

Synaptic Plasticity As A Mechanistic Basis For Cognitive Rehabilitation After Stroke: A Systematic Review

Shalini Ranjan¹, Dipika Baria²

¹Assistant Professor, Department of Physiology, Smt, B K Shah Medical Institute & Research Centre, Sumandeep Vidyapeeth University, Piparia, Vadodara, Gujarat, India

²Professor, Department of Physiology, Smt, B K Shah Medical Institute & Research Centre, Sumandeep Vidyapeeth University, Piparia, Vadodara, Gujarat, India

Abstract

Stroke is one of the leading global causes of long-term disability, with nearly two-thirds of survivors experiencing persistent cognitive impairments such as memory dysfunction, executive deficits, and reduced attentional capacity. These cognitive sequelae significantly compromise functional independence and quality of life. In recent years, synaptic plasticity—the dynamic ability of synapses to undergo functional and structural modifications—has emerged as a critical mechanism underlying cognitive recovery. This systematic review synthesizes evidence from preclinical and clinical studies published between 2000 and 2025, examining the role of synaptic plasticity in post-stroke cognitive rehabilitation. We evaluate key neurobiological processes, including long-term potentiation (LTP), long-term depression (LTD), dendritic spine remodeling, and neurotrophic factor signaling, in reshaping neural circuits after stroke. Furthermore, we analyze how rehabilitation interventions such as cognitive training, aerobic exercise, enriched environments, pharmacological agents, and non-invasive brain stimulation modulate synaptic plasticity and contribute to improved cognitive outcomes. Findings suggest that interventions enhancing LTP and dendritic complexity through neurotrophic modulation are strongly associated with functional recovery. However, translation of animal findings to human clinical contexts remains limited by methodological heterogeneity, small sample sizes, and underutilization of synaptic biomarkers. The review underscores the necessity of longitudinal, multimodal, and precision-based approaches that integrate behavioral rehabilitation with neuroplasticity-targeting strategies. By bridging mechanistic insights with therapeutic interventions, this review highlights the potential of harnessing synaptic plasticity to optimize cognitive rehabilitation post-stroke and proposes directions for future research aimed at strengthening clinical evidence.

Keywords: Stroke, Synaptic plasticity, Cognitive rehabilitation, Long-term potentiation, Neurotrophic signaling, Neuroplasticity, Dendritic remodeling.

INTRODUCTION

Stroke as a Global Health Burden

Stroke remains a leading cause of mortality and long-term disability worldwide, contributing substantially to the global burden of disease. According to recent epidemiological data, more than 15 million people suffer a stroke each year, of whom approximately 5 million die and another 5 million are left permanently disabled¹. The socioeconomic implications are profound, as stroke often results in loss of productivity, high medical costs, and reduced quality of life for patients and caregivers alike. Unlike motor impairments, which often receive greater clinical attention, cognitive deficits following stroke have historically been underrecognized despite their significant impact on functional independence².

As per research, brain problems after stroke can show in many ways, including memory loss, poor thinking skills, less focus, slow brain processing, and trouble with seeing and spatial understanding³. These problems further limit social activities and work return, and depression itself increases along with caregiver burden. Surely, cognitive decline after stroke strongly predicts long-term institutionalization and poor outcomes⁴. Moreover, this decline serves as a key indicator of patient prognosis. We are seeing that these problems show we need to find ways that can help the brain get better and make treatment methods work even better.

We are seeing that synaptic plasticity is the main basis for cognitive recovery. This brain changes process helps patients get back their thinking abilities after injury.

As per research findings, synaptic plasticity is the main process behind learning, memory, and how we adapt our behaviour⁵. Regarding this process, synapses can become stronger, weaker, or change their

structure when we experience something or get injured. Also, after a stroke, the brain surely faces many harmful processes like cell damage from too much stimulation, stress from oxygen loss, swelling, and cell death. Moreover, these events happen one after another, making the brain injury worse. However, this disease condition itself contains potential for repair through plastic reorganization of remaining neural circuits⁶. Further, surviving brain networks can reorganize to restore function.

Two main mechanisms control synaptic plasticity research: long-term potentiation (LTP) strengthens synaptic transmission, while long-term depression (LTD) weakens synaptic strength to further refine the network itself. Both processes are essential for adaptive remodelling and further help restore cognitive functions that are impaired by stroke itself⁷. Brain cells surely change their connections and grow new links after injury. Moreover, special growth proteins like BDNF and NGF help the brain repair itself through these plastic changes⁸.

Cognitive Rehabilitation in Stroke Survivors

Cognitive rehabilitation refers to structured interventions aimed at restoring or compensating for impaired cognitive processes. These interventions include cognitive training exercises, aerobic exercise, computer-based rehabilitation, enriched environmental exposure, and non-invasive brain stimulation (e.g., transcranial magnetic stimulation [TMS] and transcranial direct current stimulation [tDCS])⁹. Each of these approaches has demonstrated varying degrees of success in modulating synaptic plasticity, either by promoting neurogenesis, enhancing LTP, or strengthening functional connectivity in distributed neural networks¹⁰.

However, rehabilitation outcomes are heterogeneous due to factors such as stroke severity, lesion location, patient age, genetic predispositions, and the timing and intensity of interventions¹¹. This variability highlights the necessity of integrating mechanistic insights from synaptic plasticity research with clinical rehabilitation paradigms.

Neurobiological Mechanisms Linking Synaptic Plasticity and Rehabilitation

Stroke-induced damage disrupts established synaptic connections, but the brain retains an intrinsic capacity to reorganize through neuroplastic cascades. Early recovery often involves peri-infarct reorganization, where surviving neurons in adjacent cortical areas form new connections. Later phases are characterized by cross-hemispheric plasticity, where the contralateral hemisphere compensates for lost function¹².

The molecular underpinnings of synaptic plasticity in stroke recovery include:

- BDNF-TrkB signaling, which promotes synaptogenesis and LTP¹³.
- NMDA receptor activity, essential for calcium influx and downstream plasticity-related signaling¹⁴.
- AMPAR trafficking, which modulates synaptic strength¹⁵.
- Cytoskeletal remodeling, facilitating dendritic spine growth and stabilization¹⁶.
- Neuroinflammatory modulation, where microglia and astrocytes influence synaptic remodeling through cytokine signaling¹⁷.

Cognitive rehabilitation strategies that exploit these mechanisms—for instance, exercise-induced BDNF upregulation or TMS-enhanced cortical excitability—show promise in restoring higher-order cognitive functions¹⁸.

Translational Challenges and Limitations

Animal studies surely provide good insights about how things work, but applying these results to human rehabilitation is still very difficult. Moreover, the gap between laboratory findings and actual patient treatment remains a major challenge. Rodent models surely give us important information about molecular and cellular processes. Moreover, the differences in brain structure, thinking abilities, and environmental factors limit how directly we can apply these findings to humans¹⁹. Moreover, human trials have problems as per the different methods used and the small number of people tested. Regarding cognitive results, there are no standard measures to check outcomes²⁰.

Another critical challenge is the underutilization of biomarkers that directly measure synaptic plasticity in vivo. Techniques such as electroencephalography (EEG), functional magnetic resonance imaging (fMRI), and magnetic resonance spectroscopy (MRS) can capture aspects of plasticity-related changes, but their integration into rehabilitation trials remains limited²¹.

Current Research Gaps

1. Lack of standardized rehabilitation protocols integrating plasticity-based interventions ²².
2. Insufficient longitudinal studies tracking plasticity markers across the continuum of stroke recovery
3. Basically, there is an underrepresentation of multimodal approaches that combine pharmacological, behavioral, and neuromodulatory strategies at the same time.
4. As per current medical systems, rehabilitation treatments are not made regarding each patient's genetic and brain-related factors, so treatment precision is limited ²³.
5. Sparse exploration of age and sex differences in plasticity responses post-stroke.

These gaps highlight the need for systematic reviews that consolidate mechanistic insights and clinical evidence into a unified framework.

Rationale for the Present Review

Given the pressing burden of cognitive impairment in stroke survivors and the emerging evidence on synaptic plasticity as a therapeutic target, this review aims to systematically synthesize available literature to:

1. Summarize the role of synaptic plasticity mechanisms in post-stroke cognitive recovery.
2. Evaluate rehabilitation strategies that explicitly or implicitly modulate plasticity.
3. Identify translational challenges and propose directions for future research.

By bridging neurobiological mechanisms with clinical rehabilitation outcomes, this review contributes to the growing field of neurorehabilitation science and provides a roadmap for developing precision-based interventions ²⁴⁻²⁶.

Table 1: Key Mechanisms of Synaptic Plasticity and Their Relevance to Cognitive Rehabilitation Post-Stroke

Mechanism	Molecular Pathways	Impact on Cognitive Recovery	Rehabilitation Modulators
Long-Term Potentiation (LTP)	NMDA/AMPA receptor activation, Ca^{2+} signaling	Enhances learning and memory, strengthens connectivity	Cognitive training, enriched environment
Long-Term Depression (LTD)	Reduced AMPA trafficking, synaptic pruning	Refines networks, prevents maladaptive plasticity	Computerized cognitive tasks
Dendritic Spine Remodeling	Actin cytoskeleton, Rho-GTPases	Restores network flexibility, supports new connections	Aerobic exercise, pharmacological agents
Neurotrophic Support	BDNF-TrkB, NGF signaling	Promotes synaptogenesis and survival	Exercise, SSRIs, tDCS/TMS
Glial Modulation	Microglial cytokines, astrocytic glutamate regulation	Influences synaptic pruning and remodeling	Anti-inflammatory therapies, neuromodulation

METHODS

Search Strategy

This systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines ²⁷. A comprehensive literature search was performed across PubMed, Scopus, Web of Science, and Embase databases from January 2000 to June 2025. The search combined MeSH terms and free-text keywords including "synaptic plasticity," "stroke," "cognitive rehabilitation," "neuroplasticity," "LTP," "LTD," and "post-stroke recovery." Boolean operators (AND/OR) were employed to maximize sensitivity. Reference lists of eligible studies and relevant reviews were also screened to capture additional literature ²⁸.

Inclusion and Exclusion Criteria

Studies were included if they met the following criteria:

1. **Population:** Adult patients (>18 years) with ischemic or hemorrhagic stroke.
2. **Intervention:** Any rehabilitation strategy aimed at improving cognition with evidence of synaptic plasticity modulation (behavioral, pharmacological, or neuromodulatory).

3. **Outcome:** Cognitive outcomes (e.g., memory, attention, executive function) and/or neuroplasticity markers (e.g., fMRI connectivity, EEG changes, BDNF expression).

4. **Study Design:** Randomized controlled trials (RCTs), cohort studies, and mechanistic preclinical studies relevant to stroke.

5. **Language:** English publications only.

Exclusion criteria included: studies in paediatric populations, case reports, conference abstracts, narrative reviews, and articles without cognitive or synaptic outcomes ²⁹.

Basically, we selected studies using the same criteria to ensure consistent research quality and relevance.

Studies Selection

Two reviewers actually checked the titles and abstracts separately. They definitely worked independently to screen all the studies. We are seeing that full research papers were collected for studies that looked relevant. Any disagreements were solved by discussion or asking a third person to decide. Basically, they selected 68 studies that met the same eligibility criteria in the final analysis ³⁰.

Data Extraction


Further, as per the research requirements, data extraction involves collecting specific information from various sources. Regarding the process, researchers systematically gather relevant data points for analysis purposes.

Moreover, as per the standardized form, data were extracted regarding the study. The extraction process followed a fixed format. The researchers surely recorded study details like author, year, country, sample size, and stroke type. Moreover, they also noted intervention details, synaptic plasticity markers, cognitive outcomes, and main findings. As per the standard procedure, one reviewer did the data extraction and another reviewer cross-checked it to reduce errors ³¹.

Quality Assessment

We are seeing that the quality of clinical studies was checked using only the Cochrane Risk of Bias Tool for randomized trials and the Newcastle-Ottawa Scale for observational studies. Further, basically, we evaluated preclinical studies using the same SYRCLE's risk of bias tool. As per the assessment, scores were categorized into three levels: low risk, moderate risk, or high risk of bias. As per the quality assessment, only low-to-moderate risk studies were included for quantitative analysis. Regarding high-risk studies, these were discussed in narrative form only.

PRISMA Flow Summary

RESULTS

Overview of Included Studies

After the final screening, 68 studies were retained in this review, comprising 38 clinical trials, 20 preclinical investigations, and 10 translational studies. Collectively, these represent a broad spectrum of interventions targeting synaptic plasticity to improve cognitive outcomes post-stroke. Clinical studies predominantly examined behavioral rehabilitation programs, neuromodulation techniques, and pharmacological interventions, while preclinical studies provided mechanistic insights into how synaptic changes facilitate recovery ^{32,33}.

The geographic distribution of studies highlighted strong contributions from North America, Europe, and East Asia, while only limited evidence emerged from low- and middle-income countries. This reflects a global imbalance in stroke rehabilitation research, raising concerns about the generalizability of findings across diverse healthcare systems. Most trials focused on middle-aged and elderly stroke survivors, with relatively fewer studies examining younger populations or the influence of sex-specific variables ³⁴.

Studies show that intensive rehabilitation within three months after stroke gives better results. Further delayed treatment is less effective because the brain itself cannot reorganize properly after this critical period. As per this observation, time-sensitive rehabilitation protocols are very important ³⁵.

Clinical Findings: Evidence from Human Studies

As per clinical studies, cognitive rehabilitation causes strong synaptic remodeling in stroke patients. The evidence regarding this brain change process is very solid. Many randomized controlled trials showed that computer-based cognitive training leads to significant improvements in working memory, attention, and executive functions when it is personalized and adaptive. Further studies confirmed that the training itself produces better results when tailored to individual needs. Further, as per brain scans, patients who did high-intensity training showed better connections in memory areas of the brain. Regarding the brain networks needed for learning, these also became stronger after the training ³⁶.

Pharmacological studies further added another dimension to the research itself. We are seeing that doctors frequently try medicines targeting cholinergic, dopaminergic, and glutamatergic systems only as additional treatments along with the main therapy. For example, donepezil and galantamine actually showed small improvements in attention and language skills, while memantine definitely helped with learning when used with specific training tasks ³⁷. Similarly, dopaminergic agonists enhanced reinforcement learning, supporting the hypothesis that neuromodulators act as plasticity gates, facilitating Hebbian and non-Hebbian learning.

Neuromodulation strategies such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) provided some of the strongest evidence for synaptic plasticity enhancement. Repetitive TMS applied to perilesional regions induced measurable increases in cortical excitability, promoting inter-hemispheric rebalancing that translated into improved cognitive flexibility and problem-solving skills ³⁸.

Importantly, these effects were more pronounced when multimodal strategies were employed. Trials that combined cognitive training with brain stimulation achieved greater and more durable improvements compared to either approach alone, suggesting that network-level interventions synergize with synaptic mechanisms to accelerate rehabilitation ³⁹.

Evidence from Preclinical Studies

Animal models provided mechanistic clarity, revealing how synaptic plasticity underpins functional recovery. In rodent models of middle cerebral artery occlusion (MCAO), post-stroke rehabilitation was consistently linked to increased dendritic spine density, axonal sprouting, and enhanced synaptogenesis in peri-infarct regions ⁴⁰. These structural modifications were complemented by molecular adaptations, including elevated expression of BDNF, synapsin-I, CREB, and NMDA receptor subunits, all of which are integral to long-term potentiation (LTP).

Cognitive Domains Affected

Synaptic plasticity was differentially implicated across distinct cognitive domains:

- Memory: Hippocampal LTP emerged as the most reliable correlate of memory recovery. Studies found that spatial and episodic memory improvements were directly tied to spine remodeling in hippocampal CA1 and dentate gyrus regions ³⁵.

- Attention: Prefrontal cortical plasticity underpinned gains in sustained and selective attention. Rehabilitation enhanced synaptic strength within dorsolateral prefrontal networks, enabling better top-down control.
- Executive Functions: Plasticity within fronto-parietal networks correlated with improved problem-solving, planning, and set-shifting. Imaging studies revealed that increased functional connectivity predicted higher executive function scores ³⁶.
- Language: Post-stroke aphasia studies demonstrated synaptic strengthening in perilesional cortical areas and compensatory recruitment of homologous regions in the right hemisphere. Neuromodulation accelerated these adaptive reorganizations ³⁷.

These findings suggest that domain-specific rehabilitation protocols tailored to underlying synaptic mechanisms may optimize recovery.

Neuroimaging and Biomarker Evidence

Basically, brain scans showed the same connection between how synapses change and how well the brain works. We are seeing that fMRI studies show rehabilitation only increases the connection between the hippocampus and prefrontal areas, which helps predict better memory and thinking skills. Basically, DTI scans showed that important brain pathways like the arcuate fasciculus and cingulum bundle became stronger, and this was the same as improvements seen in language and attention skills ³⁸.

Peripheral biomarkers further confirmed synaptic engagement. Post-intervention serum levels of BDNF, VEGF, and synaptic adhesion molecules rose significantly in both clinical and animal studies, suggesting systemic correlates of synaptic adaptation ⁴⁰.

Comparative Effectiveness of Interventions

Comparisons across modalities revealed distinct profiles:

- Pharmacological interventions produced rapid but often transient improvements.
- Cognitive training yielded slower yet more durable synaptic stabilization.
- Neuromodulation provided acute network-level modulation, particularly useful in early stages of rehabilitation.
- Multimodal approaches combining drugs, behavioral training, and stimulation consistently outperformed single interventions ^{37, 40}.

This highlights the importance of integrative rehabilitation models, particularly in targeting the multiple layers of synaptic plasticity that drive cognitive recovery.

Quantitative and Qualitative Synthesis

Meta-analytic synthesis revealed that cognitive rehabilitation improved standardized cognitive scores by 20–35% compared to controls. Preclinical studies reported 15–40% increases in dendritic spine density post-intervention, aligning with human imaging data showing functional connectivity increases of 10–25%.

Qualitative synthesis emphasized the critical role of timing and intensity. Early interventions (<4 weeks post-stroke) were associated with stronger synaptic remodeling than delayed programs. High-frequency, task-specific training induced long-lasting synaptic consolidation, while low-intensity or non-specific training yielded weaker effects ^{34, 36}.

Table 2: Summary

Domain	Synaptic Mechanism	Intervention	Outcome
Memory	LTP in hippocampus, spine remodeling	Cognitive training, enriched environment	Improved working & episodic memory
Attention	Prefrontal reorganization	Adaptive computerized training, tDCS	Enhanced sustained/selective attention
Executive Function	Strengthened fronto-parietal networks	Task-specific training, dopamine agonists	Better planning/problem-solving
Language	Synaptic strengthening, compensatory RH	Speech therapy, rTMS, combined therapy	Improved fluency & comprehension

DISCUSSION

General Overview of Findings

This systematic review demonstrates that synaptic plasticity is central to cognitive rehabilitation post-stroke. Across 68 included studies, evidence consistently indicated that both structural (e.g., dendritic spine remodeling, axonal sprouting) and functional mechanisms (e.g., LTP/LTD modulation, neurotrophic factor release) directly underpin improvements in memory, attention, executive function, and language abilities. Clinical interventions—such as computerized cognitive training, non-invasive brain stimulation (NIBS), and pharmacological agents—interacted synergistically with these mechanisms, producing measurable neurobiological and cognitive gains ⁴¹.

As per the review, recovery is not the same for all patients. The findings show that regarding recovery patterns, there are clear differences between cases. As per research findings, treatment results change based on where the brain damage is located, when treatment starts, and individual patient factors. This shows that brain plasticity varies in different brain regions and is controlled by the specific situation regarding each case ⁴². As per these findings, rehabilitation is not just compensatory treatment but works as synaptic remodeling therapy that can change disease progression. Regarding the new understanding, this approach can actually alter the course of the disease.

Synaptic Plasticity Mechanisms Driving Cognitive Recovery

Synaptic plasticity mechanisms further help the brain recover its thinking abilities. The brain itself changes its connections to restore cognitive functions.

Evidence shows that LTP and LTD processes are central to relearning after stroke. These mechanisms further help the brain itself adapt and recover lost functions. The hippocampus actually restored memory when LTP was fixed, while the prefrontal area definitely improved attention and thinking skills. LTD surely helps refine neural circuits by weakening unnecessary or harmful pathways, even though it is often considered maladaptive ⁴³. Moreover, this process plays an important role in improving overall circuit function.

Structural changes like spine turnover and new synapse formation were surely crucial for rebuilding brain networks around damaged areas. Moreover, these plastic changes helped restore connections in regions near the stroke site. The brain actually grows more spine connections in memory and thinking areas when people exercise or live in rich environments ⁴⁴. This definitely happens most clearly in the hippocampus and cortex regions. Basically, BDNF-TrkB signaling was the same molecular pathway that connected brain plasticity changes with actual behavioral results. Moreover, basically, when BDNF levels increased in blood after treatment, patients showed the same pattern of better thinking abilities in both lab and hospital studies ⁴⁵.

Cognitive Domain-Specific Plasticity

Plasticity effects differed across cognitive domains:

- **Memory:** Hippocampal remodeling was the most consistent correlate, emphasizing the role of LTP in CA1 pathways ⁴⁶.
- **Attention:** Plasticity in prefrontal networks mediated improvements in selective and sustained attention, supported by fMRI findings of enhanced dorsolateral prefrontal activity ⁴⁷.
- **Executive Function:** Strengthened connectivity between frontal and parietal regions underpinned gains in planning, flexibility, and problem-solving ⁴⁸.
- **Language:** Perilesional plasticity, supported by right hemisphere homologous recruitment, was key in aphasia recovery, particularly when facilitated by TMS and tDCS ⁴⁹.

These findings argue for domain-specific rehabilitation strategies, tailoring therapy to synaptic targets relevant to the impaired function.

Translational Value of Preclinical Findings

Preclinical models provided robust mechanistic data but highlighted translational challenges. While enriched environments and exercise consistently increased spine density and neurogenesis in rodents, these models lack the cognitive complexity and environmental constraints of human rehabilitation ⁵⁰. Moreover, the timing of interventions differed: animals often received immediate rehabilitation, whereas clinical patients typically face delays due to medical stabilization ⁵¹. This gap underscores the need for bridging studies that align experimental protocols with clinical realities.

Role of Multimodal Interventions

One of the most consistent findings was the superiority of multimodal interventions. Combining cognitive training with NIBS amplified synaptic responses, with rTMS and tDCS enhancing cortical excitability that facilitated Hebbian learning during training⁵². Similarly, pharmacological augmentation (e.g., SSRIs, cholinesterase inhibitors) increased neuroplastic readiness, enabling more effective behavioral consolidation⁵³.

Such approaches reflect a paradigm shift: instead of treating rehabilitation as isolated modules, integrated protocols target multiple layers of plasticity simultaneously, yielding durable gains⁵⁴.

Timing and Intensity: The Critical Window

Timing emerged as a decisive factor. Studies indicated that early interventions (within 2–4 weeks) post-stroke resulted in greater synaptic reorganization and better cognitive outcomes than delayed programs⁵⁵. High-intensity, repetitive practice induced long-lasting LTP, whereas low-frequency, non-specific tasks failed to consolidate gains⁵⁶. This aligns with the concept of a critical neuroplastic window post-stroke, when the brain is most responsive to rehabilitative input⁵⁷.

Biomarkers and Neuroimaging Evidence

Neuroimaging and biomarkers confirmed plasticity-related changes. fMRI revealed strengthened hippocampal-prefrontal connectivity post-training, while DTI demonstrated tract integrity restoration in language pathways⁵⁸. EEG identified increased theta-gamma synchrony, reflecting synaptic coupling during learning tasks⁵⁹. Peripheral markers such as BDNF and VEGF rose in parallel with improved cognition, suggesting feasible biological proxies for monitoring rehabilitation effectiveness⁶⁰.

Limitations of Current Evidence

Despite promising results, limitations remain:

- Heterogeneity in study design, cognitive measures, and plasticity markers restricts meta-analytic generalization.
- Small sample sizes reduce statistical power in many clinical trials.
- Lack of longitudinal data hinders understanding of long-term plasticity sustainability⁶¹.
- Few studies account for sex differences, age-related variability, or genetic predispositions in plasticity responses⁶².

Addressing these issues is crucial for producing scalable, personalized interventions.

Future Directions

Future research must adopt multimodal, longitudinal, and precision-based approaches. Integrating genetic, epigenetic, and neuroimaging biomarkers can enable patient stratification, optimizing rehabilitation protocols to individual plasticity profiles⁶³. Advances in wearable neurotechnology and AI-driven rehabilitation platforms provide scalable solutions for monitoring synaptic activity and tailoring interventions⁶⁴. Large-scale multicenter trials are needed to validate multimodal strategies, with standardized outcome metrics for both cognitive and synaptic endpoints⁶⁵.

Emerging fields such as optogenetics, pharmacogenomics, and closed-loop neuromodulation hold promise for more targeted modulation of plasticity⁶⁶. Bridging the translational gap between preclinical insights and human application should be a primary goal of future research^{67, 68}.

This review highlights synaptic plasticity as the biological foundation of cognitive rehabilitation post-stroke. Evidence strongly supports the role of LTP/LTD modulation, dendritic spine remodeling, and neurotrophic signaling in mediating recovery. While clinical outcomes vary, multimodal, early, and intensive interventions consistently yield superior results. Future research must integrate precision medicine, biomarkers, and digital innovations to fully harness plasticity for rehabilitation.

CONCLUSION

Synaptic plasticity represents the fundamental biological process that enables cognitive recovery after stroke, providing the basis for effective rehabilitation strategies. The evidence synthesized in this review demonstrates that mechanisms such as LTP/LTD modulation, dendritic spine remodeling, and neurotrophic signaling are central to regaining memory, attention, executive function, and language abilities. Clinical and preclinical findings alike confirm that early, intensive, and multimodal interventions—encompassing cognitive training, pharmacological support, physical activity, and non-

invasive brain stimulation—produce the most robust and durable outcomes. Despite current limitations in methodology and translational consistency, emerging technologies and biomarker-driven approaches promise to refine precision medicine in stroke rehabilitation. Harnessing synaptic plasticity not only offers a path to improving individual patient outcomes but also redefines rehabilitation as a biologically grounded, dynamic process of brain repair.

REFERENCES

1. Feigin VL, Norrving B, Mensah GA. Global burden of stroke. *Circ Res*. 2017;120(3):439–48.
2. Sachdev PS, Brodaty H, Valenzuela MJ, Lorentz L, Looi JC, Wen W, et al. Clinical determinants of dementia and mild cognitive impairment following ischaemic stroke: The Sydney Stroke Study. *Dement Geriatr Cogn Disord*. 2006;21(5-6):275–83.
3. Cumming TB, Marshall RS, Lazar RM. Stroke, cognitive deficits, and rehabilitation: still an incomplete picture. *Int J Stroke*. 2013;8(1):38–45.
4. Patel MD, Coshall C, Rudd AG, Wolfe CD. Cognitive impairment after stroke: Clinical determinants and its associations with long-term stroke outcomes. *J Am Geriatr Soc*. 2002;50(4):700–6.
5. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. *Nature*. 1993;361(6407):31–9.
6. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: An integrated view. *Trends Neurosci*. 1999;22(9):391–7.
7. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. *Neuron*. 2004;44(1):5–21.
8. Lu B, Nagappan G, Guan X, Nathan PJ, Wren P. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. *Nat Rev Neurosci*. 2013;14(6):401–16.
9. Cicerone KD, Langenbahn DM, Braden C, Malec JF, Kalmar K, Fraas M, et al. Evidence-based cognitive rehabilitation: Updated review of the literature from 2003 through 2008. *Arch Phys Med Rehabil*. 2011;92(4):519–30.
10. Johansson BB. Brain plasticity and stroke rehabilitation. *Stroke*. 2000;31(1):223–30.
11. Lazar RM, Boehme AK. Aphasia as a predictor of stroke outcome. *Curr Neurol Neurosci Rep*. 2017;17(11):83.
12. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. *Nat Rev Neurosci*. 2009;10(12):861–72.
13. Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. *Nat Rev Neurosci*. 2013;14(1):7–23.
14. Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. *Nat Rev Neurosci*. 2010;11(10):682–96.
15. Huganir RL, Nicoll RA. AMPARs and synaptic plasticity: the last 25 years. *Neuron*. 2013;80(3):704–17.
16. Sala C, Segal M. Dendritic spines: the locus of structural and functional plasticity. *Physiol Rev*. 2014;94(1):141–88.
17. Wake H, Moorhouse AJ, Nabekura J. Functions of microglia in the central nervous system—beyond the immune response. *Neuron*. 2013;77(1):9–20.
18. Mang CS, Campbell KL, Ross CJ, Boyd LA. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation. *Front Hum Neurosci*. 2013;7:818.
19. Corbett D, Carmichael ST, Murphy TH, Jones TA, Schwab ME, Jolkkonen J, et al. Enhancing the alignment of preclinical stroke research with clinical trials: lessons from the STAIR consortium. *Stroke*. 2017;48(2):507–12.
20. Ward NS. Restoring brain function after stroke — bridging the gap between animals and humans. *Nat Rev Neurol*. 2017;13(4):244–55.
21. Grefkes C, Ward NS. Cortical reorganization after stroke: how much and how functional? *Neuroscientist*. 2014;20(1):56–70.
22. Pollock A, Farmer SE, Brady MC, Langhorne P, Mead GE, Mehrholz J, et al. Interventions for improving upper limb function after stroke. *Cochrane Database Syst Rev*. 2014;(11):CD010820.
23. Weinstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, et al. Guidelines for adult stroke rehabilitation and recovery. *Stroke*. 2016;47(6):e98–169.
24. Hara Y. Brain plasticity and rehabilitation in stroke patients. *J Nippon Med Sch*. 2015;82(1):4–13.
25. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA statement. *PLoS Med*. 2009;6(7):e1000097.
26. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *BMJ*. 2021;372:n71.
27. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al., editors. *Cochrane handbook for systematic reviews of interventions*. 2nd ed. Chichester: Wiley-Blackwell; 2019.
28. Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomized or non-randomized studies of healthcare interventions. *BMJ*. 2017;358:j4008.
29. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ*. 2008;336(7650):924–6.
30. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomized trials. *BMJ*. 2019;366:l4898.

31. Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE's risk of bias tool for animal studies. *BMC Med Res Methodol.* 2014;14:43.

32. Bliwise DL. Sleep disorders and cognition in older adults. *Clin Geriatr Med.* 2009;25(3):539–53.

33. van Meer MP, van der Marel K, Wang K, Otte WM, El Bouazati S, Roeling TA, et al. Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. *J Neurosci.* 2010;30(11):3964–72.

34. Jones TA, Kleim JA, Greenough WT. Synaptogenesis and dendritic growth in the cortex after brain injury: Stimulating and constraining factors. *Cereb Cortex.* 1996;6(5):605–12.

35. Chen JL, Lin WC, Cha JW, So PT, Kubota Y, Nedivi E. Structural basis for the role of inhibition in facilitating adult brain plasticity. *Nat Neurosci.* 2011;14(5):587–94.

36. Meinzer M, Darkow R, Lindenberg R, Flöel A. Electrical stimulation of the brain in stroke rehabilitation: current status and future directions. *Stroke.* 2016;47(2):461–6.

37. Berthier ML, Green C, Higueras C, Fernández I, Hinojosa J, Martín MC. A randomized, placebo-controlled study of donepezil in post-stroke aphasia. *Neurology.* 2006;67(9):1687–9.

38. Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). *Clin Neurophysiol.* 2020;131(2):474–528.

39. Lindenberg R, Zhu LL, Rüber T, Schlaug G. Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging. *J Neurol Sci.* 2012;316(1-2):57–63.

40. Wang L, Conner JM, Rickert J, Tuszyński MH. Structural plasticity within highly specific neuronal populations identifies a unique parcellation of motor learning in the adult brain. *Neuron.* 2011;71(3):507–20.

41. Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation right: what can be learned from animal models? *Neurorehabil Neural Repair.* 2012;26(8):923–31.

42. Nudo RJ. Postinfarct cortical plasticity and behavioral recovery. *Stroke.* 2007;38(2 Suppl):840–5.

43. Takeuchi N, Izumi S. Rehabilitation with poststroke motor recovery: A review with a focus on neural plasticity. *Stroke Res Treat.* 2013;2013:128641.

44. Li S, Overman JJ, Katsman D, Kozlov SV, Donnelly CJ, Twiss JL, et al. An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke. *Nat Neurosci.* 2010;13(12):1496–504.

45. Mang CS, Campbell KL, Ross CJ, Boyd LA. BDNF: linking exercise, synaptic plasticity, and cognition. *Neuroscientist.* 2013;19(5):491–507.

46. Bliss TV, Collingridge GL, Morris RG. Long-term potentiation: enhancing neuroscience and neurology. *Neuron.* 2018;100(4):678–91.

47. Sun FT, Miller LM, Rao AA, D'Esposito M. Functional connectivity of cortical networks involved in working memory. *Hum Brain Mapp.* 2007;28(8):796–807.

48. Koechlin E, Summerfield C. An information theoretical approach to prefrontal executive function. *Trends Cogn Sci.* 2007;11(6):229–35.

49. Turkeltaub PE, Messing S, Norise C, Hamilton RH. Are networks for residual language function and recovery consistent across aphasic patients? *Neurology.* 2011;76(20):1726–34.

50. Clarkson AN, Huang BS, Macisaac SE, Mody I, Carmichael ST. Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. *Nature.* 2010;468(7321):305–9.

51. Carmichael ST. Brain excitability in stroke: The yin and yang of stroke progression. *Arch Neurol.* 2012;69(2):161–7.

52. Stagg CJ, Johansen-Berg H. Studying the effects of transcranial direct-current stimulation in stroke recovery using magnetic resonance imaging. *Front Hum Neurosci.* 2013;7:857.

53. Chollet F, Tardy J, Albucher JF, Thalamas C, Berard E, Lamy C, et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomized placebo-controlled trial. *Lancet Neurol.* 2011;10(2):123–30.

54. Boyd LA, Hayward KS, Ward NS, Stinear CM, Rosso C, Fisher RJ, et al. Biomarkers of stroke recovery: consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. *Int J Stroke.* 2017;12(5):480–93.

55. Zeiler SR, Krakauer JW. The interaction between training and plasticity in the poststroke brain. *Curr Opin Neurol.* 2013;26(6):609–16.

56. Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. *J Neurosci.* 2004;24(5):1245–54.

57. Hara Y. Poststroke recovery and neurorehabilitation. *Int J Neurol Neurother.* 2015;2(1):1–8.

58. Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ, et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. *Ann Neurol.* 2010;67(3):365–75.

59. Finnigan S, van Putten MJ. EEG in ischaemic stroke: quantitative EEG can uniquely inform (sub-)acute prognoses and clinical management. *Clin Neurophysiol.* 2013;124(1):10–9.

60. Fang W, Zhang R, Ye Y, Wang J, Hong Z, Shi Y, et al. Association of serum BDNF levels with cognitive recovery in stroke patients after rehabilitation. *Eur Neurol.* 2011;65(5):269–74.

61. Loetscher T, Lincoln NB. Cognitive rehabilitation for attention deficits following stroke. *Cochrane Database Syst Rev.* 2013;(5):CD002842.

62. Swayne OB, Rothwell JC, Ward NS, Greenwood RJ. Stages of motor output reorganization after hemispheric stroke suggested by longitudinal studies of cortical physiology. *Cereb Cortex.* 2008;18(8):1909–22.

63. Krakauer JW, Hadjiosif AM, Xu J, Wong AL, Haith AM. Motor learning. *Compr Physiol.* 2019;9(2):613–63.

64. Danzl MM, Etter NM, Andreatta RD, Kitzman PH. Facilitating neuroplasticity after stroke: harnessing the principles of motor learning to optimize outcomes. *Top Stroke Rehabil.* 2013;20(1):20-31.
65. Ward NS, Brander F, Kelly K. Intensive upper limb neurorehabilitation in chronic stroke: outcomes from the Queen Square programme. *J Neurol Neurosurg Psychiatry.* 2019;90(5):498-506.
66. Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. *N Engl J Med.* 2010;362(19):1772-83.
67. Wahl AS, Omlor W, Rubio JC, Chen JL, Zheng H, Schröter A, et al. Neuronal repair. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. *Science.* 2014;344(6189):1250-5.
68. Zeiler SR, Krakauer JW. The interaction between training and plasticity in the poststroke brain. *Curr Opin Neurol.* 2013;26(6):609-16.