International Journal of Environmental Sciences ISSN: 2229-7359
Vol. 11 No. 7, 2025
https://www.theaspd.com/ijes.php

Role Of Tribal Healers In Preserving Traditional Ethnomedicinal Knowledge In Kabirdham District Of Chhattisgarh

Vikas¹, Dr. Deepa Biswas²

- ^{1.} Research scholar, dept. of Botany Kalinga University Naya Raipur, Chhattisgarh.
- ² Associate Prof. and HOD dept. of Botany Kalinga University Naya Raipur, Chhattisgarh. Email. vikasjhariya073@gmail.com

Abstract

The present study investigates the pivotal role of tribal healers in preserving traditional ethnomedicinal knowledge in Kabirdham district of Chhattisgarh, India. Data were collected from field surveys, interviews with healers, and direct documentation of plant species within Bhoramdev Sanctuary and surrounding villages. A total of 52 medicinal plant species belonging to multiple families were documented. Analysis shows that herbs and trees dominate the recorded flora, with leaves, roots, and bark being the most commonly used parts. The knowledge is transmitted orally by traditional healers such as Baiga Vaidyas, who are custodians of cultural and ecological wisdom. This study highlights the importance of healers not only in community healthcare but also in biodiversity conservation. However, modernization, habitat loss, and declining interest among younger generations pose major threats. Urgent documentation, scientific validation, and policy interventions are recommended to safeguard this invaluable heritage.

Keywords: Ethnomedicine, Tribal Healers, Traditional Knowledge, Kabirdham, Chhattisgarh, Indigenous Healthcare, Biodiversity Conservation.

INTRODUCTION

Ethnomedicine plays an integral role in the cultural and healthcare practices of indigenous communities across India. In Chhattisgarh, often referred to as the "Herbal State of India", tribal populations such as the Baiga, Gond, and Kanwar rely heavily on plant-based remedies for primary healthcare. The Kabirdham district, particularly the Bhoramdev Sanctuary, is endowed with rich biodiversity and serves as a repository of ethnomedicinal resources.

Tribal healers, locally known as Vaidyas or Gunias, act as the custodians of this knowledge. They diagnose, prepare, and administer herbal medicines derived from local flora. Their expertise extends beyond medicine, encompassing ritual practices and cultural traditions. However, pressures of modernization, deforestation, and knowledge erosion threaten this traditional wisdom. This paper presents a scientific analysis of ethnomedicinal plants documented in Kabirdham and emphasizes the role of tribal healers in preserving and transmitting this heritage.

REVIEW OF LITERATURE

The ethnomedicinal knowledge of tribal communities has been widely documented across India, particularly in regions rich in biodiversity. Several studies have emphasized the central role of indigenous knowledge in primary healthcare systems and its contribution to sustainable resource management.

Rai and Chourasia (2019) highlighted the diverse ethno-medicinal practices among tribal groups of Central India, demonstrating the dependence of local people on forest resources for treating a variety of ailments. Similarly, Sharma and Singh (2015) conducted an ethnobotanical survey in Chhattisgarh and reported extensive use of plant-based remedies for skin, respiratory, and digestive disorders. These findings were

ISSN: **2229-7359** Vol. 11 No. 7, 2025

https://www.theaspd.com/ijes.php

further supported by Tiwari, Verma, and Lal (2013), who documented the ethnomedicinal knowledge of tribes in Chhattisgarh and emphasized its cultural significance and therapeutic relevance.

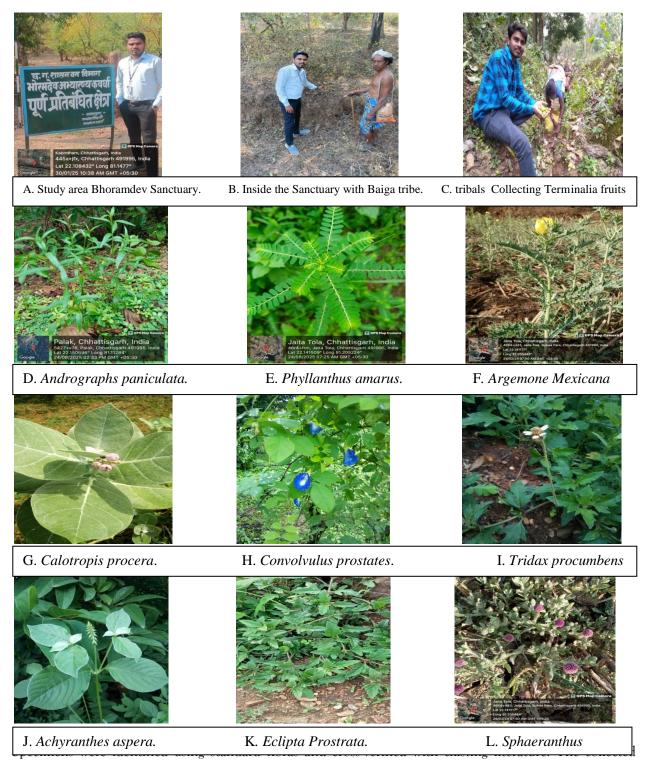
Mishra and Sharma (2010) explored the use of medicinal plants by the Baiga tribe in Bastar, Chhattisgarh, and found that leaves, roots, and bark were the most commonly used plant parts. Earlier, Rout, Panda, and Mishra (2009) and Singh and Lal (2008) also reported rich ethnomedicinal traditions in Eastern and Central India, noting the critical role of traditional healers in preserving and transmitting this knowledge.

At a broader level, Kala and Sajwan (2021) reviewed the status of ethnomedicinal plants in India and underlined the need for conservation due to increasing biotic pressures and habitat loss. The WHO Traditional Medicine Strategy (2014–2023) also recognized the global importance of integrating traditional knowledge into national healthcare systems, particularly in rural and tribal areas where access to modern healthcare is limited (World Health Organization, 2013).

Several scholars have focused on the role of traditional healers in healthcare delivery. Jain and Verma (2014) and Verma and Sharma (2020) highlighted how healers serve as custodians of indigenous knowledge, offering affordable and culturally acceptable healthcare solutions in remote tribal areas. Hamilton and Hamilton (2018) also stressed the importance of integrating ethnomedicine with biodiversity conservation strategies for ensuring sustainable use of natural resources.

Recent studies, such as Singh and Jhariya (2022), demonstrated the potential of indigenous knowledge for sustainable healthcare and its relevance in addressing modern health challenges. Choudhary and Sharma (2021) specifically investigated tribal-dominated regions of Chhattisgarh, showing how traditional healers play a dual role in both healthcare and cultural preservation. Prasad and Patel (2023) further emphasized the urgent need for documentation and conservation of ethnomedicinal knowledge in Central India, noting the risks of cultural erosion and biodiversity loss.

MATERIALS AND METHODS


STUDY AREA

The present study was conducted in Kabirdham district, located in the central part of Chhattisgarh state, India. The district lies between 21°32′ to 22°28′ N latitude and 80°48′ to 81°48′ E longitude, covering an area of approximately 4,447 sq. km. It is bounded by Mandla and Dindori districts of Madhya Pradesh in the north, Bilaspur in the east, Durg and Rajnandgaon in the south, and Balaghat (Madhya Pradesh) in the west. The district headquarters is Kawardha.

A major portion of the study was carried out in and around the Bhoramdev Wildlife Sanctuary, which extends over an area of about 352 sq. km. The sanctuary lies on the Maikal Hills, forming the eastern extension of the Satpura range, and is characterized by tropical dry deciduous forests dominated by sal (Shorea robusta), teak (Tectona grandis), saja (Terminalia tomentosa), bija (Pterocarpus marsupium), and bamboo (Dendrocalamus strictus). The forests harbor rich biodiversity, including several ethnomedicinally important plant species. The study was conducted in Kabirdham district with a focus on the Bhoramdev Sanctuary and adjoining tribal villages. Ethnobotanical data were collected through field surveys, direct observation, and interviews with 10 tribal healers belonging to Baiga, Gond, and Saura communities. Semi-structured questionnaires were used to gather information on local plant names, parts used, methods of preparation, dosage, and ailments treated.

ISSN: **2229-7359** Vol. 11 No. 7, 2025

https://www.theaspd.com/ijes.php

data were tabulated and analyzed to determine species diversity, family distribution, habit forms, plant part utilization, and ailment categories. Quantitative analysis was carried out to identify dominant patterns.

ISSN: **2229-7359** Vol. 11 No. 7, 2025

Table 1. Surveyed ethnomedicinal plant species recorded from Bhoramdev Sanctuary, Kabirdham district, Chhattisgarh. The table presents details of botanical name, family, Local name, parts used, and their traditional therapeutic applications as reported by the local tribal communities.

Botanical name	Local Name	Family	Habit of	Part of	Medicinal uses
			plant	Uses	
Acacia catechu	Khair	Fabaceae	Tree	Bark and	Diarrhoea, eruptions of
				wood	the skin and wounds,
Achyranthes	Chirchira	Amaranthaceae	Herb	Root,	Root paste has healing
aspera (L.)				Leaves,	properties, used to treat
					wounds.
Acoras calamus	Bach	Acoraceae	Herb	Root	Abdominal disorder, skin
					problem, cough
Aelge marmelos	Bel	Rutaceae	Tree	Fruit	Diarrhea, asthama and
					reduce swelling
Aleo barbadensis	Gritkumari	Liliaceae	Herb	Whole	Cosmetics, burns, cut and
Linn.				plant	wound, Headache
				bodysss	·
Andrographs	Nahadara	Acanthaceae	Herb	Whole	Treat fever
paniculata				plant	
_				body	
Argemone	Satyanasi	Papaveraceae	Herb	Whole	Guinea-worm infestation,
Mexicana Linn.	•	_		plant	skin diseases, itching,
				_	inflammation
Asparagus	Shatawar	Asparagaceae	Herb	Root	Milk formation in breast,
recimosus Willd					cough, Diarrhoea ,
					headache
Васора	Bramhi	Plantaginaceae	Herb	Leaf	enhance memory, hair,
monnieri					b.p. problem
Bauhinia	Kachnar	Fabaceae		Bark	treat fungal
divaricata (L.)					infection, abscess,treat
					piles.
Boerhaavia	Punarnava	Nyctaginaceae	Herb	Whole	Kidney stone, arthritis,
diffusa				plant	skin disorder
Linn.					
Bryophyllum	Patharchatta	Crassulaceae	Herb	Leaf	Treat wounds
pinnnatum					
Butea	Parsa	Fabaceae	Tree	Seeds,	Worm infestation and in
monosperma				and Bark	the treatment
					of ringworm, boils and
					pimples
Calotropis	Fudahar	Apocynaceae	Shrub	Leaf and	Buern and wound healing
procera				Latex	
Careya arborea	Kumhi	Lecythidaceae	Tree	Bark and	Snake bite,cold,cough
Roxb.				Fruit	

International Journal of Environmental Sciences ISSN: 2229-7359

ISSN: **2229-7359** Vol. 11 No. 7, 2025

Cassia tora	Charota	Fabaceae	Herb	Leaf juice	Anti-parasitic to ringworm
Chlorophytm arundinacuem	Safedmusli	Liliaceace	Herb	Tuber	Improove sexual vigour
Clitoria ternatea L.	Aparajita	Fabaceae	Climber	Root, Seed	Purgative, Diuretic
Cloroxylon swietenia	Bhiraha	Rutaceae	Tree	Bark	Rough skin and psorisis
Convolvulus prostatus	Sankhpushpi	Convolvulaceae	Climber	Leaf	Nervous debility, Memory loss Headache,vomiting,
Curcuma angustifolia W. Roxb.	Tikhur	Zingiberaceae	Herb	Tuber	Nutriative suppliments,Breast mikl formation,
Cuscuta reflexa Roxb.	Amarbel	Convolvulaceae	Climber	Whole plant	pitta, intestinal worms, , skin diseases, headache,
Dalbergia sissoo Roxb.	Shisham	Fabaceae	Tree	Leaves, Roots, wood	Leprosy, eruptions and stop vomiting
Datura metel Linn.	Dhatura	Solanaceae	Shrub	Whole plant	Arthritis, skin diseases, sciatica.
Delonix regia	Gulmohar	Fabaceae	Tree	Leaves	Diarrhoea
Diospyros melanoxylon Roxb	Tendu	Ebenaceae	Tree	Bark and Fruit	cure burns,Fruit used to mouth ulcer
Eclipta Prostrata L.	Bhengara	Asteraceae	Herb	Whole plant body	Hair beneficial, Liver cleanser and Antimicrobial
Euphorbia nerifolia	Thuhar	Ephorbiaceae	Shrub	Leaves	Psorisis,eczema and leucodema
Euphorbia hirta Linn.	Dudhiya	euphorbiaceae	Herb	Whole plant	Pitta, asthma, skin disease, fever, cough
Ficus racemosa L.	Dumar	Moraceae	Tree	Fruit, Leaves, Stem bark	To Treat wounds,Diorrhea, blood piles,
Linum usitatissimum	Alsi	Linaceae	Herb	Seed	Treat wounds
Marshilia quadrifolia	Tinpaniya	Marsiliaceae	Herb	Whole plant	Used in cough and respiratory troubles
Mentha spicata	Pudina	Lamiaceae	Herb	Whole plnat	Acid reflux,

ISSN: **2229-7359** Vol. 11 No. 7, 2025

Ocimum americanum L.	Dauna	Lamiaceae	Herb	Leaves	Cough,Treat respiratory system,Skin disorders
Ocimum cannum	Memari	Lamiaceae	herb	Leaf	Cold ,Fever and Ringworm
Phyllanthus amarus	Bhui amla	Euphorbiaceae	Herb	Whole plant	Jaundice, Liver disorder,
Pongamia pinnata	Karanj	Fabaceae	Tree	Bark ,Seed	Piles, ulcer and Skin curing
Ricinus communis Linn.	Arandi	Euphorbiaceae	Shrub	Seeds, leaves, bark	Young leaves used to cure Joundis
Schleichora oleosa	Kusum	Sapindaceae	Tree	Fruit and Bark	Cough, Skin disease
Shorea robusta	Sarai/Sal	Dipterocarpaceae	Tree	Bark	Wounds, Cough, vaginal discharge
Solanum nigrum	Makoy	Solanaceae	Herb	Leaf and Fruit	Joundish
Solanum xanthocarpum	Bhatkataiya	Solanaceae	Herb	Leaves, Root	Respiratory disorders
Sphaeranthus indica Linn.	Gorakhmundi	Asteraceae	Herb	Whole Plant	Goiter,jaundish,ringworm and scabies
Syzgium cuminii (L.)	Jamun	Myrtaceae	Tree		Diabetes and mouth ulcer
Tectona grandis	Sagaon	Verbenaceae	Tree	Bark extract	Leucorrhoea and Eczema
Terminalia arjuna (Roxb.)	Kauhaa	Combretaceae	Tree	Bark and Fruit	Heart disease Skin disease
Terminalia bellerica Roxb.	Bahera	Combretaceae	Tree	Bark, fruits	Anaemia ,curing cough, bronchitis, vomiting, skin diseases
Terminalia chebula	Harra	Combretaceae	Tree	Fruit	Cough ,As antibiotic, in every disease, Health enhancer
Thespesia populnea	Paras pipar	Malvaceae	Tree	Stem, bark, flower	Psoriasis eczema
Tinospora cardifolia	Gurunj	Menispermaceae	Climber	Whole plant	fever, Maleria

ISSN: **2229-7359** Vol. 11 No. 7, 2025

https://www.theaspd.com/ijes.php

				body	
Tridax	Bin hada goda	Asteraceae	Herb	Whole	Wound and skin fungle
procumbens				plant	infactions
Withania	Ashwagandha	Solanaceae	Herb	Root,	Cough, stimulant,
somnifera (L.)				Leaves	arthritis, ulcer

RESULTS

The present study documented a total of 52 medicinal plant species belonging to more than 29 families, with Fabaceae, Euphorbiaceae, and Solanaceae emerging as the most dominant families. This reflects the rich floristic diversity of Kabirdham district and the reliance of tribal communities on locally available flora for their primary healthcare needs.

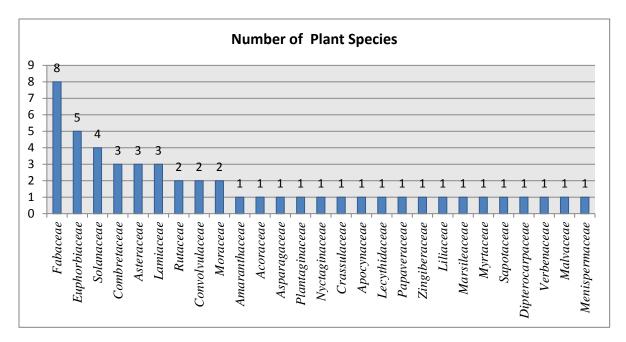
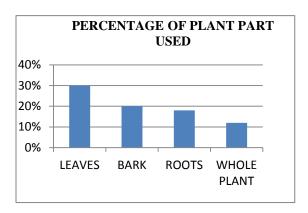



Fig 1: Family-wise distribution of ethnomedicinal plants recorded from Bhoramdev Sanctuary, Kabirdham district, Chhattisgarh. The figure illustrates the number of species belonging to different plant families as reported during the survey.

Analysis of plant habit revealed that herbs (46%) and trees (35%) together accounted for over 80% of the recorded species, while shrubs (12%) and climbers (7%) were less frequently used. This dominance of herbs and trees indicates the community's preference for easily accessible and multipurpose species. With regard to plant parts, leaves (30%) were the most frequently utilized, followed by bark (20%), roots (18%), and the whole plant (12%). Fruits (10%), seeds, latex, tubers, and flowers together contributed the remaining share.

ISSN: **2229-7359** Vol. 11 No. 7, 2025

https://www.theaspd.com/ijes.php

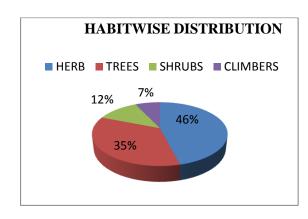


Fig 2: Percentage distribution of plant parts used. plants.

Fig 3: Habit-wise distribution of ethnomedicinal

The preference for leaves demonstrates their easy availability, quick regeneration, and relatively sustainable use compared to bark or roots, which may harm plant survival. The documented plants were used to treat a wide variety of ailments. The most common categories were skin diseases (15 species) and respiratory disorders (12 species), followed by digestive ailments (10 species), fever and malaria (8 species), women's health problems (5 species), liver and jaundice (4 species), and musculoskeletal issues (4 species).

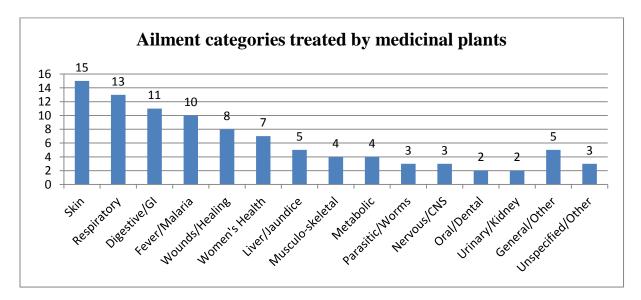


Fig 4: Ailment categories treated by medicinal plants showing maximum uses.

A smaller number of species were reported for diabetes, blood pressure, parasitic infections, and nervous disorders. This distribution indicates that tribal health practices are largely shaped by the prevalence of infectious and skin-related conditions in the local environment, while traditional knowledge also extends to chronic and lifestyle-related diseases. Some important species includeTinospora cordifolia (Giloy) for fever and malaria, Asparagus racemosus (Shatawar) for lactation and diarrhea, Aloe barbadensis (Aloe vera) for burns, wounds, and skin problems, Withania somnifera (Ashwagandha) for arthritis and stress-related conditions, and Terminalia arjuna for cardiovascular ailments. These representative plants highlight the

ISSN: **2229-7359** Vol. 11 No. 7, 2025

https://www.theaspd.com/ijes.php

broad therapeutic spectrum of traditional ethnomedicinal knowledge preserved by tribal healers in Kabirdham.

DISCUSSION

The findings are consistent with ethnobotanical surveys conducted in other tribal belts of central India, such as Bastar (Chhattisgarh) and Mandla (Madhya Pradesh). The predominance of herbs and trees is in agreement with earlier studies, reflecting both availability and cultural preference. The dominance of leaf use is common across ethnomedicinal practices due to ease of collection and rapid regeneration. The focus on skin and respiratory ailments reflects prevalent health concerns among tribal populations, who are frequently exposed to environmental stressors and infections. Women's health remedies highlight the specialized role of certain plants in addressing reproductive health needs.

Tribal healers also contribute to biodiversity conservation by regulating the time and manner of harvesting. Their ecological knowledge ensures sustainable use. However, threats such as modernization, reduced forest cover, and waning interest among youth endanger the continuity of this knowledge.

ROLE OF TRIBAL HEALERS

Tribal healers are central figures in the preservation and transmission of ethnomedicinal wisdom in Kabirdham district. They possess deep knowledge of identifying medicinal plants and their natural habitats, and skillfully prepare remedies using traditional techniques passed down through generations. Their treatments are based on personal experience and the trust of the community, making them reliable sources of healthcare in remote tribal areas. This knowledge is primarily transmitted orally, ensuring continuity across generations despite the absence of written records. In addition to their medical role, healers also serve as cultural leaders who integrate healthcare with spiritual and ritual practices, thus reinforcing community cohesion. Their contribution represents a sustainable and affordable model of healthcare that is accessible to all sections of the community. However, the gradual loss of their role due to modernization and cultural erosion would not only create a health gap but also lead to the decline of cultural identity and ecological balance.

ACKNOWLEDGEMENT

I sincerely express my profound gratitude to my research supervisor, Dr. Deepa Biswas, for her invaluable guidance, constant encouragement, and insightful suggestions that have been instrumental in the successful completion of this study. Her expertise and constructive feedback enriched the quality of this research at every stage. I am also deeply thankful to the Forest Department, Kabirdham, for granting permission and extending necessary support during the field survey. Further, I am indebted to the tribal healers and local communities of Kabirdham district, whose generosity in sharing their traditional knowledge and practices of ethnomedicine made this work possible. Their cooperation and support are deeply acknowledged with heartfelt appreciation.

REFERENCES

- Rai, M. K., & Chourasia, H. K. (2019). Indigenous knowledge and ethnomedicinal practices among tribal communities of Central India. Journal of Ethnopharmacology, 241, 112017
- Sharma, P., & Singh, R. K. (2015). Ethnobotanical survey of medicinal plants in Chhattisgarh. Journal of Ethnopharmacology, 165, 123–135.
- Tiwari, K. P., Verma, R. K., & Lal, B. (2013). Traditional knowledge on ethnomedicinal uses of plants in tribal region of Chhattisgarh, India. Indian Journal of Natural Products and Resources, 4(2), 151–158.

ISSN: **2229-7359** Vol. 11 No. 7, 2025

- Mishra, N., & Sharma, A. (2010). Medicinal plants used by Baiga tribe in Bastar district, Chhattisgarh. Indian Journal of Traditional Knowledge, 9(2), 261–265.
- Rout, S. D., Panda, T., & Mishra, N. (2009). Ethnomedicinal studies on Similipal Biosphere Reserve, Orissa, India. Ethnobotanical Leaflets, 13, 164–205.
- Singh, R. K., & Lal, B. (2008). Ethnomedicinal use of some species by the tribes of Chhattisgarh, India. Pharmacognosy Reviews, 2(3), 125–138.
- Kala, C. P., & Sajwan, B. S. (2021). Current status of ethnomedicinal plants in India: Distribution, conservation and future prospects. Journal of Ayurveda and Integrative Medicine, 12(2), 212–220.
- World Health Organization. (2013). WHO traditional medicine strategy 2014–2023. Geneva: WHO.
- Jain, A., & Verma, J. (2014). Traditional herbal medicine for healthcare of tribal communities in India. International Journal of Herbal Medicine, 2(2), 1–6.
- Hamilton, A. C., & Hamilton, P. (2018). Plant conservation and ethnomedicine: Integrating traditional knowledge into biodiversity strategies. Biodiversity and Conservation, 27(10), 2479–2495.
- Pandey, A. K., & Tripathi, N. N. (2017). Ethnobotany and ethnopharmacology of medicinal plants in India: An
 overview. Indian Journal of Traditional Knowledge, 16(3), 478–487.
- Verma, R., & Sharma, M. (2020). Role of traditional healers in primary healthcare of tribal populations in India. Journal of Ethnobiology and Ethnomedicine, 16, 60. https://doi.org/10.1186/s13002-020-00400-4
- Singh, K., & Jhariya, M. K. (2022). Indigenous knowledge of medicinal plants in Central India: Prospects for sustainable healthcare. Environment, Development and Sustainability, 24(6), 7491–7509.
- Choudhary, N., & Sharma, R. (2021). Traditional healers and ethnomedicinal knowledge: A study from tribaldominated areas of Chhattisgarh. Journal of Ethnopharmacology, 279, 114347.
- Prasad, P., & Patel, H. (2023). Ethnomedicinal documentation and conservation challenges in Central India. Indian Journal of Ethnobiology, 5(1), 33–45.