
International Journal of Environmental Sciences 

ISSN: 2229-7359 

Vol. 11 No. 17s, 2025 

https://theaspd.com/index.php 

 

2811 
 

Wearable EEG Devices For Cognitive Monitoring And 
Diagnosis: A Systematic Review Of Advances, Applications, 
And Challenges 
 

Shalini Ranjan
1
, Dipika Baria2 

1
Assistant Professor, Department of Physiology, Smt, B K Shah Medical Institute & Research Centre, 

Sumandeep Vidyapeeth University, Piparia, Vadodara, Gujarat, India 
2
Professor, Department of Physiology, Smt, B K Shah Medical Institute & Research Centre, Sumandeep 

Vidyapeeth University, Piparia, Vadodara, Gujarat, India 
 
Abstract 
Wearable electroencephalography (EEG) devices have emerged as transformative tools in the fields of cognitive 
monitoring and neurological diagnosis, offering non-invasive, real-time assessment of brain activity in both clinical and 
non-clinical environments. Unlike conventional EEG systems that require bulky setups and specialized environments, 
wearable EEG technologies—ranging from headbands and ear-centered grids to textile-integrated electrodes—enable 
continuous and unobtrusive brain monitoring, thereby expanding opportunities for early detection, long-term 
assessment, and personalized interventions in conditions such as Alzheimer’s disease, mild cognitive impairment, 
epilepsy, and cognitive workload-related disorders. This systematic review, conducted in accordance with PRISMA 
2020 guidelines, synthesizes findings from peer-reviewed studies published between 2010 and 2025, retrieved from 
PubMed, Scopus, IEEE Xplore, and Web of Science, to critically evaluate the diagnostic accuracy, signal quality, 
usability, and clinical applicability of wearable EEG devices for cognitive assessment. A total of 78 studies met the 
inclusion criteria, encompassing both diagnostic and monitoring applications, with varied methodological approaches 
ranging from signal processing algorithms and machine learning classifiers to multimodal sensor integration. Findings 
indicate that wearable EEG systems demonstrate high potential for early-stage cognitive decline detection, real-time 
workload monitoring, and neurorehabilitation, although challenges remain in artifact reduction, electrode-skin 
interface stability, and standardization of data interpretation. Moreover, integration with mobile health platforms 
and cloud-based analytics is accelerating the shift toward patient-centric, home-based neurological care. However, 
heterogeneity in device specifications, study designs, and cognitive assessment protocols limits cross-study comparability, 
underscoring the need for standardized validation frameworks and multi-centric trials. The review concludes that while 
wearable EEG technology is poised to revolutionize cognitive diagnostics and monitoring, future advancements must 
focus on improving long-term wearability, enhancing signal robustness in real-world environments, and establishing 
regulatory and ethical guidelines to ensure safe and equitable adoption in both healthcare and everyday life 
applications. 
Keywords: Wearable EEG, Cognitive monitoring, Neurological diagnosis, Alzheimer’s disease, Epilepsy, Mild 
cognitive impairment, Neurorehabilitation, Mobile health 
 
INTRODUCTION 
Background 
Electroencephalography (EEG) has long been regarded as one of the most accessible, non-invasive, and 
temporally precise techniques for recording brain activity 1. By capturing voltage fluctuations from the 
scalp that reflect underlying cortical neuronal oscillations, EEG enables researchers and clinicians to study 
brain function in real time with millisecond resolution 2. Historically, EEG systems have been bulky, 
tethered to clinical laboratories, and reliant on trained technicians, which has limited their use to 
scheduled sessions in controlled environments 3. These constraints have restricted the monitoring of 
cognitive processes and neurological disorders to episodic snapshots rather than continuous, real-world 
assessment 4. 
The rise of wearable EEG devices—portable, wireless, and often using dry or semi-dry electrodes—has 
revolutionized the potential scope of EEG applications 5. These devices are lightweight, ergonomically 
designed for prolonged wear, and capable of transmitting high-quality data to cloud platforms or mobile 
applications for real-time analysis 6. The shift from traditional clinical EEG setups to wearable systems 
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reflects broader trends in digital health technology, where accessibility, user comfort, and integration with 
artificial intelligence (AI) algorithms have become central drivers of innovation 7. 
With global neurological disorder prevalence projected to increase sharply—driven by ageing populations 
and lifestyle factors—the ability to monitor cognitive function continuously is emerging as a public health 
priority 8. Wearable EEG devices enable the capture of ecologically valid data during everyday activities, 
which could enhance early diagnosis, personalize interventions, and monitor treatment efficacy 9. 
Cognitive Disorders and Monitoring Needs 
Alzheimer's disease (AD), mild cognitive impairment (MCI), Parkinson's Disease dementia, and attention-
deficit/hyperactivity disorder (ADHD) are common cognitive disorders that exert large personal, societal, 
and economic burdens 10. AD alone affects more than 55 million people across the globe, and the 
numbers are predicted to double by 2050 with no effective preventive strategies in place 11. Given the 
silent, insidious prodromal phase of neurodegeneration that typically lasts years before clinically 
detectable disease emerges 12, premature characterization of even subtle cognitive impairment is valuable. 
EEG-based biomarkers, such as spectral power changes, coherence patterns, and event-related potentials 
(ERPs), have been shown to identify cognitive decline at earlier stages than some neuropsychological tests 
13. Clinical recordings, however, detect only and examine the transient or potentially ephemeral 
abnormalities that may be apparent in conditions like epilepsy or delirium, which fluctuate over time 14. 
Longitudinal, ambulatory data collection. One potential way to address this limitation through 
longitudinal and ambulatory assessments of brain function is the use of wearable EEG devices for more 
representative monitoring 15. 
In addition to neurodegeneration, persistent cognitive monitoring can be useful for psychiatric disorders 
(such as schizophrenia), in the assessment after traumatic brain injury, or to adjust cognitive workload in 
high-performance professions, like aviation and military operations 16. Real-time monitoring of neural 
activity during natural behaviour is promising to narrow diagnostic bins and facilitate individualized 
therapeutic intervention 17. 
Advances in Wearable EEG Devices 
The miniaturization of EEG hardware has been driven by advances in sensor technology, wireless 
communication protocols (Bluetooth Low Energy, Wi-Fi 6), and low-power signal processing chips 18. Dry 
electrode systems have addressed many of the practical challenges of wet electrodes, such as the need for 
conductive gel, which can cause discomfort and degrade signal quality over time 19. High-density wearable 
EEG caps with 32–64 channels are now commercially available, offering spatial resolution comparable to 
laboratory-grade systems 20. 
Integration with machine learning algorithms has further enhanced the diagnostic potential of wearable 
EEG devices. Deep learning models can automatically classify EEG patterns associated with specific 
cognitive states or disorders, reducing the need for manual interpretation 21. In addition, edge-computing 
architectures allow real-time analysis directly on the device, minimizing latency and preserving data privacy 
by reducing the need for raw data transmission 22. 
Recent studies have also explored hybrid systems that combine wearable EEG with other biosignals, such 
as functional near-infrared spectroscopy (fNIRS), electrocardiography (ECG), or galvanic skin response 
(GSR), to provide multimodal cognitive assessment 23. These developments suggest a future in which 
cognitive monitoring is seamlessly integrated into daily life via smart headwear, earbuds, or even textile-
embedded sensors 24. 
Applications in Diagnosis 
Research in the diagnostic area has included wearable EEG devices that have shown promise in the early 
detection of dementias through examination of theta–beta power ratios and alpha asymmetry patterns²⁵. 
For example, continuous monitoring in epilepsy enables more accurate seizure detection and 
characterization, which may lead to treatment changes on a near-real-time basis²⁶. Similarly, ADHD 
diagnosis has benefited from EEG-based wearable real-world attention metrics instead of relying solely on 
questionnaires²⁷. 
Another significant trend we are seeing on the rise is in sleep medicine, where wearables like EEG tracking 
headbands can measure sleep architecture and diagnose disorders such as insomnia or REM behavior 
disorder without requiring an overnight polysomnography in a sleep lab²⁸. Long-term EEG monitoring 
can help to differentiate between psychiatric disorders whose symptoms have some overlap, such as 
depression and early dementia²⁹, by revealing unique neurophysiological marks. 
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Wearable EEG has been utilized in the assessment of fatigue and cognitive load among drivers, pilots, 
and other industrial workers, with the potential to impact safety and productivity within occupational 
health³⁰. Integration of real-time feedback mechanisms (same example: alerts to the wearer when 
drowsiness is detected) showcases how wearable EEG could also be beyond passive monitoring but active 
intervention³¹. 
 
Challenges and Limitations 
Despite these advances, wearable EEG devices face several challenges that must be addressed before they 
can be adopted widely in clinical practice. Signal quality remains a concern, particularly in mobile 
environments where motion artifacts, muscle activity, and environmental noise can degrade recordings³². 
Although dry electrodes improve comfort, they may have higher impedance than wet electrodes, affecting 
low-frequency signal fidelity³³. 
Data privacy and ethical considerations are increasingly important as wearable EEG devices generate large 
volumes of sensitive neurodata. Ensuring compliance with regulations such as the General Data 
Protection Regulation (GDPR) and the Health Insurance Portability and Accountability Act (HIPAA) is 
essential³⁴. There is also a need for standardization in data formats, signal processing pipelines, and 
validation protocols to facilitate cross-study comparability³⁵. 
From a clinical perspective, the interpretation of wearable EEG data still requires trained expertise, and 
the integration of these devices into existing healthcare systems poses logistical and reimbursement 
challenges³⁶. Further, long-term adherence in patients remains a concern, as device comfort, battery life, 
and maintenance requirements can influence sustained use³⁷.Rationale for the Present Review 
Although interest in wearable EEG has surged, the literature remains fragmented across devices, 
protocols, and outcomes, making it difficult for clinicians and methodologists to compare results or 
translate them into practice. Studies differ widely in electrode configurations (2–32 channels), sensor 
chemistries (dry, semi-dry, textile), sampling rates, and artifact-handling pipelines, while cognitive 
endpoints span everything from brief task ERPs to multi-day resting-state trends. This heterogeneity 
obscures which combinations of hardware + protocol + analytics consistently yield decision-grade signals 
in real-world contexts. In parallel, many investigations emphasize feasibility or short-term accuracy but 
underreport adherence, calibration burden, longitudinal reliability, and implementation constraints 
(telehealth integration, clinician workflow, privacy safeguards). As a result, health-system stakeholders lack 
a consolidated map of what works, for whom, and under what conditions. 
This review is designed to close those gaps by: (i) synthesizing evidence specifically on wearable (not 
stationary) EEG for cognitive monitoring and diagnosis across neurology, psychiatry, sleep, rehabilitation, 
and safety-critical work; (ii) mapping device classes to use-cases (e.g., low-channel headbands for workload 
vs. higher-density semi-dry caps for connectivity/ERP work); (iii) critically appraising methodological 
quality with a transparent checklist (PRISMA-guided selection and JBI risk-of-bias appraisal); and (iv) 
distilling practice-ready guidance on acquisition, artifact control, and model validation that supports 
reproducibility and clinical decision making. Concretely, we pose six review questions: 
1. Which EEG features (spectral, ERP, connectivity) are most reliable in mobile conditions for 
cognitive status and change detection? 
2. Under comparable tasks, how do wearable systems perform relative to clinical-grade EEG 
(agreement, sensitivity/specificity, failure modes)? 
3. Which machine-learning approaches (subject-independent vs. calibrated, classical vs. deep) 
generalize across days/devices without data leakage? 
4. What device and protocol characteristics (channels, electrode type, sampling, baseline tasks) best 
predict data quality and user adherence? 
5. Where are the evidence gaps (e.g., diverse cohorts, multi-month follow-up, home-based cognition 
tracking, multimodal fusion)? 
6. What are the regulatory, ethical, and workflow barriers—and the minimum reporting standards—
needed for clinical translation? 
By aligning findings to these questions, the review seeks to produce a clear taxonomy of use-cases, a 
minimum reporting checklist (montage, filters, artifact methods, validation design, calibration time), and 
a prioritized research agenda (longitudinal, multi-center studies; hybrid EEG–context sensing; 
explainable, leak-proof analytics). The goal is to help researchers, clinicians, and product teams converge 
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on standardized, reproducible practices so wearable EEG can move from promising prototypes to scalable, 
equitable tools for continuous cognitive health assessment.  
Methods 

Search Strategy and Data Sources 
A systematic literature search was conducted across PubMed, Scopus, Web of Science, and IEEE Xplore 
databases from January 2010 to December 2024. The search strategy combined Boolean operators and 
relevant keywords: ("wearable EEG" OR "portable EEG" OR "ambulatory EEG") AND ("cognitive monitoring" 
OR "cognitive assessment" OR "neurological diagnosis"). We followed the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) guidelines for study selection and reporting 38. 
Inclusion and Exclusion Criteria 
We included studies that: 
1. Utilized wearable EEG devices for cognitive monitoring or neurological diagnosis. 
2. Reported quantitative or qualitative cognitive performance outcomes. 
3. Were published in peer-reviewed journals in English. 
We excluded: 
• Studies using non-wearable or purely stationary EEG systems. 
• Non-human trials, conference abstracts without full papers, and editorials. 
• Studies focusing solely on hardware development without clinical validation 39. 
Study Selection Process 
Two independent reviewers screened the titles and abstracts of identified studies. Full-text articles were 
retrieved for potentially eligible studies. Discrepancies were resolved by consensus 40. The screening 
process followed PRISMA’s four-phase approach: 
1. Identification of records. 
2. Screening for relevance. 
3. Full-text eligibility assessment. 
4. Final inclusion of studies 41. 
Data Extraction and Quality Assessment 
A standardized extraction sheet was developed to record study design, population, EEG device 
specifications, cognitive parameters measured, and key outcomes. Study quality was assessed using the 
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Joanna Briggs Institute (JBI) Critical Appraisal Checklist, rating studies as low, moderate, or high quality 
42. 
Data Synthesis 
Data were synthesized narratively due to heterogeneity in EEG devices, cognitive assessment tools, and 
study designs. No meta-analysis was performed as the included studies varied significantly in methodology 
and outcome measures 43,44. 

RESULTS 
1. Study Selection and Screening Outcomes 
A total of 1,248 records were initially identified from PubMed, Scopus, IEEE Xplore, Web of Science, 
and grey literature⁴⁶. After removing 312 duplicates, 936 records remained for title and abstract 
screening. Of these, 658 were excluded due to irrelevance (non-wearable EEG studies, animal 
experiments, unrelated imaging modalities). The 278 full-text articles reviewed in detail led to the 
exclusion of 200 studies for not meeting quality or eligibility criteria. Finally, 78 studies were included, 
aligning with the PRISMA selection diagram⁴⁷.There are several versions of models, which have been 
developed over the years, and an increase in publication trends post-2019, with regards to wearable EEG 
applications⁴⁸. Regional contributions issued were divided into countries of North America (34%), 
Europe (28%), and Asia-Pacific (26%) and multinational collaborations with 12%⁴⁹.  
2. Demographic and Clinical Characteristics 
The study cohorts included healthy control groups and patients diagnosed with defined neurological and 
psychiatric disorders⁵⁰. In all samples, the median sample size was 42 participants (range 6–560)⁵¹. 
Pediatric age (< 18 years): 14%, young adults (18–< 35 years): 38%, middle-aged adults (36–< 60): 21%, 
and older adults (> 60 years); 27%⁵².Clinical Criteria included: epilepsy, stroke, Parkinson's disease, 
Alzheimer's disease, depression, ADHD⁵³. 
3. Device Types and Technical Specifications 
Four of the reviewed devices were commercial headsets, Emotiv EPOC, Muse, NeuroSky MindWave and 
OpenBCI Ultracortex⁵⁴ while two were custom-built prototypes.Typical electrode configurations: 2–32 
channels; mainly dry electrodes for portability⁵⁵. 
• Sampling Rates: 128–1,024 Hz⁵⁶.Connectivity Microcontroller + BLE, optionally Wi-Fi (using the 
cloud for longer duration processing)⁵⁷, mostly 
• Battery Life: 4–12 hours depending on device complexity⁵⁸. 
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4. Application Domains 
These studies were decomposed into five main categories: 
1. Clinical Diagnosis & Monitoring (42%): seizure detection, dementia progression tracking⁵⁹. 
2. Cognitive & Emotional State Monitoring (35%) – stress, fatigue, workload⁶⁰. 
3. Brain–Computer Interfaces (23%) – for motor-impaired individuals⁶¹. 
4. Training in Neurofeedback (15%) – attention improvement, anxiety relief⁶². 
5. Sports & Human Performance (9%) – reaction time and concentration optimization⁶³. 
5. Validation with Clinical-Grade EEG 
Eighteen studies conducted direct comparisons with hospital-grade EEG, reporting strong correlations 
for alpha, beta, and theta bands (r = 0.82–0.95) but moderate for gamma (r = 0.65–0.78)⁶⁴. Differences 
were primarily due to motion artifacts and reduced electrode counts⁶⁵. 
6. Analytical Approaches 
The most common metrics were: 
• Event-Related Potentials (ERPs): P300, N200 66. 
• Spectral Power: alpha/theta ratio for relaxation vs. attention 67. 
• Connectivity Analysis: coherence, phase-locking value 68. 
Machine learning methods (SVM, CNN, random forests) achieved accuracies between 78%–96% 69. 
7. Multimodal Integrations 
Nine studies integrated EEG with heart rate variability, skin conductance, and eye tracking, boosting 
classification accuracy by 10–20% 70. 
8. Usability and Comfort Assessments 
Twenty-four studies evaluated user comfort, setup time, and long-term wearability. On average, setup 
times for dry-electrode systems were under 5 minutes, while gel-based systems required 15–25 minutes. 
Participants reported higher comfort scores with lightweight headsets (<300g) and minimal cabling. 
9. Cost and Accessibility Analysis 
Consumer-grade devices ranged from USD 200–1,200, while research-grade wearables were USD 2,000–
8,000. Six studies discussed cost-effectiveness, noting that low-cost wearables could democratize access to 
neurotechnology in resource-limited settings. 
10. Longitudinal Performance Monitoring 
Eight studies tracked participants over 6–12 months, showing that device signal stability could decline 
slightly due to electrode wear, but performance was recoverable through recalibration and electrode 
replacement. 
11. Regulatory and Ethical Considerations 
Only 14 studies addressed regulatory readiness, with most consumer devices lacking FDA or CE 
certification for clinical use. Ethical discussions highlighted data privacy, informed consent, and 
neurosecurity risks. 
 
DISCUSSION 
Principal findings and interpretation 
Mature toolkit for longitudinal engagement of cognition Lombardo et al. offers a timely and 
comprehensive meta-analysis of 78 studies, which confirm that the wearable electroencephalography 
(EEG) has graduated from scale validation or proof-of-concept to becoming an entire practical toolset for 
cognitive monitoring and diagnosis in clinical, home, or operational settings¹. Taken together, the 
evidence suggests that modern wearable systems—ranging from low-channel headbands and ear-centered 
arrays to textile/semi-dry caps and research-grade portable rigs, can capture spectral and event-related 
features most relevant in cognitive contexts (alpha/theta power dynamics, beta reactivity, ERD/ERS, 
P300/N200), often with equal performance compared to benchtop systems when protocols and 
preprocessing are optimized⁷¹. When combined with the emerging increase in potential and longitudinal 
designs, our analysis suggests that portable EEG is moving from “good enough for pilots” to decision-
support quality for clinicians and human-factors practitioners, so long as data quality safeguards and 
analytic standards are maintained⁷¹,⁷⁶. 
Consonance and elaboration with previous literature 
The review reinforces three themes already emerging in the literature on mobile neurotechnology: (i) 
ecological validity is vital—real-world recordings reveal predictive structure that lab experiments may miss; 
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(ii) hardware comfort and speed to set-up are not mere conveniences but active levers of adherence and 
ultimate data completion; and (iii) analytics—not amplitude—are the bottleneck for translation.Prior field 
studies of daily-life EEG show that with careful sensor placement and protocol design, researchers can 
obtain stable oscillatory readouts during walking, driving, learning, or rehabilitation tasks, enabling 
outcomes that better map onto everyday function than traditional, brief lab visits⁷¹,⁷⁶. Our findings 
extend that literature by showing broader disease coverage (neurodegenerative, psychiatric, sleep, and 
epilepsy applications) and clearer evidence for task-agnostic indices (e.g., resting-state alpha/theta) that 
scale across devices and contexts when coupled to robust artifact handling⁷². 
Technical validity: signal quality, artifacts, and reliability 
The most consequential technical risks in wearable EEG are motion and myogenic artifacts, electrode–
skin impedance variability, and contextual confounds (lighting, temperature, head motion). Included 
studies that achieved clinic-grade reliability did so by combining: (1) mechanically stable, low-impedance 
sensors; (2) brief calibration blocks to individualize spatial filters; and (3) artifact-aware pipelines—
Independent Component Analysis (ICA), wavelet denoising, adaptive filtering, and activity recognition 
to mask motion epochs⁷². A consistent observation is that gamma-band measures remain the least robust 
in motion-rich environments; where gamma is required, immobilizing mounts, jaw-clench detection, or 
task designs minimizing cranial muscle activation are beneficial⁷². Reliability over weeks to months hinges 
on reproducible electrode placement and simple at-home checks (impedance/quality meters), which 
several studies used successfully to maintain stable alpha and theta baselines across follow-ups⁷¹. 
Device classes and use-case fit 
No single wearable form factor dominates across all use-cases. Low-channel frontal headbands excel for 
fatigue/workload monitoring and coarse attentional indices, owing to rapid set-up and tolerability; ear-
centered arrays (e.g., cEEGrid-style) trade channel count for discretion and long-wear comfort, suiting 
sleep and long-shift monitoring; semi-dry textile caps deliver higher channel density for connectivity and 
ERP work but demand more careful placement and battery budgeting. Results indicate that device 
selection should be prespecified by hypothesis: connectivity mapping and multi-lobe ERPs call for ≥16 
channels; workload/fatigue screens often suffice with 2–8 frontal/temporal channels; and seizure 
detection can leverage targeted montages plus ambulatory duration. These choices are consistent with 
pragmatic daily-life EEG guidance reported in prior mobile EEG frameworks⁷¹,⁷⁶. 
Multimodal, hybrid, and context-aware sensing 
A recurring pattern is the incremental value of multimodal fusion. When EEG is fused with fNIRS 
(hemodynamics), cardiovascular measures (HR/HRV), electrodermal activity, or eye/face motion, 
classification accuracy for cognitive states and differential diagnostics typically increases, and false 
positives fall, particularly in movement-rich settings⁷⁴. Hybrid EEG–fNIRS wearables provide 
complementary temporal–spatial windows and help disambiguate cortical activation from ocular or 
muscular contamination; they also enable neurovascular coupling readouts that may flag early 
cerebrovascular or neurodegenerative change beyond pure electrophysiology⁷⁴. Context signals 
(accelerometry, head kinematics) further assist artifact gating and improve model calibration in the 
wild⁷²,⁷⁶. 
Analytics and machine learning for translation 
The strongest performance gains in the last five years came not only from hardware but from modeling 
pipelines. Studies deploying supervised classifiers (SVMs, random forests) and deep architectures 
(CNNs/TCNs) consistently reported robust, generalizable discrimination of fatigue, workload, disease 
status, or sleep stages, especially when models were subject-calibrated or adapted with transfer learning to 
new sessions/devices⁷⁵. Still, across studies, two pitfalls recur: data leakage (e.g., window overlap across 
train/test) inflating metrics, and under-described preprocessing that hinders reproducibility. Future work 
should pre-register pipelines, enforce leak-proof cross-validation, and report calibration cost in minutes—
not just accuracy—so clinicians understand the workflow burden⁷⁵. 
Clinical domains: where evidence is strongest now 
Neurodegeneration. The converging evidence across Alzheimer’s disease and mild cognitive impairment 
supports resting-state alpha/theta changes, beta reactivity, and ERP latency shifts as viable early markers 
that wearable systems can capture at home, enabling longitudinal trajectories rather than episodic 
snapshots. Wearables therefore complement neuropsychological testing by adding objective, time-
resolved measures sensitive to subclinical change⁷¹. 
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Psychiatry For ADHD and mood disorders, wearables add objective anchors to symptom scales, with 
attentional and frontal asymmetry metrics showing promise for treatment monitoring; however, 
generalization beyond controlled tasks depends on field-robust pipelines⁷⁵. 
Epilepsy and sleep. Ambulatory EEG extends monitoring windows to capture rare seizures and yields 
high-agreement sleep staging in non-laboratory environments, provided that sensor fixation and artifact 
handling are thoughtfully engineered⁷¹,⁷⁶. 
Neurorehabilitation and BCI. In motor recovery and assistive communication, wearable EEG enables 
home-based practice, progression tracking, and closed-loop neurofeedback that translates to functional 
gains when paired with structured training⁷⁷. 
Usability, adherence, and human factors 
Across user studies, the setup time duration and comfort with the system (e.g., wearing or using it) and 
level of perceived intrusiveness have emerged as the most reliable predictors of adherence over two weeks. 
When similar levels of signal fidelity are attained in gel systems, adherence is lower than that observed in 
dry/semi-dry systems with <5-minute setup and lightweight mounts. In real settings (shift work, 
classrooms, rehab), micro-frictions charging, cleaning, and donning in restricted spaces are the major 
hurdles. The most effective protocols employed brief daily check-ins, plus push-notification reminders 
and on-device meters to keep users motivated and streams of data tidy⁷¹,⁷⁶. 
Implementation and health-system integration 
Clinical adoption requires convergence of three layers: (1) data layer, standards for storage, segmentation, 
and annotation of wearable EEG with synchronized (2) context; analytics layer, validated models that are 
regulatory-grade with version control and audit explainability; (3) workflow layer, EHR integration, role 
definitions, and defined escalation pathways to appropriate members when abnormal findings occur. 
Field studies of tele EEG show that remote supervision and asynchronous review are possible⁷¹,⁷⁶; 
coupling this with defined alert thresholds and patient information summaries increases the signal-to-
decision speed and decreases alarm fatigue. 
Ethical, legal, and privacy considerations 
Wearable EEG produces highly sensitive neural data that may reveal cognitive fatigue, emotional valence, 
or early disease. The ethical bar is therefore high: transparent consent for continuous, passive capture; 
local/edge processing where feasible; encryption in transit and at rest; and granular user controls over 
sharing intervals and recipients. Studies also caution against secondary use beyond the clinical/research 
purpose (e.g., employment screening), underscoring the need for clear governance. Artifact-aware 
pipelines reduce misclassification risk (e.g., stress vs. motion), which is not only a technical fix but an 
ethical safeguard against harmful false labels⁷². 
Standardization agenda: from promising to publishable to billable 
The heterogeneity we observed—in channels, montages, preprocessing, windowing, endpoints—limits 
meta-analysis and slows translation. Convergence is emerging around reference tasks (eyes-closed/eyes-
open baselines; oddball/P300 probes for attention; n-back for working memory) and reporting checklists 
(montage, sampling rate, filters, artifact handling, cross-validation design). Community adoption of 
minimum reporting standards and open benchmark datasets captured in realistic conditions (walking, 
speaking, micro-expressions) would accelerate head-to-head comparisons and de-risk procurement 
decisions for hospitals and regulators⁷²,⁷⁶. Hybrid paradigms and EEG–fNIRS exemplars can anchor 
such standards where both timing and topology matter⁷⁴. 
Economic and equity considerations 
Cost analyses in the included literature suggest that consumer-grade wearables can open access in resource-
constrained settings, but total cost of ownership depends on replacement cycles, consumables (adhesives, 
electrode foams), and cloud analytics fees. From an equity lens, wearable EEG is most impactful when 
paired with language-appropriate onboarding, loaner programs, and offline-capable apps. Decentralized, 
home-based EEG lowers travel friction for older adults and caregivers; however, without digital literacy 
support, these benefits may concentrate among already advantaged groups⁷¹. 
Strengths and limitations of this review 
Strengths include a broad, multi-database search; inclusion of field-realistic studies; and a structured 
quality assessment that prioritized methodological transparency and artifact-aware analysis. Limitations 
mirror the field’s: heterogeneity precluded meta-analysis, some device classes remain under-studied in 
certain disorders, and publication bias toward positive feasibility cannot be excluded. Nevertheless, the 
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convergence across independent teams and devices in core spectral/ERP findings increases our 
confidence in the main conclusions⁷¹,⁷⁶. 
Future directions 
Three priorities are actionable now. First, commit to pre-registered, leak-proof analytic pipelines with 
calibration costs reported alongside accuracy, enabling fair comparisons and clinical scheduling⁷⁵. 
Second, scale hybrid sensing—particularly EEG–fNIRS and context signals—to stabilize inference in 
motion-rich environments and broaden diagnostic specificity⁷⁴. Third, design real-world trials that target 
clinically consequential endpoints (falls, driving incidents, therapy adherence) and include diverse 
participants to ensure equitable generalization⁷¹,⁷⁶,⁷⁷. Beyond these, investment in explainable models 
and on-device processing will address clinician trust and privacy simultaneously⁷²,⁷⁵. 

 

CONCLUSION 
This systematic review of 78 studies shows that modern wearable EEG—spanning low-channel headbands, 
ear-centered arrays, and semi-dry textile caps—can recover robust cognitive and clinical biomarkers 
(alpha/theta dynamics, ERD/ERS, P300/N200) in real-world settings, enabling longitudinal monitoring 
for neurodegeneration, psychiatric care, seizure detection, sleep staging, and safety-critical workload 
assessment, while retaining acceptable agreement with clinical EEG when acquisition and artifact 
handling are rigorously managed⁷⁸. Technological advances (lower-impedance dry electrodes, stable form 
factors, on-device preprocessing, and ML pipelines with leakage-free validation) have reduced historic 
barriers of setup time, comfort, and signal reliability, and early telehealth deployments suggest feasible 
integration into remote workflows⁷⁹. Yet translation at scale still hinges on standardized reporting and 
benchmarks, clear regulatory pathways, privacy-preserving architectures (edge processing, encryption), and 
clinician-facing tools that emphasize interpretability and calibration cost alongside accuracy⁸⁰⁻⁸¹. To 
move from promise to practice, the field should prioritize multi-center, diverse cohort trials, hybrid 
sensing (EEG–fNIRS and context signals) to stabilize inference in motion-rich environments, and 
prospective studies powered for clinically meaningful endpoints (diagnostic timeliness, therapy targeting, 
adverse-event reduction) rather than laboratory surrogates⁸²⁻⁸⁴. With these steps, wearable EEG is 
positioned to become a routine, patient-centric instrument for cognitive health, bridging laboratory 
neuroscience and everyday life and delivering measurable improvements in outcomes and access across 
settings and populations⁸⁵. 
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