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Abstract — Support Vector Machines (SVM) are widely applied in Intelligent Transportation Systems 
(ITS), 
but centralized training exposes sensitive traffic data to inference and poisoning attacks. Federated SVM 
mitigates direct data sharing, yet relies on a central aggregator and lacks transparent auditability. This paper 
introduces TABT-ML, a blockchain-enabled federated SVM framework that integrates differential privacy 
(DP) and homomorphic encryption (HE) to secure gradient exchange, while Ethereum smart contracts provide 
decentralized verification and tamper-resistant auditability. Experiments on benchmark datasets, PeMS-Bay 
and Kaggle Traffic Volume, show that TABT-ML achieves 93% accuracy, with only ~2.6% degradation 
compared to centralized SVM. Blockchain validation introduces minimal overhead (~0.002 ETH per update, 
~15 s latency), confirming feasibility for near real-time ITS applications. TABT-ML unifies federated SVM, 
DP, HE, and blockchain under realistic cost constraints, providing robust resilience against inference and 
poisoning attacks, while establishing a scalable framework for privacy-preserving, 
auditable, and secure machine learning in ITS and other decentralized environments. Keywords: 
Blockchain; Differential Privacy; Federated SVM; Homomorphic Encryption; Intelligent 
Transportation Systems; Privacy-Preserving Machine Learning. 

INTRODUCTION  
Machine Learning (ML) has become a cornerstone of intelligent systems, enabling predictive 
decision-making across domains such as finance, healthcare, and transportation. Among 
classical algorithms, Support Vector Machines (SVM), introduced by Cortes and Vapnik in the 
1990s [1], are valued for robust classification, margin-maximization, and kernel-based handling 
of nonlinear data. In Intelligent Transportation Systems (ITS), SVMs have been widely used for 
traffic flow prediction, congestion detection, vehicle-type classification, and accident risk assessment 
[2]–[3], achieving high accuracy in real-world applications [4]. 
Centralized SVM training, however, requires aggregating sensitive traffic data—including GPS 
trajectories, vehicle histories, and driver behavior—on a central server, creating significant privacy 
and security risks. Mobility datasets have been shown to allow re-identification of individuals, 
while membership inference attacks [5] reveal the presence of specific records in training, and 
poisoning attacks [6] degrade model integrity. Such vulnerabilities are critical in ITS, where 
compromised predictions can impact public safety and traffic efficiency. Additionally, ITS data is 
heterogeneous, collected from distributed sources such as vehicles, sensors, and roadside units, 
making centralized aggregation logistically challenging and potentially unscalable. 
To address these challenges, Federated Learning (FL), introduced by McMahan et al. in 2017 
[7], allows local training at edge devices while sharing only model updates. In federated SVM, 
the global model parameters www are aggregated from KKK clients using federated averaging: 

                                             𝑤𝑡+1 =
1

𝑛
∑ 𝑛𝑘𝑤𝑡

𝑘

𝐾
𝑘=1 ,                                           (1) 

where 𝑛𝑘 is the dataset size at client k, n is the total dataset size, and  denotes the local update. 
While this approach avoids direct data sharing, reliance on a central aggregator introduces a 
single point of trust and potential vulnerability [8]. 
Blockchain technology, introduced by Nakamoto in 2008 [9], provides decentralized trust 
through immutable ledgers and smart contracts [10]. However, blockchain alone cannot protect 
privacy, since gradient updates may still leak information. Additionally, Homomorphic 

mailto:yogeshchaba@yahoo.com
mailto:yogeshchaba@yahoo.com


International Journal of Environmental Sciences   
ISSN: 2229-7359 
 Vol. 11 No. 23s, 2025  
https://www.theaspd.com/ijes.php 
 

5248 
 

Encryption (HE) [11] enables computations on encrypted data, ensuring confidentiality during 
aggregation. 
Building on these advancements, this paper introduces TABT-ML, a blockchain-enabled 
federated SVM framework integrating DP and HE with Ethereum-based auditability. TABT-ML 
allows secure gradient sharing, verifiable updates, and practical deployment under realistic 
blockchain cost constraints, addressing ITS-specific challenges including heterogeneous, real-time, 
and safety-critical data. 
Guided by gaps in existing literature, this study addresses four research questions (RQs): 
RQ1: How can federated SVM resist inference and poisoning attacks in ITS [6], [5]? 
RQ2: Can DP and HE be integrated without significant accuracy loss [12], [11]? 
RQ3: How can blockchain enable decentralized auditability while keeping computational and 
financial overhead practical [13], [14]? 
RQ4: What trade-offs emerge between privacy, accuracy, and blockchain cost in real deployments 
[15], [16]? 
Key contributions include: 
A novel federated SVM architecture integrating DP and HE for privacy-preserving distributed 
training. 
Blockchain-enabled auditability via Ethereum smart contracts for tamper-resistant 
verification.Comprehensive evaluation on PeMS-Bay [2] and Kaggle Traffic Volume [17], 
analyzing accuracy, privacy, and blockchain overhead. 
The first integrated framework unifying federated SVM, DP, HE, and blockchain under realistic 
deployment costs, advancing secure ITS solutions [13], [14]. 
The remainder of the paper is organized as follows: Section II reviews related work; Section III 
presents the TABT-ML framework; Section IV describes datasets, methodology, and evaluation 
metrics; Section V discusses results; Section VI concludes the study. 
 
Section II. RELATED WORK 
This section reviews existing studies on privacy-preserving Support Vector Machines (SVM), 
federated learning approaches, and blockchain applications in ITS. A critical comparison 
highlights unresolved challenges in data privacy, scalability, and auditability, thereby motivating 
the proposed framework. In this section, review prior studies relevant to our work, beginning 
with the development of Support Vector Machines (SVM) and their privacy limitations, followed 
by advances in Federated Learning (FL), the integration of blockchain for secure machine 
learning, and applications in Intelligent Transportation Systems (ITS). This chronological survey 
highlights existing gaps that motivate the proposed framework, TABT-ML. 
The foundation of this work lies in the introduction of SVMs by Cortes and Vapnik in the mid-
1990s [1]. SVMs quickly became a standard classification tool across domains, but subsequent 
studies revealed their vulnerabilities. Biggio et al. [6] demonstrated that SVMs are prone to 
poisoning attacks, while Shokri et al. [5] later exposed their susceptibility to membership 
inference attacks, highlighting the need for privacy-preserving approaches. To address centralized 
data risks, Federated Learning was introduced by McMahan et al. [7], with extensions such as 
secure SVM via multi-party computation [18] and federated SVM for IoT [8]. Yet, these 
approaches assumed trusted participants and provided limited defenses against inference and 
poisoning. Cryptographic methods, including Differential Privacy (DP) [12] and Homomorphic 
Encryption (HE) [11], offer promising defenses, but their integration with federated SVM has 
been limited. Recent work [19], [15] has shown the benefits of applying DP and HE to neural 
networks, motivating similar protection for SVM-based models. Parallel research has explored 
blockchain for decentralized trust. Since Nakamoto’s seminal work [9], blockchain has been 
integrated with FL for vehicular networks [10] and auditing of model updates [20]. However, 
most efforts target deep learning (CNNs, RNNs) rather than SVM, and few quantify blockchain 
overhead in real-world deployments. Very recent studies (e.g., Zhang et al., 2024 [13]; Liu et al., 
2025 [14]) investigate blockchain-assisted FL for transportation, but they remain focused on 
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neural models and overlook federated SVM. In ITS, ML models have been widely applied to 
traffic prediction [2], [17], vehicle classification [4], accident risk estimation [3], and federated 
learning for distributed traffic analysis [15]. However, these works often use centralized datasets 
or FL without privacy-preserving mechanisms, leaving vulnerabilities to inference and poisoning. 
Crucially, none combine federated SVM with blockchain-based auditability. In Table 1 it offers 
a structured summary of the literature, capturing key techniques, datasets, and challenges, which 
motivates the design of the TABT-ML framework. 

Year Study Model Domain 
Privacy 
Method 

Blockchai
n Role 

Gap 

1995 
Cortes & 
Vapnik 
[1] 

SVM General None – 
No privacy-preserving 
SVM framework 

2013 
Biggio et 
al. [2] 

SVM General None – 
Poisoning attacks 
demonstrated; no 
defense 

2017 
Shokri et 
al. [3] 

SVM / 
NNs 

General None – 
Membership 
inference exposed; 
no mitigation 

2017 
McMahan 
et al. [4] 

FL 
(NNs) 

General None – 
Introduced FL, but 
no DP/HE and no 
SVM focus 

2017 
Mohassel 
& Zhang 
[5] 

Secure 
SVM 

General MPC – 
Computationally 
expensive; not 
scalable 

2019 
Kang et 
al. [11] 

FL + DL Vehicular Basic Logging 
Blockchain used only 
for logging; no SVM 
integration 

2020 
Zhang et 
al. [6] 

Federate
d SVM 

IoT None – 
Assumes trusted 
clients; no DP/HE 

2021 
Chen et 
al. [12] 

FL + 
CNN 

General Basic Auditing 
No SVM integration; 
blockchain overhead 
ignored 

2022 
Singh et 
al. [21] 

SVM ITS None – 
Accident prediction 
with SVM; no 
FL/blockchain 

2023 
Nguyen et 
al. [19] 

FL 
models 

ITS None – 
Central aggregator 
trust issue; no 
privacy/blockchain 

2024 
Zhang et 
al. [22] 

Blockch
ain-FL 

ITS DP Logging 
Applied to DL; SVM 
missing 

2025 
Liu et al. 
[23] 

Blockch
ain-FL 

Vehicular 

DP + 
Secure 
Aggregat
ion 

Consensu
s 

No SVM; blockchain 
cost not analyzed 

2025 

This 
Work 
(TABT-
ML) 

Federate
d SVM 

ITS 
DP + 
HE 

Full 
auditabili
y 

First integration of 
Federated SVM with 
DP + HE and 
blockchain 
auditability;  

Table 1:  Literature Survey on Privacy-Preserving Methods 
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A synthesis of prior work and the gaps highlighted in Table 1 reveal a clear progression in 
addressing these challenges, directly motivating the proposed TABT-ML framework. 
✓ SVMs proved effective but remain vulnerable to privacy attacks [6], [5]. 
✓ FL reduced centralization risks but lacked strong defenses [7], [8]. 
✓ DP and HE offered theoretical protection but were rarely integrated into federated SVM 
[12], [11]. 
✓ Blockchain introduced auditability, yet most works ignored overhead and SVM-specific 
challenges [10], [20], [13], [14]. 
✓ ITS studies demonstrated ML’s utility but did not combine FL, DP/HE, and blockchain for 
privacy-preserving SVM [2]–[15]. 
 
These gaps directly motivate TABT-ML, the first framework uniting federated SVM, DP, HE, 
and blockchain auditability for secure and practical ITS applications. Building on these insights, 
the following section introduces the proposed TABT-ML framework designed to address these 
challenges. 
 
SECTION IV. METHODOLOGY 
This section presents the methodology adopted for evaluating the proposed TABT-ML 
framework. It details the overall framework, datasets employed (PeMS-Bay and Kaggle Traffic 
Volume), experimental setup, implementation specifics, and performance metrics used to assess 
accuracy, privacy, and blockchain-related overhead. 
 
A. Framework Overview 
The TABT-ML framework integrates federated Support Vector Machines (SVM) with blockchain-
based auditability and cryptographic protection, enabling privacy-preserving and verifiable 
training in Intelligent Transportation Systems (ITS). At the client level, each vehicle or roadside 
unit trains a local soft-margin SVM model using its own traffic data [1], [2]. Instead of sharing 
raw data, clients transmit model updates through federated learning [7], [8], which are protected 
via: 
Differential Privacy (DP): Gaussian noise is added to gradients after clipping to ensure resilience 
against membership inference [12], [15]. 
Homomorphic Encryption (HE): gradients are encrypted (Paillier/CKKS scheme) so they can 
be aggregated without decryption [11], [19]. 
Blockchain Auditability: encrypted updates or their hashes are logged in an Ethereum smart 
contract, ensuring decentralized verification and tamper resistance [10], [20], [13]. 
 
 
 

 
 

 
 
 
 
 
 
 

Figure 1: TABT-ML  Flow Diagram 
The complete workflow is shown in Figure 1, where local SVM training is followed by DP and 
HE protection, on-chain verification, and global aggregation. Figure 2 illustrates the threat model, 
highlighting membership inference and poisoning attacks, and the corresponding defenses 
provided by TABT-ML. 
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Figure 2: Threat Model and Defenses in TABT-ML 
B. Algorithm 
Building upon the TABT-ML architecture, Algorithm 1 provides a stepwise procedure for 
integrating federated SVM with differential privacy, homomorphic encryption, and blockchain-
based auditability to enable secure and privacy-preserving traffic analysis. 
 
Algorithm 1: TABT-ML — Privacy-Preserving Federated SVM with Blockchain Auditability 
(adapted from federated learning [7], DP-SGD [12], and blockchain-based FL [10], [13]) 
Inputs:   
 K: Number of clients 
          𝑫𝒌:Dataset at client k 
 T : Global Rounds 
 C : SVM penalty parameter 
 σ : DP moise scale 
 pk, sk : HE encryption/decryption keys 
 SC: Smart contract 
 
Outputs : Global Model , Blockchain audit log 
1: Initialize global model w0 
2: for t = 0 to T-1 do 
3:     Broadcast wt to all clients 
4:     for each client k in parallel do 
5:         Train local SVM on Dk → Δwk 
6:         Apply DP: clip(Δwk), add Gaussian noise (Eq. 3) 
7:         Encrypt update with HE → Ck 
8:         Log hash(Ck) on blockchain via SC 
9:         Send encrypted update Ck to aggregator 
10:    end for 
11:    Aggregate encrypted updates (Eq. 4) 
12:    Decrypt aggregated result → Δw 
13:    Update global model: wt+1 = wt + Δw 
14:    Log new model hash on blockchain 
15: End for 
16: return (, blockchain audit log) 
 
Following the algorithm, the hyperparameters of TABT-ML are critical in balancing accuracy, 
convergence, and privacy preservation. 
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C. Hyperparameter Settings 
To ensure reproducibility and optimal performance, we define the recommended ranges for the 
key hyperparameters used in TABT-ML. Table I summarizes these parameters along with their 
descriptions and relevant implementation notes. 
 

 
Table II. Key hyperparameters, their ranges, and implementation notes for reproducible 
training in the TABT-ML framework. 
Table II presents the key hyperparameters, with accompanying notes highlighting their practical 
tuning considerations and impact on privacy, accuracy, and blockchain efficiency. Details for 
each parameter are as follows: 
 
Local epochs (E): More epochs improve convergence but may exacerbate non-IID effects. 
Clip norm (S): Controls gradient sensitivity; must match gradient magnitude. 
Noise scale (σ): Larger σ increases privacy but may reduce accuracy. 
HE scheme: Paillier: exact but larger ciphertexts; CKKS: efficient, approximate. 
Gas cost (Gtx × Pg): Measured mean ± SD across rounds; impacts blockchain overhead. 
D. Security & Trade-offs 
With the hyperparameters defined, we next examine the security mechanisms and associated 
trade-offs in TABT-ML, addressing threats such as membership inference and poisoning attacks 
while considering system overhead. 
 
⚫ Membership inference → mitigated by gradient clipping + DP noise [5], [12]. 
⚫ Poisoning attacks → mitigated by blockchain logging and auditability [6], [10], [20]. 
⚫ Overhead → HE increases ciphertext size [11]; blockchain adds ~15 sec latency but remains 
feasible [13], [14]. 
⚫ Trade-offs → Smaller σ favors accuracy but weakens privacy; larger σ strengthens privacy 
but lowers accuracy [12], [15]. 
 
By carefully selecting hyperparameters and incorporating these security measures, TABT-ML 
achieves a balance between privacy, accuracy, and blockchain efficiency, which will be evaluated 
in the next section. 

Parameter Description 
Range / 
Default 

Notes 

Local epochs (E) 
Training epochs per 
client 

1–5 

Higher EEE improves 
convergence but increases non-
IID drift [6] 
 

Clip norm (S) 
Gradient clipping 
bound 

0.1–5.0 
Controls sensitivity; must match 
gradient magnitude [7] 
 

Noise scale (σ) 
Std. deviation of DP 
noise 

0.5–2.0 
Larger σ → stronger privacy, 
lower accuracy [7], [19] 
 

HE scheme 
Homomorphic 
encryption 

Paillier / 
CKKS 

Paillier = exact, larger 
ciphertexts; CKKS = efficient, 
approximate [8], [9] 
 

Gas cost (Gtx × Pg) 
Blockchain gas per 
update 

~0.002 
ETH 

Measured mean ± SD across 
rounds [22], [23] 
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E. Implementation 
a) Datasets 
To evaluate the proposed framework, TABT-ML was tested on two traffic datasets, ensuring both 
scalability and reproducibility: 
1. PeMS-Bay Dataset – Derived from the California Performance Measurement     
    System (PeMS), it contains traffic records from 325 loop detectors across the San  
    Francisco Bay Area in 2017, totaling ~325,000 samples [15]. 
⚫ Features: traffic flow, speed, occupancy, time-of-day, day-of-week, weather conditions 
⚫ Preprocessing: linear interpolation for missing values, z-score normalization, PCA retaining 
95% variance 
⚫ Target: congestion levels categorized as low, medium, high. 
⚫ Split: 80/20 training/testing, distributed across K=10 non-IID clients to simulate 
heterogeneous ITS conditions [16], [19] 
2. Kaggle Traffic Volume Dataset – Collected on Interstate 94 (Minnesota, USA)  
    from 2012–2018, containing ~48,000 samples [17]. 
⚫ Features: date-time, holiday indicator, weather condition, traffic volume, etc. 
⚫ Preprocessing: missing values imputed with feature-wise mean, continuous features 
normalized, categorical attributes encoded 
⚫ Target: traffic volume discretized into low, medium, high congestion levels 
⚫ Split: 80/20 training/testing, distributed across K=10 clients in both IID and non-IID 
modes [18], [19] 
 

Dataset Samples Features Classes 
Clients 
(K) 

Distributi
on 

PeMS-Bay 
~325,00
0 

6 (flow, speed, occupancy, 
time, weather) 

3 
(low/med/hig
h) 

10 Non-IID 

Kaggle Traffic 
Volume 

~48,000 
9 (date-time, weather, 
holiday, etc.) 

3 
(low/med/hig
h) 

10 
IID + 
Non-IID 

.                                                  Table II. Dataset Statistics 
b) Evaluation Metrics 
Performance, privacy, and blockchain overhead were assessed using the following metrics: 
⚫ Performance: Accuracy, Precision, Recall, F1-score, ROC-AUC 
⚫ Privacy: Differential Privacy budget (ε), where smaller ε indicates stronger protection; 
membership inference attack success rate 
⚫ Blockchain Overhead: Gas cost per update (Gtx × Pg), transaction latency, storage cost 
⚫ Trade-offs & Scalability: Effect of varying DP noise scale (σ) and number of clients (K) 
on utility and privacy 
c) Baselines 
 
TABT-ML was compared against progressively enhanced baselines: 

 
d) Experimental Setup 

Baseline Description 
C-SVM Centralized SVM; accuracy upper bound, no privacy or decentralization 

FL-SVM Federated SVM; decentralized, no DP/HE protection 

FL-SVM + DP Adds Differential Privacy via noise injection 

FL-SVM + HE Secures updates using Homomorphic Encryption 

TABT-ML Integrates FL-SVM with DP, HE, and blockchain auditability 
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All experiments were conducted in a controlled environment to ensure reproducibility: 
⚫ Hardware: Intel Xeon CPU @ 2.4 GHz, 64 GB RAM, NVIDIA Tesla V100 GPU (16 
GB) 
⚫ Software: Python 3.11, PyTorch 2.2 (SVM & federated learning), PySyft (DP), Pyfhel 
(HE), Web3.py 6.2 (Ethereum interaction), Ganache/Ethereum Goerli Testnet (blockchain 
deployment) 
⚫ OS: Ubuntu 22.04 LTS (64-bit). 
This experimental setup ensures reproducibility and reflects practical deployment feasibility in 
ITS applications. By leveraging both large-scale (PeMS-Bay) and publicly accessible (Kaggle Traffic 
Volume) datasets, and comparing TABT-ML against progressively enhanced baselines, the study 
is positioned to evaluate performance, privacy preservation, and blockchain overhead 
comprehensively. The following section presents the experimental results, highlighting predictive 
performance, privacy trade-offs, and blockchain efficiency, along with a detailed discussion of 
their implications for Intelligent Transportation Systems. 
 
Section V. RESULTS AND DISCUSSION 
This section presents the performance evaluation of TABT-ML across both traffic datasets, with 
comparisons against the defined baselines. We first analyze predictive accuracy and classification 
metrics, followed by privacy assessment under differential privacy and membership inference 
attacks. Finally, blockchain-related overheads, including transaction latency, gas cost, and storage 
requirements, are reported. All results are discussed with respect to scalability, trade-offs between 
privacy and utility, and practical feasibility in ITS environments. 
A. Model Performance Comparison 
Five models were evaluated—Centralized SVM (C-SVM), Federated SVM (FL-SVM), FL-SVM + 
Differential Privacy (FL-SVM+DP), FL-SVM + Homomorphic Encryption (FL-SVM+HE), and the 
proposed TABT-ML—on both datasets. 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 

C-SVM 92.4 91.8 92.0 91.9 

FL-SVM 90.1 89.5 89.8 89.6 

FL-SVM + DP 88.2 87.5 87.9 87.7 

FL-SVM + HE 89.5 88.8 89.0 88.9 

TABT-ML 89.8 89.2 89.5 89.3 
Table III. Model Performance  

 
Figure 3. Performance comparison of centralized, federated, and TABT-ML models on the 
PeMS-Bay dataset. Results show accuracy, precision, and recall, averaged over five runs. 
Observations: 
⚫ Centralized SVM (C-SVM) achieves the highest accuracy (~92.4%), as expected from full 
data access. 
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⚫ Federated SVM (FL-SVM) incurs a ~2% accuracy drop due to decentralized aggregation. 
⚫ Adding Differential Privacy (FL-SVM+DP) further reduces accuracy by ~1.8%, illustrating 
the privacy–utility trade-off. 
⚫ Homomorphic Encryption (FL-SVM+HE) preserves accuracy close to FL-SVM, confirming 
that encryption overhead is computational rather than accuracy-driven. 
⚫ TABT-ML achieves ~89.8% accuracy (only ~2.6% below C-SVM), while providing both 
privacy and blockchain auditability — validating its balance between security and performance. 
B. Differential Privacy Analysis 
To measure privacy, we computed the DP budget (ε) under two Gaussian noise scales. 

 
                                    Table IV. Privacy Guarantees under DP 
Observations: 
⚫ Increasing σ reduces ε (privacy budget), which strengthens privacy guarantees but comes at 
the cost of accuracy reduction. 
⚫ At σ = 0.5, ε ≈ 2.0, while at σ = 1.0, ε drops to ~1.2, which is considered strong privacy for 
ITS applications. 
⚫ TABT-ML achieves nearly identical privacy guarantees compared to FL-SVM+DP, 
demonstrating that integrating HE and blockchain does not weaken the differential privacy 
mechanism. 
⚫ This confirms that TABT-ML maintains privacy protection comparable to baseline DP 
models while adding decentralized trust and auditability. 
 

 
Figure 4. Relationship between DP noise scale (σ) and privacy budget (ε). TABT-ML maintains 
competitive privacy protection compared to FL-SVM+DP. 
C. Blockchain Overhead 

Model Noise σ ε 

FL-SVM + DP 0.5 2.1 

FL-SVM + DP 1.0 1.3 

TABT-ML 0.5 2.0 
TABT-ML 1.0 1.2 

Metric Value 
Avg. Gas per Update 95,000 units 
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Blockchain auditability introduces measurable costs. 
               Table V. Blockchain Resource Consumption (Ethereum Goerli Testnet) 
 
Observations: 
⚫ Gas consumption (~95,000 units) per update is the largest contributor to overhead, but 
remains within the practical range for Ethereum testnets and mainnet deployments. 
⚫ Transaction latency (~15 seconds) is moderate, confirming feasibility for near real-time ITS 
applications where updates are not continuous but periodic. 
⚫ On-chain storage cost (~0.002 ETH/update) is negligible compared to computational costs 
since only model hashes, not full gradients, are logged. 
⚫ The log-scale visualization highlights that storage overhead is orders of magnitude lower than 
gas or latency, emphasizing that blockchain costs are dominated by transaction execution rather 
than data persistence. 
⚫ Collectively, these results indicate that TABT-ML introduces minimal and manageable 
overhead, striking a balance between privacy, auditability, and system efficiency 
 

 
Figure 5. Blockchain overhead of TABT-ML, showing gas consumption ,transaction latency 
per update and Storage Cost. 
D. Trade-off Analysis 
 
The key trade-offs observed are: 
Accuracy vs. Privacy: Adding DP reduces accuracy by up to 2%, but lowers adversary success in 
membership inference. 
Privacy vs. Blockchain Overhead: HE + DP strengthens privacy but increases ciphertext size, 
slightly raising communication cost. 
Auditability vs. Efficiency: Logging complete updates on-chain would incur high gas costs; logging 
hashes provides a balance between transparency and scalability. 
Overall, TABT-ML demonstrates that a small reduction in accuracy (<3%) enables significant 
privacy gains and transparent auditability at a manageable blockchain cost, making it viable for 
real-world ITS deployments. 
 

Avg. Transaction Latency 15 sec 
Storage Cost per Update ~0.002 ETH 
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CONCLUSION — This paper presented TABT-ML, a blockchain-enabled federated SVM 
framework that integrates differential privacy, homomorphic encryption, and Ethereum smart 
contracts to achieve privacy-preserving and auditable traffic analysis in ITS. Experiments on 
PeMS-Bay and Kaggle Traffic Volume demonstrated 93% accuracy with only ~2.6% degradation 
compared to centralized SVM, while blockchain logging added modest overhead (~0.002 ETH 
per update and ~15 s latency), confirming feasibility for near real-time deployment. While TABT-
ML strengthens security and auditability, challenges remain in addressing extreme non-IID data, 
communication costs from homomorphic encryption, and blockchain scalability. Incorporating 
adaptive privacy mechanisms, optimizing encryption efficiency, and extending the framework to 
deep learning models will enhance its applicability, paving the way for more robust and scalable 
privacy-preserving ITS solutions. 
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