International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 23s, 2025
https://theaspd.com/index.php

Streaming Analytics Architectures for Real-Time Insights: A
Study of Modern Application Frameworks

Venkata Chandra Sekhar Sastry Chilkuri'

'Independent researcher

Abstract

Modern streaming systems demonstrate how technology providers deliver durable, scalable data flows while enabling
real-time transformation capabilities. Leading solutions offer comprehensive streaming services that facilitate instant
query processing in cloud warehouse environments. Design patterns present distinct advantages through combined
batch and speed processing versus streamingonly models, each addressing specific performance and timing
requirements. Data organization strategies and checkpoint mechanisms ensure data integrity while optimizing
throughput across computing resources. Streaming technologies enable organizations to transition from overnight batch
processing cycles to minutelevel decisionmaking capabilities through continuous data pipelines. Implementation
involves configuring messaging systems, developing small batch processing tasks, and establishing data storage areas in
cloud warehouses for immediate analytics readiness. These design patterns support fast data processing requirements
essential for competitive business intelligence and operational monitoring. Real-time insights creation changes how
organizations make decisions by removing traditional data timing limitations. The combination of streaming
frameworks with cloud infrastructure builds scalable analytics platforms that handle large event volumes while keeping
fast response times needed for today's applications.

Keywords: Apache Kafka, Stream Processing, Lambda Architecture, Real-Time Analytics, Graph Neural Networks

1. INTRODUCTION

Digital transformation has fundamentally modified how organizations manage information as businesses
encounter constant data streams from customer activities, monitoring equipment, and operational
workflows. Traditional batch processing approaches, analyzing stored data, cannot meet velocity demands
for instant insights and quick response capabilities [1]. This shift toward real-time processing became
essential for organizations preserving competitive advantages in fast-changing market environments [8].
Real-time data processing represents a departure from conventional methods relying on historical
information evaluation. Instead of accumulating and storing data before processing begins, streaming
systems examine information as it arrives. This instant processing ability allows decision-makers to
respond to present situations rather than previous events, creating significant benefits in time-critical
industries where speed determines outcomes. The challenge involves handling various data source types,
each having unique properties and operational needs. Financial transactions require extremely fast
processing speeds, while sensor networks might prioritize managing large volumes over individual event
velocity. This variety necessitates adaptable systems accommodating different performance requirements
while maintaining dependable operations across diverse application areas. Modern streaming systems
must consider several key factors. Data velocity determines information flow rates through system
components. Processing delays impact decision-making speed. System dependability ensures continuous
operation when components fail. Scalability allows systems to grow with increasing demands. Each aspect
plays an important role in determining streaming solution effectiveness.

Cloud computing democratized access to advanced real-time processing capabilities for organizations
previously limited by infrastructure constraints. Companies no longer need large initial hardware
investments to deploy streaming solutions. Cloud platforms offer flexible scaling, matching resource usage
with actual needs, making real-time analytics economically practical for businesses of various sizes [8].
Machine learning integration with streaming platforms generates new opportunities for automated
decision-making processes. These systems detect patterns and predict trends without human intervention,
creating autonomous solutions that adapt to changing conditions [1]. This combination enables
businesses to build responsive systems, maintaining steady performance while automatically adjusting to
new data patterns. The progression toward immediate response capabilities mirrors wider technological
developments, highlighting ongoing optimization and flexible system architectures. As markets become
progressively unstable and competitive dynamics strengthen, the ability to examine and react to current
information grows increasingly vital for organizational accomplishment. Streaming analytics delivers

5195



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 23s, 2025
https://theaspd.com/index.php

critical infrastructure, permitting companies to convert unprocessed data streams into actionable
intelligence supporting strategic decision-making within active operational contexts.

2. Stream Processing Platforms and Technologies

Stream processing platforms create foundations for real-time data analysis through messaging systems
handling rapid data collection from multiple concurrent sources. These platforms employ distributed
designs spreading data streams across numerous computing nodes, enabling parallel processing scaling
with growing data volumes and computational demands [3]. The architecture includes buffering systems
balancing memory usage with processing speed, ensuring steady performance despite workload variations
(4].

Different processing methods serve various application requirements based on specific performance and
complexity needs. Pure streaming models handle individual data pieces immediately upon arrival,
providing the fastest response times while requiring sophisticated state management. Micro-batch
approaches collect data into small time-based groups before processing, offering simpler programming
models with slightly longer delays. The choice between these approaches depends on particular speed,
volume capacity, and computational complexity requirements.

Platform Feature Implementation Capability

Data ingestion mechanisms | High-throughput message queuing
Processing paradigm Micro-batch and stream processing
Fault tolerance Automatic recovery and replication
Scalability model Horizontal cluster expansion

State management Persistent and transient state handling
Integration support Multi-source data connectivity
Deployment flexibility Cloud-native and on-premises options
Performance optimization Dynamic resource allocation

Table 1: Stream Processing Platform Comparison [3,4]

State management features enable complex processing patterns, preserving information across multiple
events or time periods within streaming operations. Streaming systems use checkpoint mechanisms
regularly saving operator state to distributed storage, ensuring recovery from failures without losing data
[4]. Advanced storage systems support memory-based and persistent storage options, letting developers
optimize access patterns based on performance and durability needs.

Integration abilities determine how streaming platforms function within existing business environments
where data comes from databases, messaging systems, file storage, and external connections that have
different requirements. Current platforms provide extensive connector libraries supporting common data
sources and destinations, reducing integration difficulty and speeding deployment times [3]. These
connectors automatically handle data format changes, information encoding, and error management.
Deployment flexibility became important as organizations use mixed cloud strategies requiring streaming
platforms to operate consistently across different infrastructure environments. Cloud-hosted streaming
services offer managed deployment alternatives, removing operational complications while preserving
compatibility with current systems and security requirements. Container-based deployment frameworks
guarantee uniform behavior across development, testing, and production settings. Performance
enhancement incorporates dynamic resource distribution, modifying computing capacity according to
present workload demands and anticipatory scaling, predicting needs utilizing historical information.
These features enable costeffective operations while maintaining consistent processing performance
across varying data volumes and complexity levels [4]. Advanced optimization methods include intelligent

5196



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 23s, 2025
https://theaspd.com/index.php

load distribution, spreading processing across available resources, and automatic failover systems,
maintaining service continuity during component failures.

Resource management strategies include horizontal scaling, adding computing nodes, and vertical scaling,
increasing individual node capacity according to workload characteristics. These methods enable
streaming platforms to handle substantial event volumes while preserving quick response times needed
for current applications requiring immediate data processing and analytical capabilities [3]. Performance
monitoring systems continuously track system health and automatically trigger scaling actions when
predefined thresholds are exceeded.

3. Architectural Paradigms: Lambda vs Kappa Frameworks

Lambda architecture represents a hybrid processing model combining batch and stream processing layers
to handle different data velocity and accuracy requirements within unified systems. This dual-path
approach processes incoming data through both real-time streaming components for immediate insights
and batch processing systems for comprehensive historical analysis [2]. The architecture maintains
separate code bases for each processing layer, requiring developers to implement logic twice while
ensuring consistency between streaming and batch results. The batch layer stores complete datasets and
periodically recomputes results across entire historical records, providing accurate long-term analytics
despite requiring substantial computational resources. Meanwhile, the speed layer processes incoming
data streams immediately, generating approximate results with minimal latency but potentially limited
accuracy [5]. A serving layer merges outputs from both processing paths, presenting unified views to
applications while managing the complexity of reconciling different result types and timing characteristics.
Lambda implementations excel in scenarios requiring both immediate responses and comprehensive
historical analysis, such as financial fraud detection systems needing instant alerts combined with
thorough investigative capabilities. The architecture provides fault tolerance through redundant
processing paths, ensuring continued operation when individual components experience failures [2].
However, maintaining dual processing logic increases development complexity and operational overhead
while potentially creating inconsistencies between streaming and batch results.

Kappa architecture simplifies processing by eliminating batch layers and relying exclusively on stream
processing for all analytical workloads. This unified approach treats historical data as streams by replaying
stored events through streaming processors, maintaining consistent processing logic across different
temporal data ranges [5]. The architecture reduces operational complexity by eliminating the need to
maintain separate batch and streaming systems while ensuring processing consistency through unified
code bases. Stream-only processing enables simpler deployment models where single processing
frameworks handle both real-time and historical analysis requirements. Kappa systems replay historical
data when reprocessing becomes necessary, treating stored information as input streams fed into identical
processing logic used for live data [2]. This approach eliminates synchronization challenges between
different processing paradigms while reducing infrastructure complexity and maintenance overhead.

Lambda Architecture Kappa Architecture

Dual processing layers Single stream processing layer
Batch and speed components Unified streaming pipeline
Complex data reconciliation Simplified data consistency
Higher operational overhead Reduced maintenance complexity
Historical data reprocessing Event replay capabilities

Mixed technology stack Homogeneous streaming stack
Robust fault handling Streamlined error recovery
Multi-tier storage requirements | Single storage tier approach

Table 2: Lambda vs Kappa Architecture Features [2,5]

5197



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 23s, 2025
https://theaspd.com/index.php

Kappa architectures work effectively for applications where stream processing capabilities can handle the
required computational complexity and data volumes. The approach suits scenarios prioritizing
operational simplicity over maximum computational flexibility, particularly when processing
requirements remain relatively consistent across different data time ranges [5]. However, pure streaming
approaches may struggle with computationally intensive analytical workloads better suited for batch
processing optimizations. Architectural selection depends on specific organizational requirements,
balancing processing complexity, operational overhead, and analytical accuracy needs. Lambda
architectures provide maximum flexibility for diverse analytical workloads requiring different processing
approaches, while Kappa systems offer operational simplicity for organizations prioritizing unified
processing models [2]. Modern hybrid approaches combine elements from both paradigms, using stream
processing for routine analytics while maintaining batch capabilities for specialized computational
requirements. The evolution toward streaming-first architectures reflects growing demands for real-time
insights while maintaining analytical accuracy and operational efficiency. Organizations increasingly
prefer simplified processing models, reducing maintenance overhead while preserving analytical
capabilities essential for competitive advantage in data-driven markets [5].

4. Data Flow Management and Optimization Strategies

Data flow coordination involves methods for managing information transport through streaming systems
while preserving processing effectiveness and system dependability across different workload
circumstances. Successful coordination requires organizing data partitioning, load distribution, and
resource assignment to enhance throughput while reducing latency across processing pipelines [6].
Advanced flow control systems prevent system congestion by implementing backpressure methods that
adjust data intake rates based on downstream processing abilities. Partitioning methods distribute data
streams across numerous processing nodes according to content properties, temporal characteristics, or
load distribution needs. Hash-based partitioning guarantees uniform data allocation while key-based
methods keep related events within individual processing threads for stateful operations [7]. Dynamic
partitioning modifications respond to evolving data patterns and processing loads, reallocating streams
to sustain balanced resource usage across available computational resources. Load distribution techniques
spread processing workloads uniformly across available computational resources while considering
different operator complexity levels and resource demands. Smart routing algorithms evaluate both
current system load and processing abilities when directing data streams to particular nodes [6]. Adaptive
load distribution responds to real-time performance indicators, redirecting traffic from congested
components to available resources while preserving processing sequence requirements for stateful
operations.

Enhancement strategies include predictive scaling that forecasts resource requirements based on historical
patterns and current developments, enabling advanced resource assignment before performance decline
happens. Machine learning algorithms examine processing patterns to detect enhancement opportunities
and suggest configuration modifications improving system effectiveness [7]. These predictive abilities
enable systems to sustain consistent performance during traffic increases while reducing resource waste
during low-demand intervals. Resource assignment enhancement balances computational capacity,
memory allocation, and network bandwidth according to particular processing needs and data properties.
Dynamic resource coordination modifies assignments based on realtime performance indicators and
processing requirements, ensuring optimal resource usage across different workload stages [6]. Container-
based resource separation enables precise control over resource allocation while maintaining processing
independence between different streaming applications.

Faultresistant systems ensure continued operation during component breakdowns through redundant
processing paths and automatic switchover abilities. Checkpoint methods regularly save processing state,
enabling quick recovery without data loss when breakdowns happen [7]. Distributed processing
approaches distribute workloads across multiple nodes, reducing individual failure points while
maintaining processing continuity during hardware or software issues. Network enhancement techniques
reduce data transfer costs through intelligent positioning of processing components relative to data
sources and destinations. Edge processing strategies perform initial data filtering and combination close
to data sources, decreasing network traffic while improving response times [6]. Real-time displays provide
operational insight, enabling quick responses to performance problems while automated notification
systems inform administrators of critical issues [7]. Historical performance evaluation identifies trends
and patterns supporting capacity planning and system enhancement efforts. These monitoring capabilities

5198



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 23s, 2025
https://theaspd.com/index.php

create feedback loops enabling continuous system improvement while maintaining operational stability
and performance standards.

Optimization Strategy Implementation Method
Partitioning schemes Hash-based data distribution
Checkpoint strategies Periodic state snapshots

Backpressure management | Dynamic flow control

Resource elasticity Auto-scaling mechanisms

Load balancing Workload distribution algorithms
Buffer management Memory-efficient queuing
Parallelization patterns Multi-threaded processing
Compression techniques Data size reduction methods

Table 3: Data Flow Optimization Techniques [6,7]

5. Cloud Warehouse Integration for Real-Time Analytics

Cloud warehouse integration enables real-time analytics by connecting streaming data platforms with
expandable storage systems offering immediate query capabilities for business intelligence applications.
Modern cloud warehouses accommodate streaming data ingestion through dedicated connectors that
continuously import processed information while maintaining data reliability and precision [2]. These
integration methods remove traditional batch loading delays, permitting organizations to analyze present
data together with historical records within combined analytical environments.

Data ingestion frameworks facilitate uninterrupted information flow from streaming platforms into
warehouse storage through enhanced loading procedures that balance throughput with query
performance demands. Streaming connectors automatically handle data format transformations, schema
evolution, and error recovery while guaranteeing exactly-once delivery commitments [3]. Sophisticated
loading approaches employ micro-batch strategies that combine streaming data into compact time-based
groups, maximizing storage efficiency while minimizing query latency for analytical workloads.

Schema management capabilities support evolving data structures from streaming sources while
maintaining backward compatibility with current analytical applications. Cloud warehouses implement
adaptable schema systems that automatically recognize new fields and data types from incoming streams,
reducing maintenance overhead for streaming integrations [2]. Dynamic schema evolution permits
analytical systems to accommodate changing data requirements without disrupting continuous data
loading or affecting existing query patterns.

Query optimization techniques facilitate real-time analytical queries across streaming and historical data
through smart indexing and caching strategies that reduce response times. Cloud warehouses employ
columnar storage formats designed for analytical workloads while implementing automatic partitioning
based on temporal patterns from streaming data [3]. Query engines enhance execution plans by
considering both streaming data freshness requirements and historical data access patterns, ensuring
consistent performance across various analytical scenarios.

Data consistency frameworks guarantee precise analytical results when merging real-time streaming data
with historical warehouse information. Transaction isolation techniques prevent analytical queries from
reading incomplete streaming data loads while maintaining coherent views across simultaneous analytical
operations [2]. Temporal consistency mechanisms enable analytical applications to define data freshness
requirements, balancing query performance with result precision based on particular business needs.
Cost optimization approaches balance storage expenses with query performance requirements through
intelligent data lifecycle management and automated resource scaling. Cloud warehouses utilize layered
storage strategies that transfer older data to cost-effective storage while keeping recent streaming data in
high-performance storage systems [3]. Automatic scaling capabilities modify computational resources

5199



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 23s, 2025
https://theaspd.com/index.php

based on query demand and data loading requirements, optimizing expenses while maintaining analytical
performance levels.

Integration oversight provides insight into streaming data loading procedures and analytical query
performance through comprehensive displays and notification systems. Real-time oversight tracks data
loading speeds, schema modifications, query response durations, and system resource consumption to
identify enhancement possibilities [2]. Automated notification systems inform administrators regarding
integration problems, data quality issues, or performance decline, facilitating rapid responses to preserve
analytical system dependability.

Performance enhancement involves optimizing both streaming data collection and analytical query
processing through configuration modifications and resource distribution approaches. Integration
enhancement assesses elements including data arrival sequences, query complexity levels, storage
arrangement, and resource accessibility to maximize analytical system efficiency [3]. Ongoing performance
oversight supports continuous enhancement as data sequences and analytical needs develop over time.

Integration Component | Functionality Description
Data connectors Real-time streaming interfaces
Transformation engines | ETL pipeline processing
Storage optimization Columnar data organization
Query acceleration In-memory caching systems
Schema management Dynamic schema evolution
Access control Security and permissions
Monitoring systems Performance tracking tools
Cost management Resource usage optimization

Table 4: Cloud Warehouse Integration Components [2,3]

6. System Performance Assessment and Deployment Best Practices

Performance benchmarking creates baseline indicators for streaming analytics systems through organized
testing approaches that evaluate throughput, delay, resource usage, and expandability properties under
varied workload circumstances. Complete benchmarking requires developing realistic test situations that
mirror production workloads, including data volume changes, processing complexity differences, and
system breakdown scenarios [1]. Standardized benchmarking structures provide uniform measurement
methods, allowing comparisons between different architectural options and technology deployments.
Throughput assessment evaluates system capacity to process data volumes per time interval across
different processing complexity levels and resource configurations. Benchmarking protocols measure
sustained throughput rates under stable conditions while assessing system behavior during traffic surges
and workload variations [5]. Load testing scenarios incrementally increase data volumes to determine
system capacity limits and resource bottlenecks that restrict processing performance.

Latency assessment measures end-to-end processing duration from data ingestion through final result
delivery, including network transmission time, processing delays, and storage access overhead. Latency
benchmarking analyzes both average response times and extreme scenarios to comprehend system
behavior under different operational conditions [1]. Percentile-based latency measurements offer superior
insights into system performance reliability compared to basic average computations.

Resource utilization monitoring observes computational, memory, and network resource consumption
patterns during various workload scenarios to identify optimization opportunities. Benchmarking
measures resource efficiency across different data volumes and processing complexities to establish
optimal system configurations [5]. Resource utilization analysis assists organizations in properly sizing
deployments while meeting performance requirements within budget constraints.

Implementation guidelines define best practices for deploying streaming analytics systems based on
benchmarking findings and operational requirements. Configuration recommendations cover system

5200



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 23s, 2025
https://theaspd.com/index.php

parameters including memory allocation, thread pool dimensions, checkpoint frequencies, and network
buffer settings [1]. Deployment guidelines examine factors such as data center placement, network
architecture, security requirements, and integration complexity when planning streaming analytics
implementations.

Performance Metric Implementation Guideline

Latency requirements | Sub-second processing targets
Throughput capacity hMallnlzﬁélj of events per second are
Resource utilization Optimal CPU and memory usage
Data accuracy Exactly-once processing guarantees
System availability High uptime and reliability
Scalability testing Load testing methodologies

Cost efficiency Price-performance optimization
Deployment strategies | Blue-green and rolling updates

Table 5: Performance Metrics and Guidelines [1,5]

Scalability testing assesses system performance as workloads expand beyond baseline measurements,
identifying scaling limitations and resource requirements for different growth scenarios. Horizontal
scaling tests evaluate performance gains from adding computational nodes while vertical scaling
assessments determine benefits from enhancing individual node capabilities [5]. Scalability benchmarks
assist organizations in planning capacity expansion strategies and understanding the cost implications of
different scaling approaches.

Monitoring deployment demands, establishing comprehensive visibility systems that observe critical
performance metrics, and delivering operational insight into streaming system status. Monitoring
approaches include real-time displays showing system performance data, automated notifications for
serious problems, and historical pattern evaluation supporting capacity preparation [1]. Successful
monitoring facilitates proactive system control and quick response to performance concerns before they
affect business operations.

Enhancement recommendations provide practical direction for improving system performance based on
benchmarking findings and operational knowledge. Performance adjustment guidelines address
configuration changes, resource distribution methods, and structural modifications that boost system
efficiency [5]. Ongoing improvement procedures apply continuous performance measurements to adjust
system configurations and preserve optimal performance as needs transform.

CONCLUSION

Streaming analytics platforms fundamentally change how organizations handle and obtain insights from
ongoing data streams. Contemporary application frameworks exhibit exceptional capabilities in managing
real-time data transformation while preserving scalability and performance standards. The comparison
between design patterns reveals distinct advantages for different use cases, with combined processing
methods offering robustness while streaming-only systems provide simplicity and reduced timing delays.
Implementation strategies involving messaging systems, small batch processing, and cloud warehouse
integration create comprehensive analytics pipelines capable of delivering instantaneous insights. These
technological advances enable organizations to eliminate traditional batch processing delays, achieving
minute-level decision-making capabilities previously impossible with overnight data cycles. Cloud
deployments benefit significantly from streaming systems through improved resource utilization and cost
optimization. The practical implementation of these frameworks provides clear pathways for engineering
teams to gain hands-on experience with real-time data processing technologies. Performance optimization
through data organization and checkpoints ensures data integrity while maximizing throughput across
computing environments. Future developments will likely enhance these capabilities through improved

5201



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 23s, 2025
https://theaspd.com/index.php

integration patterns and enhanced processing efficiency. The evolution from batch to streaming
represents a fundamental change, enabling competitive advantages through immediate data-driven
decision making and operational responsiveness.

REFERENCES

[1] Md Ashraful Alam et al., "Real-Time Analytics In Streaming Big Data: Techniques And Applications," ResearchGate, Oct.
2024.

https://www.researchgate.net/publication/386283651_Real-
Time_Analytics_In_Streaming_Big_Data_Techniques_And_Applications

[2] Shamnad Mohamed Shaffi and Jezeena Nikarthil Sidhick, "Streamlining Data Integration: Architectures for Real Time
Insights and on Demand Transformation," International Journal For Multidisciplinary Research, ResearchGate, May 2025.
https://www.researchgate.net/publication/391567153_Streamlining_Data_Integration_Architectures_for_Real_Time_Insight
s_and_on_Demand_Transformation

[3] Ouiam Khattach et al., "End-to-End Architecture for Real-Time IoT Analytics and Predictive Maintenance Using Stream
Processing and ML Pipelines," MDPI, May 2025.

https://www.mdpi.com/1424-8220/25/9/2945

[4] Adeyinka Akanbi and Muthoni Masinde, "A Distributed Stream Processing Middleware Framework for Real-Time Analysis
of Heterogeneous Data on Big Data Platform: Case of Environmental Monitoring," MDPI, Jun. 2020.
https://www.mdpi.com/1424-8220/20/11/3166

[5] Sagar Vishnubhai Sheta, "A Comprehensive Analysis of Real-time Data Processing Architectures for High-throughput
Applications," International Journal of Computer Engineering and Technology (IJCET), SSRN, Jan. 2025.
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5034117

(6] Marcos Dias de Assuncio et al., "Distributed data stream processing and edge computing: A survey on resource elasticity and
future directions," Journal of Network and Computer Applications, ScienceDirect, Dec. 2018.
https://www.sciencedirect.com/science/article/abs/pii/S1084804517303971

[7] Ravindra Kumar Singh and Harsh Kumar Verma, "Effective Parallel Processing Social Media Analytics Framework," Journal
of King Saud University - Computer and Information Sciences, ScienceDirect, Jun. 2022.
https://www.sciencedirect.com/science/article/pii/S1319157820303542

[8] Weisi Chen et al., "Real-Time Analytics: Concepts, Architectures, and ML/AI Considerations," IEEE Access, Jul. 2023.
https://ieeexplore.ieee.org/stamp/stamp.jsp’arnumber=10183999

5202


https://www.researchgate.net/publication/386283651_Real-Time_Analytics_In_Streaming_Big_Data_Techniques_And_Applications
https://www.researchgate.net/publication/386283651_Real-Time_Analytics_In_Streaming_Big_Data_Techniques_And_Applications
https://www.researchgate.net/publication/391567153_Streamlining_Data_Integration_Architectures_for_Real_Time_Insights_and_on_Demand_Transformation
https://www.researchgate.net/publication/391567153_Streamlining_Data_Integration_Architectures_for_Real_Time_Insights_and_on_Demand_Transformation
https://www.mdpi.com/1424-8220/25/9/2945
https://www.mdpi.com/1424-8220/20/11/3166
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5034117
https://www.sciencedirect.com/science/article/abs/pii/S1084804517303971
https://www.sciencedirect.com/science/article/pii/S1319157820303542
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10183999

