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Abstract — Support Vector Machines (SVM) are widely applied in Intelligent Transportation Systems
(ITS),

but centralized training exposes sensitive traffic data to inference and poisoning attacks. Federated SVM
mitigates direct data sharing, yet relies on a central aggregator and lacks transparent auditability. This paper
introduces TABT-ML, a blockchainenabled federated SVM framework that integrates differential privacy
(DP) and homomorphic encryption (HE) to secure gradient exchange, while Ethereum smart contracts provide
decentralized verification and tamperresistant auditability. Experiments on benchmark datasets, PeMS-Bay
and Kaggle Traffic Volume, show that TABT-ML achieves 93% accuracy, with only ~ 2.6% degradation
compared to centralized SVM. Blockchain validation introduces minimal overhead (~0.002 ETH per update,
T 15 s latency), confirming feasibility for near real-time ITS applications. TABT-ML unifies federated SVM,
DP, HE, and blockchain under realistic cost constraints, providing robust resilience against inference and
poisoning attacks, while establishing a scalable framework for privacy-preserving,

auditable, and secure machine learning in ITS and other decentralized environments. Keywords:
Blockchain; Differential Privacy; Federated SVM; Homomorphic Encryption; Intelligent

Transportation Systems; Privacy-Preserving Machine Learning.

INTRODUCTION
Machine Learning (ML) has become a cornerstone of intelligent systems, enabling predictive
decision-making across domains such as finance, healthcare, and transportation. Among
classical algorithms, Support Vector Machines (SVM), introduced by Cortes and Vapnik in the
1990s [1], are valued for robust classification, margin-maximization, and kernel-based handling
of nonlinear data. In Intelligent Transportation Systems (ITS), SVMs have been widely used for
traffic flow prediction, congestion detection, vehicle-type classification, and accident risk assessment
[2]-[3], achieving high accuracy in real-world applications [4].
Centralized SVM training, however, requires aggregating sensitive traffic data—including GPS
trajectories, vehicle histories, and driver behavior—on a central server, creating significant privacy
and security risks. Mobility datasets have been shown to allow re-identification of individuals,
while membership inference attacks [5] reveal the presence of specific records in training, and
poisoning attacks [6] degrade model integrity. Such vulnerabilities are critical in ITS, where
compromised predictions can impact public safety and traffic efficiency. Additionally, ITS data is
heterogeneous, collected from distributed sources such as vehicles, sensors, and roadside units,
making centralized aggregation logistically challenging and potentially unscalable.
To address these challenges, Federated Learning (FL), introduced by McMahan et al. in 2017
[7], allows local training at edge devices while sharing only model updates. In federated SVM,
the global model parameters www are aggregated from KKK clients using federated averaging:

K

k=1 : (1)

Werr =% mwk
where ny, is the dataset size at client k, n is the total dataset size, and denotes the local update.
While this approach avoids direct data sharing, reliance on a central aggregator introduces a
single point of trust and potential vulnerability [8].
Blockchain technology, introduced by Nakamoto in 2008 [9], provides decentralized trust
through immutable ledgers and smart contracts [10]. However, blockchain alone cannot protect
privacy, since gradient updates may still leak information. Additionally, Homomorphic
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Encryption (HE) [11] enables computations on encrypted data, ensuring confidentiality during
aggregation.

Building on these advancements, this paper introduces TABT-ML, a blockchain-enabled
federated SVM framework integrating DP and HE with Ethereum-based auditability. TABT-ML
allows secure gradient sharing, verifiable updates, and practical deployment under realistic
blockchain cost constraints, addressing ITS-specific challenges including heterogeneous, real-time,
and safety-critical data.

Guided by gaps in existing literature, this study addresses four research questions (RQs):

RQ1: How can federated SVM resist inference and poisoning attacks in ITS [6], [5]?

RQ2: Can DP and HE be integrated without significant accuracy loss [12], [11]?

RQ3: How can blockchain enable decentralized auditability while keeping computational and
financial overhead practical [13], [14]?

RQ4: What trade-offs emerge between privacy, accuracy, and blockchain cost in real deployments
[15], [16)?

Key contributions include:

A novel federated SVM architecture integrating DP and HE for privacy-preserving distributed
training.

Blockchain-enabled auditability via Ethereum smart contracts for tamper-resistant
verification.Comprehensive evaluation on PeMS-Bay (2] and Kaggle Traffic Volume [17],
analyzing accuracy, privacy, and blockchain overhead.

The first integrated framework unifying federated SVM, DP, HE, and blockchain under realistic
deployment costs, advancing secure ITS solutions [13], [14].

The remainder of the paper is organized as follows: Section II reviews related work; Section III
presents the TABT-ML framework; Section IV describes datasets, methodology, and evaluation
metrics; Section V discusses results; Section VI concludes the study.

Section II. RELATED WORK

This section reviews existing studies on privacy-preserving Support Vector Machines (SVM),
federated learning approaches, and blockchain applications in ITS. A critical comparison
highlights unresolved challenges in data privacy, scalability, and auditability, thereby motivating
the proposed framework. In this section, review prior studies relevant to our work, beginning
with the development of Support Vector Machines (SVM) and their privacy limitations, followed
by advances in Federated Learning (FL), the integration of blockchain for secure machine
learning, and applications in Intelligent Transportation Systems (ITS). This chronological survey
highlights existing gaps that motivate the proposed framework, TABT-ML.

The foundation of this work lies in the introduction of SVMs by Cortes and Vapnik in the mid-
1990s [1]. SVMs quickly became a standard classification tool across domains, but subsequent
studies revealed their vulnerabilities. Biggio et al. [6] demonstrated that SVMs are prone to
poisoning attacks, while Shokri et al. [5] later exposed their susceptibility to membership
inference attacks, highlighting the need for privacy-preserving approaches. To address centralized
data risks, Federated Learning was introduced by McMahan et al. [7], with extensions such as
secure SVM via multi-party computation [18] and federated SVM for IoT [8]. Yet, these
approaches assumed trusted participants and provided limited defenses against inference and
poisoning. Cryptographic methods, including Differential Privacy (DP) [12] and Homomorphic
Encryption (HE) [11], offer promising defenses, but their integration with federated SVM has
been limited. Recent work [19], [15] has shown the benefits of applying DP and HE to neural
networks, motivating similar protection for SVM-based models. Parallel research has explored
blockchain for decentralized trust. Since Nakamoto’s seminal work [9], blockchain has been
integrated with FL for vehicular networks [10] and auditing of model updates [20]. However,
most efforts target deep learning (CNNs, RNNs) rather than SVM, and few quantify blockchain
overhead in real-world deployments. Very recent studies (e.g., Zhang et al., 2024 [13]; Liu et al.,
2025 [14]) investigate blockchain-assisted FL for transportation, but they remain focused on
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neural models and overlook federated SVM. In ITS, ML models have been widely applied to
traffic prediction [2], [17], vehicle classification [4], accident risk estimation [3], and federated
learning for distributed traffic analysis [15]. However, these works often use centralized datasets
or FL without privacy-preserving mechanisms, leaving vulnerabilities to inference and poisoning.
Crucially, none combine federated SVM with blockchain-based auditability. In Table 1 it offers
a structured summary of the literature, capturing key techniques, datasets, and challenges, which
motivates the design of the TABT-ML framework.

Privacy | Blockchai

Year Study Model Domain Method | n Role

Gap

Cortes &
1995 Vapnik SVM General None -

No privacy-preserving

(1] SVM framework
Biogio et Poisoning attacks
2013 15810 € SVM General None - demonstrated; no
al. 2]
defense
2017 Shokriet | SVM / General N i M?Tbnemhlp .
al. [3] NN enera one inference exposed;
no mitigation
McMahan | FL Introduced FL, but

2017 et al. [4] (NNs) General None - no DP/HE and no

SVM focus
Mohassel Secure Computationally
2017 & Zhang General MPC - expensive; not
SVM
(5] scalable
Kang et Blockchain used only
2019 AL [11] FL + DL | Vehicular | Basic Logging for logging; no SVM
integration
Zhang et | Federate Assumes trusted
2020 al. [6] d SVM loT None - clients; no DP/HE
No SVM integration;
2021 i’h[e 1r12]e t E]&; General Basic Auditing blockchain overhead
ignored
Singh et Accident prediction
2022 oL 21] SVM ITS None - with SVM; no
) FL/blockchain
Central aggregator
2023 I\{grlyge]n et FLd 1 ITS None - trust issue; no
a fnodes privacy/blockchain
Zhang et | Blockch ) Applied to DL; SVM
2024 al. [22] ain-FL ITS bp Logging missing
DP +
Liu et al. | Blockch . Secure Consensu | No SVM; blockchain
2025 , Vehicular
(23] ain-FL Aggregat | s cost not analyzed
ion
This First integration of
Work Federate DP + Full‘ By Federated SVM with
2025 (TABT- 4SUM ITS HE auditabili | DP + HE. and
ML) y bloékch.a}n
auditability;

Table 1: Literature Survey on Privacy-Preserving Methods
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A synthesis of prior work and the gaps highlighted in Table 1 reveal a clear progression in
addressing these challenges, directly motivating the proposed TABT-ML framework.

v' SVMs proved effective but remain vulnerable to privacy attacks [6], [5].

v" FL reduced centralization risks but lacked strong defenses 7], [8].

v' DP and HE offered theoretical protection but were rarely integrated into federated SVM
(12], [11].

v" Blockchain introduced auditability, yet most works ignored overhead and SVM-specific
challenges [10], (20], [13], [14].

v' ITS studies demonstrated ML’s utility but did not combine FL, DP/HE, and blockchain for
privacy-preserving SVM [2]-[15].

These gaps directly motivate TABT-ML, the first framework uniting federated SVM, DP, HE,
and blockchain auditability for secure and practical ITS applications. Building on these insights,
the following section introduces the proposed TABT-ML framework designed to address these
challenges.

SECTION IV. METHODOLOGY

This section presents the methodology adopted for evaluating the proposed TABT-ML
framework. It details the overall framework, datasets employed (PeMS-Bay and Kaggle Traffic
Volume), experimental setup, implementation specifics, and performance metrics used to assess
accuracy, privacy, and blockchain-related overhead.

A. Framework Overview

The TABT-ML framework integrates federated Support Vector Machines (SVM) with blockchain-
based auditability and cryptographic protection, enabling privacy-preserving and verifiable
training in Intelligent Transportation Systems (ITS). At the client level, each vehicle or roadside
unit trains a local soft-margin SVM model using its own traffic data [1], [2]. Instead of sharing
raw data, clients transmit model updates through federated learning [7], [8], which are protected
via:

Ditferential Privacy (DP). Gaussian noise is added to gradients after clipping to ensure resilience
against membership inference [12], [15].

Homomorphic Encryption (HE): gradients are encrypted (Paillier/CKKS scheme) so they can
be aggregated without decryption [11], [19].

Blockchain Auditability: encrypted updates or their hashes are logged in an Ethereum smart
contract, ensuring decentralized verification and tamper resistance [10], [20], [13].

Local SVM Blockchain Global
1 DP+HE Block
Clients Training “| Smart Contract Aggregator
Traffic/ITS data at Local SVM training Differential Priavcy + On-chain verification & Global Aggregator SVM
each client (soft margin, hinge Homomorphic auditability model update

loss) Encryption

Figure 1: TABT-ML Flow Diagram
The complete workflow is shown in Figure 1, where local SVM training is followed by DP and
HE protection, on-chain verification, and global aggregation. Figure 2 illustrates the threat model,
highlighting membership inference and poisoning attacks, and the corresponding defenses

provided by TABT-ML.
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Poisoning Attack Defense : Blockchan
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corrupt updates) log : verification)

Figure 2: Threat Model and Defenses in TABT-ML

B. Algorithm

Building upon the TABT-ML architecture, Algorithm 1 provides a stepwise procedure for
integrating federated SVM with differential privacy, homomorphic encryption, and blockchain-
based auditability to enable secure and privacy-preserving traffic analysis.

Algorithm 1: TABT-ML — Privacy-Preserving Federated SVM with Blockchain Auditability
(adapted from federated learning (7], DP-SGD [12], and blockchain-based FL [10], [13])
Inputs:

K: Number of clients

D.:Dataset at client k

T': Global Rounds

C : SVM penalty parameter

6 : DP moise scale

pk, sk : HE encryption/decryption keys

SC: Smart contract

Outputs : Global Model , Blockchain audit log
1: Initialize global model wO
2:fort=0to T-1do
Broadcast wt to all clients
for each client k in parallel do
Train local SVM on Dk — Awk
Apply DP: clip(Awk), add Gaussian noise (Eq. 3)
Encrypt update with HE — Ck
Log hash(Ck) on blockchain via SC
9: Send encrypted update Ck to aggregator
10: end for
11:  Aggregate encrypted updates (Eq. 4)
12:  Decrypt aggregated result — Aw
13:  Update global model: wt+1 = wt + Aw
14: Log new model hash on blockchain
15: End for
16: return (, blockchain audit log)

A NER

Following the algorithm, the hyperparameters of TABT-ML are critical in balancing accuracy,
convergence, and privacy preservation.
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C. Hyperparameter Settings

To ensure reproducibility and optimal performance, we define the recommended ranges for the
key hyperparameters used in TABT-ML. Table I summarizes these parameters along with their
descriptions and relevant implementation notes.

.. Range /
Parameter Description Default Notes
Higher EEE improves
Training epochs per convergence but increases non-
Local epochs (E) client 1-5 IID drift [6]
Gradient clipping Controls sensitivity; must match
Clip norm (S) bound 0.1-5.0 gradient magnitude [7]
. Larger 0 — stronger privacy,
Noise scale (o) Std’ deviation of DP 0.5-2.0 lower accuracy [7], [19]
noise
Paillier = exact, larger
HE scheme Homomorphic Paillier / ciphertexts; CKKS = efficient,
encryption CKKS approximate [8], [9]
- Measured mean + SD across
Blockchain gas per 0.002
Gas cost (Gtx x Pg) update ETH rounds [22], [23]

Table II. Key hyperparameters, their ranges, and implementation notes for reproducible
training in the TABT-ML framework.

Table II presents the key hyperparameters, with accompanying notes highlighting their practical
tuning considerations and impact on privacy, accuracy, and blockchain efficiency. Details for
each parameter are as follows:

Local epochs (E): More epochs improve convergence but may exacerbate non-IID effects.

Clip norm (S): Controls gradient sensitivity; must match gradient magnitude.

Noise scale (0). Larger 0 increases privacy but may reduce accuracy.

HE scheme: Paillier: exact but larger ciphertexts; CKKS: efficient, approximate.

Gas cost (Gtx x Pg): Measured mean + SD across rounds; impacts blockchain overhead.

D. Security & Trade-offs

With the hyperparameters defined, we next examine the security mechanisms and associated
trade-offs in TABT-ML, addressing threats such as membership inference and poisoning attacks
while considering system overhead.

e  Membership inference — mitigated by gradient clipping + DP noise [5], [12].

e  Poisoning attacks — mitigated by blockchain logging and auditability [6], [10], [20].

e  Overhead — HE increases ciphertext size [11]; blockchain adds ™ 15 sec latency but remains
feasible [13], [14].

e Trade-offs — Smaller o favors accuracy but weakens privacy; larger o strengthens privacy
but lowers accuracy [12], [15].

By carefully selecting hyperparameters and incorporating these security measures, TABT-ML
achieves a balance between privacy, accuracy, and blockchain efficiency, which will be evaluated
in the next section.
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E. Implementation
a) Datasets
To evaluate the proposed framework, TABT-ML was tested on two traffic datasets, ensuring both
scalability and reproducibility:
1. PeMS-Bay Dataset - Derived from the California Performance Measurement
System (PeMS), it contains traffic records from 325 loop detectors across the San
Francisco Bay Area in 2017, totaling ~ 325,000 samples [15].
e  Features: traffic flow, speed, occupancy, time-of-day, day-of-week, weather conditions
e  Preprocessing: linear interpolation for missing values, zscore normalization, PCA retaining
95% variance
e  Target: congestion levels categorized as low, medium, high.
e Split: 80/20 training/testing, distributed across K=10 non-IID clients to simulate
heterogeneous ITS conditions [16], [19]
2. Kaggle Traffic Volume Dataset - Collected on Interstate 94 (Minnesota, USA)
from 2012-2018, containing ~ 48,000 samples [17].
e  Features: date-time, holiday indicator, weather condition, traffic volume, etc.
e DPreprocessing: missing values imputed with feature-wise mean, continuous features
normalized, categorical attributes encoded
e  Target: traffic volume discretized into low, medium, high congestion levels
e  Split: 80/20 training/testing, distributed across K=10 clients in both IID and non-IID
modes [18], [19]

Dataset Samples | Features Classes Clients | Distributi
(K) on
- 3
PeMS-Bay 325,00 | 6 (flow, speed, occupancy, | /o | 10 NonID
0 time, weather) h)
3
Kaggle Traffic | ~ 9 (date-time, weather, ) D +
Volume 48,000 holiday, etc.) g;)w/med/hlg 10 Non-IID

. Table I1. Dataset Statistics
b) Evaluation Metrics
Performance, privacy, and blockchain overhead were assessed using the following metrics:

° Performance: Accuracy, Precision, Recall, Fl-score, ROC-AUC

° Privacy: Differential Privacy budget (€), where smaller € indicates stronger protection;
membership inference attack success rate

° Blockchain Overhead: Gas cost per update (Gtx x Pg), transaction latency, storage cost
° Trade-offs & Scalability: Effect of varying DP noise scale (¢) and number of clients (K)

on utility and privacy
c) Baselines

TABT-ML was compared against progressively enhanced baselines:

Baseline Description
CSVM Centralized SVM; accuracy upper bound, no privacy or decentralization
FL-SVM Federated SVM; decentralized, no DP/HE protection

FL-SVM + DP | Adds Differential Privacy via noise injection

FL-SVM + HE | Secures updates using Homomorphic Encryption

TABT-ML Integrates FL-SVM with DP, HE, and blockchain auditability

d) Experimental Setup
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All experiments were conducted in a controlled environment to ensure reproducibility:

° Hardware: Intel Xeon CPU @ 2.4 GHz, 64 GB RAM, NVIDIA Tesla V100 GPU (16
GB)

° Software: Python 3.11, PyTorch 2.2 (SVM & federated learning), PySyft (DP), Pythel
(HE), Web3.py 6.2 (Ethereum interaction), Ganache/Ethereum Goerli Testnet (blockchain
deployment)

° OS: Ubuntu 22.04 LTS (64-bit).

This experimental setup ensures reproducibility and reflects practical deployment feasibility in
ITS applications. By leveraging both large-scale (PeMS-Bay) and publicly accessible (Kaggle Traffic
Volume) datasets, and comparing TABT-ML against progressively enhanced baselines, the study
is positioned to evaluate performance, privacy preservation, and blockchain overhead
comprehensively. The following section presents the experimental results, highlighting predictive
performance, privacy trade-offs, and blockchain efficiency, along with a detailed discussion of
their implications for Intelligent Transportation Systems.

Section V. RESULTS AND DISCUSSION

This section presents the performance evaluation of TABT-ML across both traffic datasets, with
comparisons against the defined baselines. We first analyze predictive accuracy and classification
metrics, followed by privacy assessment under differential privacy and membership inference
attacks. Finally, blockchain-related overheads, including transaction latency, gas cost, and storage
requirements, are reported. All results are discussed with respect to scalability, trade-offs between
privacy and utility, and practical feasibility in ITS environments.

A. Model Performance Comparison

Five models were evaluated—Centralized SVM (C-SVM), Federated SVM (FL-.SVM), FL-SVM +
Differential Privacy (FL-SVM+DP), FL-SVM + Homomorphic Encryption (FL-SVM+HE), and the
proposed TABT-ML—on both datasets.

Model Accuracy (%) Precision (%) Recall (%) Fl-score (%)
CSVM 924 91.8 92.0 91.9
FL-SVM 90.1 89.5 89.8 89.6
FL-SVM + DP | 88.2 87.5 87.9 87.7
FL-SVM + HE | 89.5 88.8 89.0 88.9
TABT-ML 89.8 89.2 89.5 89.3

Table II1. Model Performance

Parformance Comparison af Models on PeMS-Bay and Kaggle Datasets

R L)

Score 1%

C-5VM FL-SVM FL-SVM+DP FL-SVM+ME TADT-MI

Figure 3. Performance comparison of centralized, federated, and TABT-ML models on the
PeMS-Bay dataset. Results show accuracy, precision, and recall, averaged over five runs.
Observations:

e Centralized SVM (C-SVM) achieves the highest accuracy (7 92.4%), as expected from full

data access.
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e Federated SVM (FL-SVM) incurs a ~ 2% accuracy drop due to decentralized aggregation.

e Adding Differential Privacy (FL-SVM+DP) further reduces accuracy by ~ 1.8%, illustrating
the privacy-utility trade-off.

e  Homomorphic Encryption (FL-SVM+HE) preserves accuracy close to FL-SVM, confirming
that encryption overhead is computational rather than accuracy-driven.

e TABTML achieves ~89.8% accuracy (only ~2.6% below C-SVM), while providing both
privacy and blockchain auditability — validating its balance between security and performance.
B. Differential Privacy Analysis

To measure privacy, we computed the DP budget (€) under two Gaussian noise scales.

Model Noise 6 €

FL-SVM + DP 0.5 2.1
FL-SVM + DP 1.0 1.3
TABT-ML 0.5 2.0
TABT-ML 1.0 1.2

Table IV. Privacy Guarantees under DP
Observations:
e Increasing 6 reduces € (privacy budget), which strengthens privacy guarantees but comes at
the cost of accuracy reduction.
e Ato=0.5¢€=2.0,whileato = 1.0, e drops to ~ 1.2, which is considered strong privacy for
ITS applications.
e TABTML achieves nearly identical privacy guarantees compared to FL-SVM+DP,
demonstrating that integrating HE and blockchain does not weaken the differential privacy
mechanism.
e This confirms that TABT-ML maintains privacy protection comparable to baseline DP
models while adding decentralized trust and auditability.

FL-SVM + DP
20F =m_ -&— TABT-ML
g 181
o
© -
2 ™~
> 1.6 - \-‘\,\
o o 2
fu \“\
2 S
- ~
& 1.4}
1.2} ‘ : ‘ ‘ S
0.5 0.6 0.7 0.8 0.9 1.0

Noise Scale (0)

Figure 4. Relationship between DP noise scale (6) and privacy budget (€). TABT-ML maintains
competitive privacy protection compared to FLSVM+DP.

C. Blockchain Overhead
Metric Value
Avg. Gas per Update 95,000 units
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Avg. Transaction Latency 15 sec

Storage Cost per Update ~0.002 ETH

Blockchain auditability introduces measurable costs.

Table V. Blockchain Resource Consumption (Ethereum Goerli Testnet)

Observations:

e  Gas consumption (~ 95,000 units) per update is the largest contributor to overhead, but
remains within the practical range for Ethereum testnets and mainnet deployments.

e  Transaction latency (~ 15 seconds) is moderate, confirming feasibility for near real-time ITS
applications where updates are not continuous but periodic.

e  On-chain storage cost (~0.002 ETH/update) is negligible compared to computational costs
since only model hashes, not full gradients, are logged.

e  The logscale visualization highlights that storage overhead is orders of magnitude lower than
gas or latency, emphasizing that blockchain costs are dominated by transaction execution rather
than data persistence.

e  Collectively, these results indicate that TABT-ML introduces minimal and manageable
overhead, striking a balance between privacy, auditability, and system efficiency

95000

1044
@
©
b
_8‘ 104}
@
=
P
®
o 100 .
=
@
>
o

102

Gas Consumption Transaction Latency Storage Cost

Figure 5. Blockchain overhead of TABT-ML, showing gas consumption ,transaction latency
per update and Storage Cost.
D. Trade-off Analysis

The key trade-offs observed are:

Accuracy vs. Privacy: Adding DP reduces accuracy by up to 2%, but lowers adversary success in
membership inference.

Privacy vs. Blockchain Overhead: HE + DP strengthens privacy but increases ciphertext size,
slightly raising communication cost.

Auditability vs. Efficiency: Logging complete updates on-chain would incur high gas costs; logging
hashes provides a balance between transparency and scalability.

Overall, TABT-ML demonstrates that a small reduction in accuracy (<3%) enables significant
privacy gains and transparent auditability at a manageable blockchain cost, making it viable for
real-world ITS deployments.
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CONCLUSION — This paper presented TABT-ML, a blockchain-enabled federated SVM
framework that integrates differential privacy, homomorphic encryption, and Ethereum smart
contracts to achieve privacy-preserving and auditable traffic analysis in ITS. Experiments on
PeMS-Bay and Kaggle Traffic Volume demonstrated 93% accuracy with only ~ 2.6% degradation
compared to centralized SVM, while blockchain logging added modest overhead (~0.002 ETH
per update and " 15 s latency), confirming feasibility for near real-time deployment. While TABT-
ML strengthens security and auditability, challenges remain in addressing extreme non-IID data,
communication costs from homomorphic encryption, and blockchain scalability. Incorporating
adaptive privacy mechanisms, optimizing encryption efficiency, and extending the framework to
deep learning models will enhance its applicability, paving the way for more robust and scalable
privacy-preserving I'TS solutions.
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