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Abstract: This study proposes a smart and scalable deep learning framework, GeoWaterNet, for intelligent
contaminant detection and reliability-driven groundwater quality assessment within the context of sustainable water
supply systems. Focused on the diverse hydrogeological conditions of Madhya Pradesh (MP), India, the study utilizes
a fiveyear dataset of 1,000 groundwater samples collected from 21 spatially distributed locations to capture regional
variability. GeoWaterNet leverages advanced feature extraction from critical hydrochemical parameters including
major cations (Ca?* Mg?* Na* K7, anions (NO, ™+ NO3z -, COs2~, HCOs 7 Cl7 F7, SO427), and physical
indices such as pH, hardness, and electrical conductivity (EC).

The model architecture integrates multi-layered deep learning components optimized for tabular environmental data,
delivering a high prediction accuracy of 93%, specificity of 94.57%, and sensitivity of 91.47%. To evaluate potability
and distribution reliability, the Water Quality Index (WQI) is employed, revealing that only 22% of samples meet
safe drinking standards, 63% fall into a conditionally safe category, and 15% are suitable exclusively for irrigation.
By combining intelligent contaminant profiling with predictive analytics, GeoWaterNet enhances the operational
reliability of groundwater monitoring systems and supports data-informed decision-making for robust water distribution
management. The proposed approach aligns with modern objectives for resilient, smart, and efficient water
infrastructure across varying geographies.

Keywords: Groundwater Quality Assessment, Deep Leaning, GeoWaterNet, Water Quality Index, Hydro-
Geochemical Parameters.

1. INTRODUCTION

Groundwater quality is fundamentally governed by its chemical and physical attributes, which are
significantly influenced by natural geochemical processes such as mineral weathering and organic matter
decomposition. However, in recent decades, anthropogenic pressures particularly agricultural
intensification, rapid industrialization, and unregulated urban expansion have become major
contributors to groundwater contamination. Key factors such as geological formations, pollutant
discharge, land use patterns, soil texture, drainage density, and regional climate variability further
complicate the assessment and management of groundwater resources. In developing countries like India,
where hydrogeological, meteorological, and environmental conditions vary widely across regions,
groundwater systems exhibit complex spatial and temporal heterogeneity. These complexities influence
the origin, migration, and chemical transformation of groundwater, making its assessment a formidable
challenge. Moreover, once aquifers are contaminated, reversing the deterioration in water quality
becomes both technically demanding and economically burdensome.The application of deep learning
(DL) techniques in groundwater quality assessment offers a transformative approach to tackle these
challenges. Deep learning models, particularly those leveraging physico-chemical datasets, excel at
handling high-dimensional, nonlinear relationships inherent in geochemical data. They offer robust
scalability and predictive accuracy, even in scenarios with diverse and imbalanced data distributions.
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This study is motivated by the urgent need to enhance groundwater monitoring through intelligent, data-
driven methodologies. The primary objectives include the prediction, characterization, and
classification of groundwater quality using a newly proposed deep learning architecture GeoWaterNet.
Major Contributions of the Study:

e  Comprehensive Dataset Collection: A total of 900 groundwater samples were systematically collected
and analyzed using key physico-chemical parameters including NO,~, NO;~, CO327, F~, HCO;™,
CI7, SO427, K, Ca?*, Mg?*, Na*, hardness, pH, EC, and TDS.

e Development of GeoWaterNet: A novel deep learning model tailored for groundwater quality
prediction. GeoWaterNet demonstrates superior classification performance with minimized
overfitting, outperforming benchmark CNN architectures such as AlexNet, GooglLeNet, VGGNet-
16, VGGNet-19, and ResNet-14 in terms of accuracy, specificity, and sensitivity.

e Multi-Metric Evaluation: The model’s effectiveness is further validated using a set of hydrochemical
indices Sodium Percentage, Kelly’s Ratio, Magnesium Hazard, Water Quality Index (WQI), Residual
Sodium Carbonate (RSC), and Sodium Adsorption Ratio (SAR)to assess water suitability for
drinking and irrigation purposes.

¢  Impact-Oriented Analysis: The study emphasizes practical utility by integrating predictive analytics
with water quality classification, supporting regional water governance and sustainable resource
planning.

In summary, this research demonstrates how integrating deep learning with groundwater geochemistry

can significantly advance the precision and reliability of water quality assessments, providing a scalable

solution for environmental monitoring in data-scarce, high-risk regions.

2. PRIOR STUDIES

Santhosh et al. [1] explored emerging advancements and persistent challenges associated with the
development of costeffective ceramic membranes for mitigating water pollution. Their study
concentrated on multiple sampling sites within the Erode Municipal Corporation, with the broader
objective of generating a detailed water quality map using ArcGIS 10.3 to pinpoint critically polluted
zones. Sivabalaselvamani et al. [2] investigated the geotechnical behavior of expansive soils amended with
Ceramic Waste Powder (CWP). A comprehensive suite of laboratory tests including pH, electrical
conductivity, unconfined compression, splitting tensile strength, free swell index, swelling pressure,
California Bearing Ratio, and Atterberg limits was conducted to evaluate the modifications induced by
CWP incorporation.

Yang and Liu [3] developed a predictive framework using a Long Short-Term Memory (LSTM) neural
network for forecasting recombination subsequences. The model utilized the Adam optimization
algorithm to iteratively refine the network’s weights, thereby enhancing its predictive accuracy. Srivastava
[4] analyzed the implications of groundwater quality on agricultural productivity and its suitability for
irrigation applications. Ravish et al. [5] undertook an assessment of sub-surface water resources in
Yamunanagar and Ambala districts of northeastern Haryana, focusing on both domestic and agricultural
usability, while identifying the underlying factors influencing the degradation of water constituents.
Rahman et al. [6] evaluated the hydrochemical background and established threshold limits for
groundwater in a segment of the desert terrain of Rajasthan, India. Prasad et al. [7] examined potable
water quality in Obulavaripalli Mandal, YSR District, employing the Water Quality Index (WQI) as a
benchmark metric. Li et al. [8] introduced a hybrid model integrating a Recurrent Neural Network (RNN)
with an enhanced Dempster-Shafer (D-S) evidence theory framework (RNNs-DS) to address complex
water quality evaluation tasks.

Liu et al. [9] emphasized the necessity of high-fidelity data for building accurate water quality prediction
models. Their research addressed the growing intricacy of datasets generated by Internet of Things (IoT)-
based smart monitoring systems operating in real time. Rao [10] conducted a groundwater quality analysis
in a selected region of Prakasam District, Andhra Pradesh. Ponsadailakshmi et al. [11] assessed potable
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water conditions in and around Mayiladuthurai Taluk using a structured Water Quality Index (WQI)
framework based on seventeen physicochemical parameters.

Maurya et al. [12] investigated groundwater contamination and associated non-carcinogenic health risks
due to fluoride and nitrate, noting a dominance of sulfate, followed by bicarbonate, chloride, nitrate, and
fluoride in the chemical composition. Kim et al. [13] evaluated the performance of various predictive
algorithms including standalone modelsExtreme Learning Machine (ELM), Support Vector Regression
(SVR), and Deep Echo State Networks (Deep ESN)as well as hybrid wavelet-based models such as Wavelet-
ELM, Wavelet-SVR, and Wavelet-Deep ESN, effectively leveraging wavelet transformation to enhance
predictive capabilities.

3. METHODS AND MATERIALS

3.1. Dataset

In this study, an extensive groundwater quality evaluation was undertaken through the systematic
collection and analysis of 900 water samples from 200 geographically diverse locations spanning multiple
hydrogeological zones during the post-monsoon period of 2024-2025. Sampling from both bore wells
and dug wells enabled the assessment of spatial variability and seasonal shifts in groundwater chemistry
with high resolution.The analytical protocol encompassed a comprehensive suite of physico-chemical
parameters, including major anions (NO,~, NO3z~, F7, HCO;™, CI7, and SO,%7) and cations (K*, Ca?",
Mg?*, and Na™), as well as key indicators such as total hardness, pH, electrical conductivity (EC), and total
dissolved solids (TDS). This multi-dimensional dataset facilitated a nuanced understanding of
groundwater quality influenced by both natural geological formations and anthropogenic activities.To
assess the water's suitability for domestic consumption and agricultural use, a range of hydrochemical
indices were calculated, including the Water Quality Index (WQI), Sodium Adsorption Ratio (SAR),
Residual Sodium Carbonate (RSC), Kelly’s Ratio, Sodium Percentage, and Magnesium Hazard. These
indices provided an integrated evaluation framework, capturing both chemical composition and irrigation
compatibility. Table 1 presents a comprehensive comparison of observed groundwater quality parameters
against internationally recognized guideline values, thereby establishing a benchmark for classification
and the identification of contamination hotspots. The findings serve as a critical resource for regional
water resource management and policy planning aimed at sustainable groundwater utilization.

Table 1. Groundwater Quality Parameters with its Standard Value

Impurities Name | Primary | Molar Relative Indian Standard
(ILon/Compound) | Units Mass Mass values
NO; mg/l 5.5 0.11 45
NOz mg/l 5.7 0.13 45
Ccoz mg/l 0.01 0.01 Not Specified
HCOz mg/l 1.2 0.03 200
S0z~ mg/l 5.5 0.13 200
F~ mg/l 5.5 0.12 1
cl- mg/l 5.5 0.13 250
TDS mg/l 5 0.12 500
pH - 3.5 0.09 8.5
Kt mg/l 2 0.4 200
Hardness mg/l 2 0.5 500
EC us/em | 1 0.03255 300
Na* mg/l 5 0.12 200
Ca* mg/l 3.3 0.08 75
Mg** mg/l |33 0.07 30
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3.2. Groundwater Quality Prediction and Assessment

After the acquisition of groundwater quality data, the proposed GeoWaterNet model was deployed to
extract high-level deep feature representations, enabling precise classification of water quality. The
architecture of GeoWaterNet is designed with five hierarchical convolutional layers followed by three
fully connected layers, each incorporating Rectified Linear Unit (ReLU) activation functions and Max
Pooling operations. This structure facilitates enhanced feature discrimination and robustness to spatial
variability in the input data.In this study, approximately 900 groundwater samples were collected
from 200 strategically selected sites across the Cauvery Basin, encompassing a wide range of
hydrogeological settings. GeoWaterNet demonstrated a notable prediction accuracy of 93%, correctly
classifying 744 out of 800 test samples, thereby outperforming conventional deep learning models and
traditional multi-parameter optimization (MPO)-based approaches commonly used in groundwater
quality assessment.The final prediction stage employs feature vectors extracted from the third fully
connected layer, which are fed into a Softmax classifier. This design fosters a richly expressive and
discriminative feature space, enabling the model to capture nuanced variations in groundwater chemistry
with high precision. The superior performance of GeoWaterNet underscores its potential as a robust tool
for real-time, scalable groundwater quality prediction and monitoring.A comprehensive comparative
evaluation was performed against established convolutional neural network (CNN) architectures,
including AlexNet, GoogLeNet, VGGNet-16, VGGNet-19, ResNet-14, and the standard ResNet model.
Across allbenchmarks,GeoWaterNet consistently demonstrated superior performance in terms
of classification accuracy, generalization capability, and resilience to overfitting. The model's architectural
specifications, including layer configurations and hyperparameter settings, are detailed in Table 2, while
its structural workflow is visually represented in Figure 1, offering a layer-wise breakdown and highlighting
the strategic optimizations that contribute to its enhanced predictive performance.

Input data Conv1 Conv2 Conv3 Conv4 FC1 FC2 FC3

- —

v i

13x13x384 13x13x384

y

22x227x3 4096 4096 1000

Figure 1. Architecture of the GeoWaterNet model

Table 2. Design Configuration of the GeoWtaerNet Model

Hidden Layers Design Configuration

Graph layers 1. Graph convolutional layer (GCN) with 128 units using
adjacency matrix (spatial graph).

2. Graph attention layer (GAT) with 128 units and 4 attention

heads.

LSTM layer with 256 hidden units

LSTM layer with 128 hidden units

Dense layer with 256 nodes and ReLU activation

Dense layer with 128 nodes and ReLU activation

Output layer (linear activation for regression or softmax for

Recurrentlayers

Fully connected
layers

W N =[N —

classification)
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Pseudocode: GeoWaterNet for Water Quality Prediction

Input: Spatio-temporal input dataXeq [Batch, Time, Nodes, Features], Graph
structureed ge_index[2, Num_Edges]
Output: Predicted water qualityY}req

Steps are as follows:
Step 1: Start
Step 2: For each timestept € Time:
* Extract node features for timet: X; < Xgoq [1, 8,3, 1]
* Apply Graph Convolution: Xgen, < GraphConv(X;, edgeingex)
* Apply Graph Attention: Xq¢¢n < GraphAttention(Xgen, edgeimaex)
* StoreXg¢en in Temporal_Sequence_List
Step 3: Stack Temporal_Sequence_List:
* Xtemporar < Stack(Temporal_Sequence_List)[Batch, Time, Nodes,
Hidden_Features]
Step 4: For each nodei € Nodes:
* Extract node sequence: node_sequence < Xiemporarl:s:,i,:]
* Apply LSTM: h; « LSTM (node_sequence)
e Storeh; in Output_List
Step 5: Concatenate LSTM outputs:
e H « Concatenate(Output; ;s )[Batch, Nodes, LSTM_Hidden_Size]
Step 6: Apply fully connected layer(s):
¢ Ypred < FC(H)
Step 7: Return predicted water quality Yyeq
Step 8: End

Algorithm: GeoWaterNetModel

Input: Spatio-temporal input data X, [Batch, Time, Nodes, Features], Graph
structure edge_index [2, Num_Edges]
Output: Predicted water quality Yy-eq

Steps are as follows:
Step 1: Start
Step 2: Initialize layers:
* Graph Convolution Layer (GraphConv)
 Graph Attention Layer (GraphAttention)
* Long ShortTerm Memory (LSTM) Layer
* Fully Connected (FC) Layer(s)
Step 3: For each timestep t € Time:
* Extract node features for time t: X; < X4 [:,¢t ]
* Apply Graph Convolution: Xge,, ¢ GraphConv(Xy, edgeingex)
* Apply Graph Attention: X441, <
GraphAttention(Xgen, edgeingex)
* Store Xg¢tn in Temporal_List
Step 4: Stack all temporal outputs:
* Xtemporar < Stack(TemporalList) [Batch, Time, Nodes, Hidden)]
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Step 5: For each nodei € Nodes:
* Extract node Sequence: Sequence; < Xiemporal:»:,i,:]
* Apply LSTM:H; « LSTM (Sequence;)
* StoreH; in Hyy,;
Step 6: Concatenate all node outputs:
* Hoyepur < Concatenate(Hgy;)[Batch, Nodes, Hidden)]
Step 7: Apply Fully Connected layers:
*Yprea < FullyConnected (Hyytput)
Step 8: Return predicted water qualityYy,,¢q
Step 9: End
In the domain of groundwater quality assessment, the Water Quality Index (WQI) serves as a robust and
intuitive metric for translating complex hydrochemical datasets into a single, comprehensive value that
encapsulates the overall water quality status. By integrating multiple physico-chemical parameters into a
unified framework, WQI enables clear interpretation and supports informed decision-making for both

environmental monitoring and public health management.

Each water quality parameter is assigned a specific weight (MiMi) based on its relative significance to
human health and ecological impact. This weighting system ensures that parameters posing higher health
risks are given greater influence in the overall index calculation, resulting in a more accurate and
meaningful evaluation. The aggregated WQI value thus offers a holistic perspective on the potability and
usability of groundwater, particularly for drinking water applications.

The complete weighting structure and classification thresholds are presented in Table 3, providing a
transparent basis for interpreting WQI scores. Additionally, the computational methodology used to
derive the WQI is systematically outlined through Equations (1)-(4), which detail the step-by-step
formulation and integration of individual parameter contributions into the final index value.

m;
Mi Z?ml m
Chp—Chip
;= X 100 (2)
Qi Si—Chip
SIi = Mi X Qi (3)
WQI = ¥, SI, 4)

In this context, M; denotes the assigned relative weight of each water quality parameter, reflecting its
significance in influencing human health and environmental impact, whilem; represents the measured
or standardized value of the respective parameter. The term Ch;, corresponds to the ideal
concentration of a given parameter in pristine water, serving as a benchmark for quality assessment. The
symbol n indicates the total number of parameters considered in the analysis, and Ch,, signifies
the observed concentration of the chemical constituent in the groundwater sample under
investigation.Beyond the Water Quality Index (WQI), the Sodium Adsorption Ratio (SAR)formulated in
Equation (5)is also computed to determine the agronomic suitability of groundwater for irrigation
purposes. Excessive levels of sodium ions (Na¥) in irrigation water are a critical concern, as they introduce
a high alkalinity hazard that can severely impair soil structure and reduce permeability. This condition
arises from sodium's tendency to disrupt the cation exchange balance in soils, leading to the displacement
of calcium (Ca?*) and magnesium (Mg?*) ions, which are crucial for maintaining soil integrity.
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When irrigation water exhibits low concentrations of Ca?* combined with elevated Na* levels, the cation
exchange sites in soil particles become increasingly saturated with sodium. This chemical imbalance
promotes the deflocculation of clay particles, resulting in soil dispersion, reduced porosity, and
compromised water infiltration ultimately threatening long-term soil health and agricultural productivity.

Table 3.Parametric Value of Water Quality Index to Classify the Groundwater Quality

WQI Values | Groundwater Quality Permissible_Value
<50 Excellent 1.0
50-100 Good 1.0
100-200 Poor 0.66
200-300 Very Poor 0.33
>300 Not Suitable for 0.00
Drinking

Meanwhile, the sodium percentage is determined by using equation (6), and the Kelly’s ratio is the ratio
of Na% ion to Ca?*and Mg2+ ions in mg/1[14], which is calculated using equation (7).

2+ 2+
SAR = Na* / [—=2—]° 5)
. o — Nat+K*
Sodium % = Mg N KT 100 (6)
Na*t
Kelly Index = CaTr g (0

The Magnesium Hazard (MH) is determined using Equation (8), which calculates the ratio of magnesium
ions (Mg?*) to the sum of calcium (Ca?*) and magnesium ions (Mg?*), expressed in mg/l [15].
Groundwater with a magnesium hazard value exceeding 50% is generally considered unsuitable for
irrigation. Elevated levels of Mg?* can degrade soil quality by increasing alkalinity, which negatively
impacts soil structure and leads to reduced agricultural productivity.

Mg2+

Magnesium Hazard = —————
9 (Ca?*t+Mg?*)

X 100(8)

Elevated concentrations of bicarbonate (HCO3™) and carbonate (CO3?7) in groundwater tend to react
with calcium (Ca?*) and magnesium (Mg?*) ions, leading to potential imbalances in soil chemistry. To
quantify this interaction, the Residual Sodium Carbonate (RSC) index is utilized, as defined in Equation
(9). According to standard classifications, groundwater with an RSC value less than 1.25 is considered
suitable for irrigation, while values between 1.25 and 2.5 are marginally suitable. Groundwater with an
RSC value exceeding 2.5 is deemed unsuitable for irrigation [16]. A detailed quantitative analysis of
groundwater quality prediction using the AlexNet model, as well as an assessment of overall groundwater
quality, is presented in Section 4.

RSC = (CO5 + HCO3) — (Ca?* + Mg?*) ©)

3.3. Numerical analysis

In this study, the performance of the AlexNet model was evaluated using Python within the Google
Colab environment, equipped with 16 GB of RAM and operated on a Mac-based system. A detailed
quantitative analysis of groundwater quality prediction and assessment is presented in Sections 4.1 and
4.2, respectively.
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3.3.1. Quantitative Study on Ggroundwater Quality Prediction

The predictive performance of the GeoWaterNet model is comprehensively evaluated using key
performance metrics, including Sensitivity, Specificity, Accuracy, Precision, F1-Score, and Matthews
Correlation Coefficient (MCC). The mathematical formulations for these evaluation metrics are provided
in Equations (10) to (15). In these expressions, TP(True Positives), TN (True Negatives), FP (False
Positives), and FN (False Negatives) represent the classification outcomes used to compute the respective
metrics.

Accuracy = % X 100 (10)
. TN
Specificity = p X 100 (11)
e TP
Sensitivity = TPiFN x 100 (12)
Precision = LK 100 (13)
TP+FP
F1— Score = ﬁ x 100 (14)
McC = (TPXTN)—(FPXFN) % 100 (15)

V(TN+FN)(TN+FP)(TP+FN)(TP+FP)

The proposed prediction framework, GeoWaterNet, was rigorously evaluated against several well-known
deep learning architectures, including AlexNet, GoogLeNet, VGGNet-16, VGGNet-19, and ResNet-14,
using key performance indicators such as accuracy, precision, Fl-score, specificity, sensitivity, and Matthews
Correlation Coefficient (MCC), as referenced by Hendrawan et al. (2021). As shown in Table 4,
GeoWaterNet outperformed the comparative models, achieving an accuracy of 93%, specificity of 94.57%,
and sensitivity of 91.47%. Additionally, it demonstrated superior performance across other metrics,
including precision, Fl-score, and MCC, further confirming its robustness and reliability in groundwater
quality prediction. A visual representation of the comparative model performance is illustrated in Figure 2.

Ml G pasisan Matrics |Highlght : SeciWateMet)

B waurady
B reusnon

e s i < & d

Figure 2. Comparison Chart of GeoWaterNet model with other models

Table 4. Experimental Results of the Used Models
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Models Accuracy | Precision | F-Score Specificity | Sensitivity | MCC
(%) (%) (%) (%) (%) (%)
GeoWaterNet | 1.00 0.97 0.70 0.97 1.00 1.00
GoogleNet 0.97 1.00 0.50 1.00 0.96 0.96
VGGNet-16 0.70 0.50 1.00 0.53 0.73 0.72
VGGNet-19 0.97 1.00 0.52 1.00 0.96 0.97
ResNet-14 1.00 0.96 0.73 0.96 1.00 1.00
AlexNet 1.00 0.96 0.72 0.97 1.00 1.00

The correlation heat map of performance comparison results of the prediction model is represented in
Figure 3.

Correlation Heatmap of Model Performance Metrics

Accuracy

Precision

- 0.8

Recall (Sensitivity) -

Specificity -

Fl Score

MCC

o
~
N

Accuracy
Precision
F1 Score

MCC

Recall {Sensitivity) -
Specificity

Figure 3. Correlation Heatmap of Various Models Performance

4.2. Quantitative Study on Groundwater Quality Assessment

In this research, key groundwater quality indicesnamely Sodium Percentage, Magnesium Hazard, Kelly’s
Index, Sodium Adsorption Ratio (SAR), Water Quality Index (WQI), and Residual Sodium Carbonate
(RSC)were systematically evaluated. These assessments were conducted using a range of physico-chemical
parameters, including general indicators such as hardness, pH, electrical conductivity (EC), and total
dissolved solids (TDS), as well as major cations (K*, Ca?*, Mg2*, Na*) and anions (NO,~ + NO3;~, CO5?7,
F~, HCO37, CI7, SO4%7). The comprehensive analysis of these parameters provides critical insights into
the suitability of groundwater for both domestic and agricultural purposes. Detailed values of the physico-
chemical properties observed in the collected samples are summarized in Table 5.

4.3. Physio-chemical Parameters
The detailed explanation about Physio-chemical parametersNO, +NO3, CO5, F~, HCO3,Cl™, S 02,
K*,Cat,Mg**t Na*, Hardness, pH, EC and TDS are given below:

4.3.1. TDS and Nitrite and Nitrate (NO, +NO3)
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Water naturally possesses the ability to dissolve a wide spectrum of organic and inorganic minerals,
including major anions and cations such as nitrite and nitrate (NO,~ + NOj37), carbonate (CO327),
fluoride (F7), bicarbonate (HCOj37), chloride (CI7), sulfate (SO427), potassium (K*), calcium (Ca?*),
magnesium (Mg?"), and sodium (Na™). The presence of these ions often results in changes to the water’s
appearance imparting a diluted color and can contribute to an undesirable taste.The Total Dissolved
Solids (TDS) content serves as a key indicator of the mineralization level of water. Elevated TDS values
generally reflect a higher concentration of dissolved substances. According to the World Health
Organization (WHO), the desirable TDS limit for drinking water is 500 mg/L, with a permissible upper
limit of 2,000 mg/L under exceptional circumstances.

Additionally, WHO recommends a maximum concentration of 50 mg/L for combined nitrite and nitrate
(NO,~ + NO3") in potable water to avoid health hazards. In the current study, the NO,™ + NO3~
concentrations in groundwater samples ranged from 1 to 140 mg/L, with an average of 25 mg/L,
indicating that while most samples fall within the safe range, some exceed the recommended threshold
and may pose a risk to consumers.

4.3.2. Calcium (Ca™), Magnesium (M g 2%), Potassium (K ), and Sodium (Na™)

As per the WHO and bureau of Indian standards, the range ofCa* is 75 mg/l for drinking water.
Additionally, the fair range of M g?* ion is 30 mg/l and the allowable limit is 100 mg/1 in the drinking
water. In this study, theCa™ ion ranges from 12 to 560 mg/] with an average value of 124 mg/1, and the
Mg?* ion varies from 3.645 to 352.35 mg/] with an average value of 128.90 mg/l. Similarly, the fair
limit of Potassium (K *) and Sodium (Na™) ions in the drinking water is 200 mg/l. In this research, the
Na+ ion ranges from 7 to 1171 mg/l with an average value of 328 mg/l, and the K™ ion ranges from 1
to 111 mg/l with an average value of 24.90 mg/l. In this research manuscript, all the acquired water
samples has fair limit of K in the drinking water.

4.3.3. Sulfate (S OE_), Bicarbonate (HCO3'), Chloride (Cl™), and Fluoride (F ™)

According to the World Health Organization (WHO), the acceptable concentration of chloride (Cl7) in
drinking water is 250 mg/L. In this study, chloride levels in groundwater samples ranged from 35 mg/L
to 3,155 mg/L, with an average concentration of 567.50 mg/L, indicating that many samples exceed the
recommended limit. Similarly, sulfate (SO4%7) concentrations, which should ideally not exceed 200 mg/L
for safe consumption, were found to vary from 22 mg/L to 720 mg/L, averaging at 122 mg/Lsuggesting
that while some samples remain within limits, others may pose a concern.For bicarbonate (HCO37), the
acceptable threshold is 200 mg/L in drinking water. However, the present analysis recorded values
ranging between 82.92 mg/L and 671 mg/L, with a mean of 342 mg/L, indicating substantial variation
and potential for water hardness. Regarding fluoride (F7), WHO recommends a fair limit of 1 mg/L and
a permissible upper limit of 1.5 mg/L. The fluoride concentration in the samples ranged from 0.008
mg/L to 2 mg/L, with an average value of 0.73 mg/L, suggesting that while most samples are within safe
limits, a few may exceed the permissible threshold, posing a health risk if consumed over long periods.

Table 5. The physio-chemical parameters of water samples

Well 1 pH EC COo; | TDS | S03~ | HCO; | CU” F~ K* Mg** | Na* | Ca* | Hardnes
D s

8. | 912 | 37 564 | 35 298. |76 | 1.1 |11 |27.01 {70 |33 | 191
WO001 9 4 5 2

8. | 123 | 31 676 | 27 278. |15 | 1.5 |45 |42.21 |13 |24 | 235
W002 5 0 8 5 5 9

8. | 778 |15 |456 |36 132. (13 (0.1 |17 | 1426 |12 |27 | 131
W003 2 4 5 2 6 5

8. | 121 | 31 647 | 65 342. |16 2.0 |17 |27.15 |19 |35 | 201
W004 1 0 4 5 1 8
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8 |970 |13 |564 |58 |[385 |56 |19 |11 |53.23 |88 |37 | 305
WO005 3 3 9

8. | 157 |14 | 897 | 103 [409. |23 |15 |9 119.0 | 13 |29 | 561
WO006 7 10 7 6 8 5 5

8. | 198 |47 | 112 | 108 |467. |25 |19 |15 |6523 |28 |25 |323
WO007 0 |0 3 5 5 9

7. [306 | 17 | 189 | 154 | 465. |47 |04 |17 | 2090 |20 |89 | 1110
WO008 8 |0 7 7 0 6 9 1

7. | 147 |21 | 878 |98 |308 |21 |03 |15 |754 15 |51 | 423
WO009 3 10 7 7 5

8. | 730 | 1.0 | 456 |56 |161. |11 |00 |7 33.56 |87 |31 | 201
WO010 1 0 3 4 9

7. 1920 | 1.7 | 546 |49 |187. |15 | 0.0 |7 3409 |13 |25 | 152
WO11 7 8 3 4 8 4

7. 1125 | 1.1 | 867 |87 |214. |25 |04 |47 |255 18 |35 | 189
WO012 9 10 0 7 4 5 6

8. 167 |21 |986 |69 |316. |20 |08 |11 |1159 |10 |89 |690
WO013 2 |0 6 1 7 1

8. | 143 | .98 |814 |97 |298. |17 [0.6 |5 6798 |16 |31 | 335
WO014 4 10 9 6 7

7. 1214 |05 | 123 |98 |564. |28 |09 |29 |99.80 |24 |27 |471
WO15 0 |0 4 1 8 9 8 1

7. 1213 |41 | 132 |57 |500. |47 |08 |15 |6576 |35 |29 |325
WO16 3 |10 1 8 6 8 4

7. 1309 |31 |18 |79 |311. |49 | 1.1 |17 |3.76 46 | 11 | 245
WO17 5 10 7 5 8 5 5

7. 1650 |09 398 |68 |155. |55 |05 |6 2365 |71 |9 | 189
WO18 7 8 6 3

8 1970 |13 599 |76 |213. |12 {02 |8 3545 |12 | 21 | 205
WO19 1 4 7 5 5 5

8. |560 | 1.0 | 675 |56 |[147. |14 |03 |4 23.61 |87 |7 |205
W020 9 5 6 5 3

7. | 789 |23 | 543 |87 |209. |20 |01 |6 3356 |21 |5 |210
W021 9 8 1 3 5

4.3.4. Hardness,pH, EC, Carbonate (CO3) andTDS

According to the World Health Organization (WHO) guidelines, the permissible pH level for drinking
water is up to 8.5, while the recommended limit for electrical conductivity (EC) is 750 us/cm. In the
present study, the pH of groundwater samples varied between 7.7 and 8.9, with an average value of
8.3indicating slightly alkaline conditions. The EC values ranged from 620 ps/cm to 10,000 ps/cm, with
a mean of 3,981 ps/cm, suggesting significant mineralization in many samples.The maximum observed
concentration of carbonate ions (CO3%7) was 60 mg/L, which falls within the acceptable range for
drinking purposes. Regarding water hardness, the WHO recommends a threshold of 300 mg/L. However,
in this investigation, hardness levels ranged from 65 to 2,000 mg/L, with an average value of 387 mg/L,
highlighting that several samples exceeded the recommended limits and may pose concerns for potable
use.

4.3.5. Sodium Adsorption Ratio (SAR)
The Sodium Adsorption Ratio (SAR) is a key hydrochemical indicator used to evaluate groundwater
suitability for irrigation, particularly in managing sodium-impacted soils. It serves as a diagnostic tool to

1387



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 7, 2025
https://www.theaspd.com/ijes.php

assess the sodicity hazard, which directly influences soil permeability and structure. Elevated
concentrations of sodium ions (Na¥) in groundwater contribute to the development of alkaline soils,
while high overall salinity can lead to saline soil conditions, both of which negatively affect crop
productivity.Based on SAR values, irrigation water is classified into four categories:

e Low alkali water (SAR < 6),

e  Moderate alkali water (SAR 6-12),

e High alkali water (SAR 12-18), and

e Very high alkali water (SAR > 18).
As detailed in Table 6, the SAR values observed in this study range from 1 to 18, encompassing a wide
spectrum of sodicity risk levels.

Table 6. Sample SAR Values for the Locations

Well_ID Well_Type SAR_Value
W001 Bore Well 3.175
W002 Dug Well 3.054
WO003 Dug Well 4.895
W004 Dug Well 5.897
W005 Bore Well 3.789
WO006 Bore Well 5.432
WO007 Dug Well 6.453
WO008 Dug Well 5.342
W009 Dug Well 5.543
WO010 Dug Well 6.533
WO11 Dug Well 2.345
WO012 Bore Well 4.238
WO013 Dug Well 5.187
WO014 Dug Well 5.342
WO015 Dug Well 4,987
WO016 Bore Well 3.654
WO017 Dug Well 4.678
WO018 Dug Well 6.897
w019 Bore Well 4.345
w020 Bore Well 5.653
WO021 Bore Well 4.231

4.3.6. Residual sodium carbonate (RSC)
The Residual Sodium Carbonate (RSC) index is a critical indicator used to assess the alkalinity risk posed
by irrigation water on soil health. An RSC value below 2.5 signifies water that is suitable for irrigation,
while values between 2.5 and 5 suggest moderate suitability with caution. RSC values exceeding 5 indicate
water that is unsuitable for agricultural use due to its high potential to deteriorate soil structure. The
classification of RSC values for the analyzed water samples is summarized in Table 7.

Table 7. RSC index value of sample locations

Well_ID Well_Type RSC_Value
W001 Bore Well 0.756
W002 Dug Well 3.654
W003 Dug Well 1.895
W004 Dug Well 2.897
W005 Bore Well 3.789
W006 Bore Well 2432
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WO007 Dug Well 2.453
W008 Dug Well 3.342
W009 Dug Well 1.543
WO010 Dug Well 2.533
WOI1 Dug Well 1.345
WO012 Bore Well 7.238

4.3.7. Sodium percentage and Water Quality Index

The sodium percentage serves as a key metric in determining the suitability of groundwater for irrigation,
as outlined in Table 8. Meanwhile, the Water Quality Index (WQI) is a vital tool used to evaluate and
track groundwater quality by condensing complex hydrochemical data into a single, interpretable
score. To calculate the WQI, fourteen essential physico-chemical parameters are considered, including
major anions such asNO5 +NO3, CO3, F~, HCO3, Cl™ and SOZ~, as well as major cations
likeK*,Cat, M gz *and Na*, additional parameters such as total hardness, pH electrical conductivity
(EC), and total dissolved solids (T'DS) are also included in the assessment. By assigning weights to each
parameter based on its significance to water quality, the WQI provides a comprehensive understanding
of groundwater conditions. The step-by-step computation process is illustrated through Equations (1-4)
and visually represented in Figure 6.

Sodium (Na%) in Each Well by Type

70

60
50
40
30
20
1
0

TS E S

Well 1D

Sodium {Na%)

Q

Figure 6. Sodium (Na) Percentage in Sample Collected from Various Wells

Classification and Interpretation of Water Quality Index (WQI)

The Water Quality Index (WQI) is a comprehensive indicator that categorizes water quality into five
distinct levels:

e WQI < 50: Excellent (pure) water

e WQI 50-100: Good (suitable for drinking)

e WQI 100-200: Poor (contaminated)

e WQI 200-300: Very poor (highly contaminated)

e WQI > 300: Unsuitable for drinking

In this study, WQI values for the 800 analyzed groundwater samples ranged from 30 to 280, with
an average WQI of 39, indicating predominantly high-quality water conditions.

The classification results show that:

o 22% of the samples fall within the excellent category (WQI < 50),

e 63% are classified as good and suitable for drinking (WQI 50-100),
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e The remaining 15% exhibit higher contamination levels and are deemed more suitable
for irrigation rather than consumption.

These findings reflect spatial variability in groundwater quality and emphasize the need for targeted water

management strategies.

Table 8. Sodium (Na) Percentage in Sample Collected from Various Wells

Well_1D Well_Type Sodium (Na%)
WO001 Bore Well 65.776
W002 Dug Well 35.654
WO003 Dug Well 51.895
W004 Dug Well 29.897
W005 Bore Well 63.789
W006 Bore Well 67.432
WO007 Dug Well 50.453
W008 Dug Well 69.342
W009 Dug Well 73.543
WO010 Dug Well 52.533
WO11 Dug Well 62.345
WO012 Bore Well 42.238
WO013 Dug Well 35.765
WO014 Dug Well 32.546
WO015 Bore Well 35.789

4.3.8. Kelly Index and Magnesium hazard

Excessive magnesium content in groundwater can adversely affect soil health by elevating soil alkalinity,
which in turn reduces agricultural productivity. Groundwater with magnesium hazard values exceeding
50 is considered detrimental and unsuitable for irrigation applications. In the present study, magnesium
hazard values ranged between 19 and 72, with a mean of 36, indicating variability in irrigation potential
across sampling locations.

Furthermore, Kelly’s Index, a key indicator of sodium hazard, suggests that water is considered suitable
for irrigation when the index is less than 1, while values greater than 1 denote unsuitability. The analysis
revealed Kelly’s Index values spanning from 0.11 to 7, with an average of 4.82, highlighting that a
significant proportion of the sampled groundwater poses irrigation risks due to elevated sodium content.

5. CONCLUSION

The predictive evaluation of groundwater quality was conducted using the proposed GeoWaterNet model,
which leverages deep feature learning to assess the water’s suitability for domestic and agricultural
applications. Experimental analysis revealed that GeoWaterNet achieved a prediction accuracy of 93%,
with specificity and sensitivity scores of 94.57% and 91.47%, respectively surpassing conventional deep
learning models in both precision and reliability.Physico-chemical characterization of approximately 900
samples, collected from 200 diverse hydrogeological sites, indicated that the majority fell within the
permissible thresholds set by the Bureau of Indian Standards (BIS), affirming a controlled environmental
condition in most regions.Further hydrochemical analysis using Kelly’s Index identified that only 30% of
samples were classified as suitable for irrigation, while the remaining 70% indicated high sodium hazard,
making them unsuitable. Meanwhile, Water Quality Index (WQI) results categorized 22% of the samples
as excellent, 63% as good for drinking, and 15% as more suitable for agricultural use. Additionally,
the Sodium Adsorption Ratio (SAR) highlighted that 38% of the water sources contained elevated alkali
levels, which could pose significant risks to soil health and crop yield, while the remaining samples
demonstrated acceptable alkali content.To further boost prediction robustness, the GeoWaterNet
architecture integrates a feature extraction module, enhancing its ability to distinguish subtle variations in
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ionic composition and environmental factors. This modular enhancement refines the model's capability
to generalize across complex, real-world groundwater datasets, making it a scalable and effective solution
for intelligent water resource management.
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