size 30 30 30 30 
3 Dimension 11 11 11 11 
4 Average Time 229.35 s 1936.58 358.35 s 203.78 s 
5 Successful Run (Out of 10)  10 8 10 10 

Table 4: Performance Comparison of Algorithms 
 
A detailed performance comparison of the algorithms is presented in Table 4. The results demonstrate 
that MTLBO not only accelerates convergence but also consistently delivers stable, high-quality solutions, 
making it particularly well suited for multidimensional OTA optimization problems where both speed 
and precision are critical. Analysis shows that the proposed MTLBO algorithm reliably achieves all target 
specifications for the two-stage OTA. The convergence behavior of the algorithms is illustrated in Figure 
3, where it is evident that MTLBO converges faster and requires fewer iterations compared to RAO, PSO, 
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and standard TLBO. 
The superior performance of MTLBO in OTA design can be attributed to its enhanced ability to manage 
conflicting design trade-offs. In a two-stage OTA, parameters such as gain, bandwidth, phase margin, and 
power consumption are tightly interdependent, where improving one metric often adversely affects 
others. Traditional algorithms like PSO or TLBO frequently become trapped in local optima when 
navigating these trade-offs, resulting in slower convergence or suboptimal solutions. In contrast, 
MTLBO’s modified learning mechanism enables each candidate solution to simultaneously learn from 
both the global best design and peer solutions, achieving a more effective balance between exploration 
and exploitation. This mechanism facilitates rapid convergence toward configurations that satisfy high 
gain, low power, and wide bandwidth requirements, while maintaining strict adherence to design 
constraints. 

 

 
Figure 3: The Convergence graph of MTLBO algorithm with PSO, RAO and TLBO algorithms. 

 

6. CONCLUSION 
An automated optimization framework for CMOS-based two-stage OTA design using the MTLBO 
algorithm in PTM 45 nm technology is presented. The proposed approach effectively optimizes key 
performance metrics, achieving a gain of 83.17 dB, unity-gain bandwidth of 1.71 MHz, and power 
consumption of 3.24 µW. Simulation results confirm that the optimized OTA satisfies all target 
specifications. Compared to conventional algorithms, MTLBO demonstrates faster convergence and a 
more balanced trade-off among speed, power, and overall performance. These results highlight the 
effectiveness of MTLBO for analog circuit sizing, enabling compact, energy-efficient, and high-
performance OTA designs suitable for modern mixed-signal and low-power VLSI applications. Future 
work will focus on extending this framework to other critical analog/mixed-signal blocks, including 
comparators, filters, oscillators, and ADC front-end circuits, further validating the scalability and 
adaptability of MTLBO in complex SoC design environments. 
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