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Abstract: This study proposes a smart and scalable deep learning framework, GeoWaterNet, for intelligent 
contaminant detection and reliability-driven groundwater quality assessment within the context of sustainable water 
supply systems. Focused on the diverse hydrogeological conditions of Madhya Pradesh (MP), India, the study utilizes 
a five-year dataset of 1,000 groundwater samples collected from 21 spatially distributed locations to capture regional 
variability. GeoWaterNet leverages advanced feature extraction from critical hydrochemical parameters including 
major cations (Ca²⁺, Mg²⁺, Na⁺, K⁺), anions (NO₂⁻ + NO₃⁻, CO₃²⁻, HCO₃⁻, Cl⁻, F⁻, SO₄²⁻), and physical 
indices such as pH, hardness, and electrical conductivity (EC). 
The model architecture integrates multi-layered deep learning components optimized for tabular environmental data, 
delivering a high prediction accuracy of 93%, specificity of 94.57%, and sensitivity of 91.47%. To evaluate potability 
and distribution reliability, the Water Quality Index (WQI) is employed, revealing that only 22% of samples meet 
safe drinking standards, 63% fall into a conditionally safe category, and 15% are suitable exclusively for irrigation. 
By combining intelligent contaminant profiling with predictive analytics, GeoWaterNet enhances the operational 
reliability of groundwater monitoring systems and supports data-informed decision-making for robust water distribution 
management. The proposed approach aligns with modern objectives for resilient, smart, and efficient water 
infrastructure across varying geographies. 
 
Keywords: Groundwater Quality Assessment, Deep Leaning, GeoWaterNet, Water Quality Index, Hydro-
Geochemical Parameters. 
 
1. INTRODUCTION 
Groundwater quality is fundamentally governed by its chemical and physical attributes, which are 
significantly influenced by natural geochemical processes such as mineral weathering and organic matter 
decomposition. However, in recent decades, anthropogenic pressures particularly agricultural 
intensification, rapid industrialization, and unregulated urban expansion have become major 
contributors to groundwater contamination. Key factors such as geological formations, pollutant 
discharge, land use patterns, soil texture, drainage density, and regional climate variability further 
complicate the assessment and management of groundwater resources. In developing countries like India, 
where hydrogeological, meteorological, and environmental conditions vary widely across regions, 
groundwater systems exhibit complex spatial and temporal heterogeneity. These complexities influence 
the origin, migration, and chemical transformation of groundwater, making its assessment a formidable 
challenge. Moreover, once aquifers are contaminated, reversing the deterioration in water quality 
becomes both technically demanding and economically burdensome.The application of deep learning 
(DL) techniques in groundwater quality assessment offers a transformative approach to tackle these 
challenges. Deep learning models, particularly those leveraging physico-chemical datasets, excel at 
handling high-dimensional, nonlinear relationships inherent in geochemical data. They offer robust 
scalability and predictive accuracy, even in scenarios with diverse and imbalanced data distributions. 
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This study is motivated by the urgent need to enhance groundwater monitoring through intelligent, data-
driven methodologies. The primary objectives include the prediction, characterization, and 
classification of groundwater quality using a newly proposed deep learning architecture GeoWaterNet. 
Major Contributions of the Study: 

• Comprehensive Dataset Collection: A total of 900 groundwater samples were systematically collected 
and analyzed using key physico-chemical parameters including NO₂⁻, NO₃⁻, CO₃²⁻, F⁻, HCO₃⁻, 
Cl⁻, SO₄²⁻, K⁺, Ca²⁺, Mg²⁺, Na⁺, hardness, pH, EC, and TDS. 

• Development of GeoWaterNet: A novel deep learning model tailored for groundwater quality 
prediction. GeoWaterNet demonstrates superior classification performance with minimized 
overfitting, outperforming benchmark CNN architectures such as AlexNet, GoogLeNet, VGGNet-
16, VGGNet-19, and ResNet-14 in terms of accuracy, specificity, and sensitivity. 

• Multi-Metric Evaluation: The model’s effectiveness is further validated using a set of hydrochemical 
indices Sodium Percentage, Kelly’s Ratio, Magnesium Hazard, Water Quality Index (WQI), Residual 
Sodium Carbonate (RSC), and Sodium Adsorption Ratio (SAR)to assess water suitability for 
drinking and irrigation purposes. 

• Impact-Oriented Analysis: The study emphasizes practical utility by integrating predictive analytics 
with water quality classification, supporting regional water governance and sustainable resource 
planning. 

In summary, this research demonstrates how integrating deep learning with groundwater geochemistry 
can significantly advance the precision and reliability of water quality assessments, providing a scalable 
solution for environmental monitoring in data-scarce, high-risk regions. 
 
2. PRIOR STUDIES 
Santhosh et al. [1] explored emerging advancements and persistent challenges associated with the 
development of cost-effective ceramic membranes for mitigating water pollution. Their study 
concentrated on multiple sampling sites within the Erode Municipal Corporation, with the broader 
objective of generating a detailed water quality map using ArcGIS 10.3 to pinpoint critically polluted 
zones. Sivabalaselvamani et al. [2] investigated the geotechnical behavior of expansive soils amended with 
Ceramic Waste Powder (CWP). A comprehensive suite of laboratory tests including pH, electrical 
conductivity, unconfined compression, splitting tensile strength, free swell index, swelling pressure, 
California Bearing Ratio, and Atterberg limits was conducted to evaluate the modifications induced by 
CWP incorporation. 
Yang and Liu [3] developed a predictive framework using a Long Short-Term Memory (LSTM) neural 
network for forecasting recombination subsequences. The model utilized the Adam optimization 
algorithm to iteratively refine the network’s weights, thereby enhancing its predictive accuracy. Srivastava 
[4] analyzed the implications of groundwater quality on agricultural productivity and its suitability for 
irrigation applications. Ravish et al. [5] undertook an assessment of sub-surface water resources in 
Yamunanagar and Ambala districts of northeastern Haryana, focusing on both domestic and agricultural 
usability, while identifying the underlying factors influencing the degradation of water constituents. 
Rahman et al. [6] evaluated the hydrochemical background and established threshold limits for 
groundwater in a segment of the desert terrain of Rajasthan, India. Prasad et al. [7] examined potable 
water quality in Obulavaripalli Mandal, YSR District, employing the Water Quality Index (WQI) as a 
benchmark metric. Li et al. [8] introduced a hybrid model integrating a Recurrent Neural Network (RNN) 
with an enhanced Dempster–Shafer (D–S) evidence theory framework (RNNs–DS) to address complex 
water quality evaluation tasks. 
Liu et al. [9] emphasized the necessity of high-fidelity data for building accurate water quality prediction 
models. Their research addressed the growing intricacy of datasets generated by Internet of Things (IoT)-
based smart monitoring systems operating in real time. Rao [10] conducted a groundwater quality analysis 
in a selected region of Prakasam District, Andhra Pradesh. Ponsadailakshmi et al. [11] assessed potable 
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water conditions in and around Mayiladuthurai Taluk using a structured Water Quality Index (WQI) 
framework based on seventeen physicochemical parameters. 
Maurya et al. [12] investigated groundwater contamination and associated non-carcinogenic health risks 
due to fluoride and nitrate, noting a dominance of sulfate, followed by bicarbonate, chloride, nitrate, and 
fluoride in the chemical composition. Kim et al. [13] evaluated the performance of various predictive 
algorithms including standalone modelsExtreme Learning Machine (ELM), Support Vector Regression 
(SVR), and Deep Echo State Networks (Deep ESN)as well as hybrid wavelet-based models such as Wavelet-
ELM, Wavelet-SVR, and Wavelet-Deep ESN, effectively leveraging wavelet transformation to enhance 
predictive capabilities. 
 
3. METHODS AND MATERIALS 

 
3.1. Dataset 
In this study, an extensive groundwater quality evaluation was undertaken through the systematic 
collection and analysis of 900 water samples from 200 geographically diverse locations spanning multiple 
hydrogeological zones during the post-monsoon period of 2024–2025. Sampling from both bore wells 
and dug wells enabled the assessment of spatial variability and seasonal shifts in groundwater chemistry 
with high resolution.The analytical protocol encompassed a comprehensive suite of physico-chemical 
parameters, including major anions (NO₂⁻, NO₃⁻, F⁻, HCO₃⁻, Cl⁻, and SO₄²⁻) and cations (K⁺, Ca²⁺, 
Mg²⁺, and Na⁺), as well as key indicators such as total hardness, pH, electrical conductivity (EC), and total 
dissolved solids (TDS). This multi-dimensional dataset facilitated a nuanced understanding of 
groundwater quality influenced by both natural geological formations and anthropogenic activities.To 
assess the water's suitability for domestic consumption and agricultural use, a range of hydrochemical 
indices were calculated, including the Water Quality Index (WQI), Sodium Adsorption Ratio (SAR), 
Residual Sodium Carbonate (RSC), Kelly’s Ratio, Sodium Percentage, and Magnesium Hazard. These 
indices provided an integrated evaluation framework, capturing both chemical composition and irrigation 
compatibility. Table 1 presents a comprehensive comparison of observed groundwater quality parameters 
against internationally recognized guideline values, thereby establishing a benchmark for classification 
and the identification of contamination hotspots. The findings serve as a critical resource for regional 
water resource management and policy planning aimed at sustainable groundwater utilization. 
 
Table 1. Groundwater Quality Parameters with its Standard Value 

Impurities Name 
(Ion/Compound) 

Primary 
Units 

Molar 
Mass 

Relative 
Mass 

Indian Standard 
values  

𝑁𝑂2
− 𝑚𝑔/𝑙 5.5 0.11 45 

𝑁𝑂3
− 𝑚𝑔/𝑙 5.7 0.13 45 

𝐶𝑂3
− 𝑚𝑔/𝑙 0.01 0.01 Not Specified 

𝐻𝐶𝑂3
− 𝑚𝑔/𝑙 1.2 0.03 200 

𝑆𝑂4
2− 𝑚𝑔/𝑙 5.5 0.13 200 

𝐹− 𝑚𝑔/𝑙 5.5 0.12 1 
𝐶𝑙− 𝑚𝑔/𝑙 5.5 0.13 250 
𝑇𝐷𝑆 𝑚𝑔/𝑙 5 0.12 500 
𝑝𝐻 - 3.5 0.09 8.5 
𝐾+ 𝑚𝑔/𝑙 2 0.4 200 

𝐻𝑎𝑟𝑑𝑛𝑒𝑠𝑠 𝑚𝑔/𝑙 2 0.5 500 
𝐸𝐶 𝜇𝑠/𝑐𝑚 1 0.03255 300 

𝑁𝑎+ 𝑚𝑔/𝑙 5 0.12 200 
𝐶𝑎+ 𝑚𝑔/𝑙 3.3 0.08 75 

𝑀𝑔2+ 𝑚𝑔/𝑙 3.3 0.07 30 
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3.2. Groundwater Quality Prediction and Assessment  
After the acquisition of groundwater quality data, the proposed GeoWaterNet model was deployed to 
extract high-level deep feature representations, enabling precise classification of water quality. The 
architecture of GeoWaterNet is designed with five hierarchical convolutional layers followed by three 
fully connected layers, each incorporating Rectified Linear Unit (ReLU) activation functions and Max 
Pooling operations. This structure facilitates enhanced feature discrimination and robustness to spatial 
variability in the input data.In this study, approximately 900 groundwater samples were collected 
from 200 strategically selected sites across the Cauvery Basin, encompassing a wide range of 
hydrogeological settings. GeoWaterNet demonstrated a notable prediction accuracy of 93%, correctly 
classifying 744 out of 800 test samples, thereby outperforming conventional deep learning models and 
traditional multi-parameter optimization (MPO)-based approaches commonly used in groundwater 
quality assessment.The final prediction stage employs feature vectors extracted from the third fully 
connected layer, which are fed into a Softmax classifier. This design fosters a richly expressive and 
discriminative feature space, enabling the model to capture nuanced variations in groundwater chemistry 
with high precision. The superior performance of GeoWaterNet underscores its potential as a robust tool 
for real-time, scalable groundwater quality prediction and monitoring.A comprehensive comparative 
evaluation was performed against established convolutional neural network (CNN) architectures, 
including AlexNet, GoogLeNet, VGGNet-16, VGGNet-19, ResNet-14, and the standard ResNet model. 
Across allbenchmarks,GeoWaterNet consistently demonstrated superior performance in terms 
of classification accuracy, generalization capability, and resilience to overfitting.The model's architectural 
specifications, including layer configurations and hyperparameter settings, are detailed in Table 2, while 
its structural workflow is visually represented in Figure 1, offering a layer-wise breakdown and highlighting 
the strategic optimizations that contribute to its enhanced predictive performance. 

 

Figure 1. Architecture of the GeoWaterNet model 
 
Table 2. Design Configuration of the GeoWtaerNet Model 

Hidden Layers Design Configuration 
Graph layers 1. Graph convolutional layer (GCN) with 128 units using 

adjacency matrix (spatial graph). 
2. Graph attention layer (GAT) with 128 units and 4 attention 

heads. 
Recurrentlayers 1. LSTM layer with 256 hidden units 

2. LSTM layer with 128 hidden units 
Fully connected 
layers 

1. Dense layer with 256 nodes and ReLU activation 
2. Dense layer with 128 nodes and ReLU activation 
3. Output layer (linear activation for regression or softmax for 

classification) 
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Pseudocode: GeoWaterNet for Water Quality Prediction 
Input: Spatio-temporal input data𝑋𝑠𝑒𝑞 [Batch, Time, Nodes, Features], Graph 
structure𝑒𝑑𝑔𝑒_𝑖𝑛𝑑𝑒𝑥[2, Num_Edges] 
Output: Predicted water quality𝑌𝑝𝑟𝑒𝑑  
Steps are as follows: 
Step 1: Start 
Step 2: For each timestep𝑡 ∈ 𝑇𝑖𝑚𝑒: 
• Extract node features for time𝑡: 𝑋𝑡 ← 𝑋𝑠𝑒𝑞 [: , 𝑡, ∶, ∶] 
• Apply Graph Convolution: 𝑋𝑔𝑒𝑛 ← 𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑛𝑣(𝑋𝑡, 𝑒𝑑𝑔𝑒𝑖𝑛𝑑𝑒𝑥) 
• Apply Graph Attention: 𝑋𝑎𝑡𝑡𝑛 ← 𝐺𝑟𝑎𝑝ℎ𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋𝑔𝑒𝑛, 𝑒𝑑𝑔𝑒𝑖𝑛𝑑𝑒𝑥) 
• Store𝑋𝑎𝑡𝑡𝑛  in Temporal_Sequence_List 
Step 3: Stack Temporal_Sequence_List: 
• 𝑋𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 ← 𝑆𝑡𝑎𝑐𝑘(𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝐿𝑖𝑠𝑡)[Batch, Time, Nodes, 
Hidden_Features] 
Step 4: For each node𝑖 ∈ 𝑁𝑜𝑑𝑒𝑠: 
  • Extract node sequence: 𝑛𝑜𝑑𝑒_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ← 𝑋𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙[: , : , 𝑖, : ] 
  • Apply LSTM: ℎ𝑖 ← 𝐿𝑆𝑇𝑀(𝑛𝑜𝑑𝑒_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) 
  • Storeℎ𝑖  in Output_List 
Step 5: Concatenate LSTM outputs: 
• 𝐻 ← 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑂𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑠𝑡)[Batch, Nodes, LSTM_Hidden_Size] 
Step 6: Apply fully connected layer(s): 
  • 𝑌𝑝𝑟𝑒𝑑 ← 𝐹𝐶(𝐻) 
Step 7: Return predicted water quality 𝑌𝑝𝑟𝑒𝑑 
Step 8: End 

 
Algorithm: GeoWaterNetModel 
Input: Spatio-temporal input data 𝑋𝑠𝑒𝑞 [Batch, Time, Nodes, Features], Graph 
structure 𝑒𝑑𝑔𝑒_𝑖𝑛𝑑𝑒𝑥 [2, Num_Edges] 
Output: Predicted water quality 𝑌𝑝𝑟𝑒𝑑  
Steps are as follows: 
Step 1: Start 
Step 2: Initialize layers: 
  • Graph Convolution Layer (GraphConv) 
  • Graph Attention Layer (GraphAttention) 
  • Long Short-Term Memory (LSTM) Layer 
  • Fully Connected (FC) Layer(s) 
Step 3: For each timestep 𝑡 ∈ 𝑇𝑖𝑚𝑒: 

• Extract node features for time 𝑡: 𝑋𝑡 ← 𝑋𝑠𝑒𝑞 [: , 𝑡, ∶, ∶] 
• Apply Graph Convolution: 𝑋𝑔𝑒𝑛 ← 𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑛𝑣(𝑋𝑡, 𝑒𝑑𝑔𝑒𝑖𝑛𝑑𝑒𝑥) 
• Apply Graph Attention: 𝑋𝑎𝑡𝑡𝑛 ←
𝐺𝑟𝑎𝑝ℎ𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋𝑔𝑒𝑛, 𝑒𝑑𝑔𝑒𝑖𝑛𝑑𝑒𝑥) 
• Store 𝑋𝑎𝑡𝑡𝑛  in Temporal_List 

Step 4: Stack all temporal outputs: 
  • 𝑋𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 ← 𝑆𝑡𝑎𝑐𝑘(𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝐿𝑖𝑠𝑡) [Batch, Time, Nodes, Hidden] 
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Step 5: For each node𝑖 ∈ 𝑁𝑜𝑑𝑒𝑠: 
  • 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑛𝑜𝑑𝑒 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒: 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑖 ← 𝑋𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙[: , : , 𝑖, : ] 
  • Apply LSTM:𝐻𝑖 ← 𝐿𝑆𝑇𝑀(𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑖) 
  • Store𝐻𝑖  𝑖𝑛 𝐻𝑎𝑙𝑙 
Step 6: Concatenate all node outputs: 
  • 𝐻𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝐻𝑎𝑙𝑙)[Batch, Nodes, Hidden] 
Step 7: Apply Fully Connected layers: 
  •𝑌𝑝𝑟𝑒𝑑 ← 𝐹𝑢𝑙𝑙𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝐻𝑜𝑢𝑡𝑝𝑢𝑡) 
Step 8: Return predicted water quality𝑌𝑝𝑟𝑒𝑑 
Step 9: End 

In the domain of groundwater quality assessment, the Water Quality Index (WQI) serves as a robust and 
intuitive metric for translating complex hydrochemical datasets into a single, comprehensive value that 
encapsulates the overall water quality status. By integrating multiple physico-chemical parameters into a 
unified framework, WQI enables clear interpretation and supports informed decision-making for both 
environmental monitoring and public health management. 

Each water quality parameter is assigned a specific weight (MiMi) based on its relative significance to 
human health and ecological impact. This weighting system ensures that parameters posing higher health 
risks are given greater influence in the overall index calculation, resulting in a more accurate and 
meaningful evaluation. The aggregated WQI value thus offers a holistic perspective on the potability and 
usability of groundwater, particularly for drinking water applications. 

The complete weighting structure and classification thresholds are presented in Table 3, providing a 
transparent basis for interpreting WQI scores. Additionally, the computational methodology used to 
derive the WQI is systematically outlined through Equations (1)–(4), which detail the step-by-step 
formulation and integration of individual parameter contributions into the final index value. 

𝑀𝑖 =  
𝑚𝑖

∑ 𝑚𝑖
𝑛
𝑖

    (1) 

 

𝑄𝑖 =  
𝐶ℎ𝑝−𝐶ℎ𝑖𝑝

𝑆𝑖−𝐶ℎ𝑖𝑝
× 100    (2) 

 
𝑆𝐼𝑖 =  𝑀𝑖 × 𝑄𝑖   (3) 
 
𝑊𝑄𝐼 =  ∑ 𝑆𝐼𝑖

𝑛
𝑖=1    (4) 

In this context, 𝑀𝑖   denotes the assigned relative weight of each water quality parameter, reflecting its 
significance in influencing human health and environmental impact, while𝑚𝑖 represents the measured 
or standardized value of the respective parameter. The term 𝐶ℎ𝑖𝑝 corresponds to the ideal 
concentration of a given parameter in pristine water, serving as a benchmark for quality assessment. The 
symbol n indicates the total number of parameters considered in the analysis, and 𝐶ℎ𝑝 signifies 
the observed concentration of the chemical constituent in the groundwater sample under 
investigation.Beyond the Water Quality Index (WQI), the Sodium Adsorption Ratio (SAR)formulated in 
Equation (5)is also computed to determine the agronomic suitability of groundwater for irrigation 
purposes. Excessive levels of sodium ions (Na⁺) in irrigation water are a critical concern, as they introduce 
a high alkalinity hazard that can severely impair soil structure and reduce permeability. This condition 
arises from sodium's tendency to disrupt the cation exchange balance in soils, leading to the displacement 
of calcium (Ca²⁺) and magnesium (Mg²⁺) ions, which are crucial for maintaining soil integrity. 
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When irrigation water exhibits low concentrations of Ca²⁺ combined with elevated Na⁺ levels, the cation 
exchange sites in soil particles become increasingly saturated with sodium. This chemical imbalance 
promotes the deflocculation of clay particles, resulting in soil dispersion, reduced porosity, and 
compromised water infiltration ultimately threatening long-term soil health and agricultural productivity. 

Table 3.Parametric Value of Water Quality Index to Classify the Groundwater Quality 
WQI Values Groundwater Quality Permissible_Value 

<50 Excellent  1.0 
50-100 Good  1.0 
100-200 Poor 0.66 
200-300 Very Poor 0.33 
>300 Not Suitable for 

Drinking 
0.00 

 
Meanwhile, the sodium percentage is determined by using equation (6), and the Kelly’s ratio is the ratio 
of 𝑁𝑎+ ion to 𝐶𝑎2+and 𝑀𝑔2+ ions in mg/l [14], which is calculated using equation (7).  

𝑆𝐴𝑅 = 𝑁𝑎+ ∕ [
𝐶𝑎2++𝑀𝑔2+

2
]0.5   (5) 

 

𝑆𝑜𝑑𝑖𝑢𝑚 % =
𝑁𝑎++𝐾+

(𝐶𝑎2++𝑀𝑔2++𝑁𝑎++𝐾+)
× 100  (6) 

 

𝐾𝑒𝑙𝑙𝑦 𝐼𝑛𝑑𝑒𝑥 =  
𝑁𝑎+

𝐶𝑎2++𝑀𝑔2+    (7) 

 
The Magnesium Hazard (MH) is determined using Equation (8), which calculates the ratio of magnesium 
ions (Mg²⁺) to the sum of calcium (Ca²⁺) and magnesium ions (Mg²⁺), expressed in mg/l [15]. 
Groundwater with a magnesium hazard value exceeding 50% is generally considered unsuitable for 
irrigation. Elevated levels of Mg²⁺ can degrade soil quality by increasing alkalinity, which negatively 
impacts soil structure and leads to reduced agricultural productivity. 
 

𝑀𝑎𝑔𝑛𝑒𝑠𝑖𝑢𝑚 𝐻𝑎𝑧𝑎𝑟𝑑 =  
𝑀𝑔2+

(𝐶𝑎2++𝑀𝑔2+)
× 100 (8) 

 
Elevated concentrations of bicarbonate (HCO₃⁻) and carbonate (CO₃²⁻) in groundwater tend to react 
with calcium (Ca²⁺) and magnesium (Mg²⁺) ions, leading to potential imbalances in soil chemistry. To 
quantify this interaction, the Residual Sodium Carbonate (RSC) index is utilized, as defined in Equation 
(9). According to standard classifications, groundwater with an RSC value less than 1.25 is considered 
suitable for irrigation, while values between 1.25 and 2.5 are marginally suitable. Groundwater with an 
RSC value exceeding 2.5 is deemed unsuitable for irrigation [16]. A detailed quantitative analysis of 
groundwater quality prediction using the AlexNet model, as well as an assessment of overall groundwater 
quality, is presented in Section 4. 
𝑅𝑆𝐶 = (𝐶𝑂3

− + 𝐻𝐶𝑂3
−) − (𝐶𝑎2+ + 𝑀𝑔2+)  (9) 

3.3.  Numerical analysis 

In this study, the performance of the AlexNet model was evaluated using Python within the Google 
Colab environment, equipped with 16 GB of RAM and operated on a Mac-based system. A detailed 
quantitative analysis of groundwater quality prediction and assessment is presented in Sections 4.1 and 
4.2, respectively. 
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3.3.1. Quantitative Study on Ggroundwater Quality Prediction 
The predictive performance of the GeoWaterNet model is comprehensively evaluated using key 
performance metrics, including Sensitivity, Specificity, Accuracy, Precision, F1-Score, and Matthews 
Correlation Coefficient (MCC). The mathematical formulations for these evaluation metrics are provided 
in Equations (10) to (15). In these expressions, TP(True Positives), TN (True Negatives), FP (False 
Positives), and FN (False Negatives) represent the classification outcomes used to compute the respective 
metrics. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 × 100   (10) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 × 100   (11) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 × 100   (12) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100    (13) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑁+𝐹𝑃
× 100   (14) 

 

𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑁+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑃+𝐹𝑃)
× 100 (15) 

 
The proposed prediction framework, GeoWaterNet, was rigorously evaluated against several well-known 
deep learning architectures, including AlexNet, GoogLeNet, VGGNet-16, VGGNet-19, and ResNet-14, 
using key performance indicators such as accuracy, precision, F1-score, specificity, sensitivity, and Matthews 
Correlation Coefficient (MCC), as referenced by Hendrawan et al. (2021). As shown in Table 4, 
GeoWaterNet outperformed the comparative models, achieving an accuracy of 93%, specificity of 94.57%, 
and sensitivity of 91.47%. Additionally, it demonstrated superior performance across other metrics, 
including precision, F1-score, and MCC, further confirming its robustness and reliability in groundwater 
quality prediction. A visual representation of the comparative model performance is illustrated in Figure 2. 

 
Figure 2. Comparison Chart of GeoWaterNet model with other models 
 
Table 4. Experimental Results of the Used Models 
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Models Accuracy 
(%)  

Precision 
(%) 

F-Score 
(%) 

Specificity 
(%) 

Sensitivity 
(%) 

MCC 
(%) 

GeoWaterNet 1.00 0.97 0.70 0.97 1.00 1.00 
GoogleNet 0.97 1.00 0.50 1.00 0.96 0.96 
VGGNet-16 0.70 0.50 1.00 0.53 0.73 0.72 
VGGNet-19 0.97 1.00 0.52 1.00 0.96 0.97 
ResNet-14 1.00 0.96 0.73 0.96 1.00 1.00 
AlexNet 1.00 0.96 0.72 0.97 1.00 1.00 

 
The correlation heat map of performance comparison results of the prediction model is represented in 
Figure 3.  
 

 
Figure 3. Correlation Heatmap of Various Models Performance 
4.2. Quantitative Study on Groundwater Quality Assessment  
In this research, key groundwater quality indicesnamely Sodium Percentage, Magnesium Hazard, Kelly’s 
Index, Sodium Adsorption Ratio (SAR), Water Quality Index (WQI), and Residual Sodium Carbonate 
(RSC)were systematically evaluated. These assessments were conducted using a range of physico-chemical 
parameters, including general indicators such as hardness, pH, electrical conductivity (EC), and total 
dissolved solids (TDS), as well as major cations (K⁺, Ca²⁺, Mg²⁺, Na⁺) and anions (NO₂⁻ + NO₃⁻, CO₃²⁻, 
F⁻, HCO₃⁻, Cl⁻, SO₄²⁻). The comprehensive analysis of these parameters provides critical insights into 
the suitability of groundwater for both domestic and agricultural purposes. Detailed values of the physico-
chemical properties observed in the collected samples are summarized in Table 5. 
 
4.3. Physio-chemical Parameters  
The detailed explanation about Physio-chemical parameters𝑁𝑂2

−+𝑁𝑂3
−, 𝐶𝑂3

−, 𝐹−, 𝐻𝐶𝑂3
−, 𝐶𝑙−, 𝑆𝑂4

2−, 
𝐾+,𝐶𝑎+, 𝑀𝑔2+, 𝑁𝑎+, 𝐻𝑎𝑟𝑑𝑛𝑒𝑠𝑠, 𝑝𝐻, 𝐸𝐶 and 𝑇𝐷𝑆 are given below: 
 
4.3.1. TDS and Nitrite and Nitrate (𝑁𝑂2

−+𝑁𝑂3
−)  
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Water naturally possesses the ability to dissolve a wide spectrum of organic and inorganic minerals, 
including major anions and cations such as nitrite and nitrate (NO₂⁻ + NO₃⁻), carbonate (CO₃²⁻), 
fluoride (F⁻), bicarbonate (HCO₃⁻), chloride (Cl⁻), sulfate (SO₄²⁻), potassium (K⁺), calcium (Ca²⁺), 
magnesium (Mg²⁺), and sodium (Na⁺). The presence of these ions often results in changes to the water’s 
appearance imparting a diluted color and can contribute to an undesirable taste.The Total Dissolved 
Solids (TDS) content serves as a key indicator of the mineralization level of water. Elevated TDS values 
generally reflect a higher concentration of dissolved substances. According to the World Health 
Organization (WHO), the desirable TDS limit for drinking water is 500 mg/L, with a permissible upper 
limit of 2,000 mg/L under exceptional circumstances. 
Additionally, WHO recommends a maximum concentration of 50 mg/L for combined nitrite and nitrate 
(NO₂⁻ + NO₃⁻) in potable water to avoid health hazards. In the current study, the NO₂⁻ + NO₃⁻ 
concentrations in groundwater samples ranged from 1 to 140 mg/L, with an average of 25 mg/L, 
indicating that while most samples fall within the safe range, some exceed the recommended threshold 
and may pose a risk to consumers. 
 
4.3.2. Calcium (𝐶𝑎+), Magnesium (𝑀𝑔2+), Potassium (𝐾+), and Sodium (𝑁𝑎+)  
As per the WHO and bureau of Indian standards, the range of𝐶𝑎+ is 75 mg/l for drinking water. 
Additionally, the fair range of 𝑀𝑔2+ ion is 30 mg/l and the allowable limit is 100 mg/l in the drinking 
water. In this study, the𝐶𝑎+ ion ranges from 12 to 560 mg/l with an average value of 124 mg/l, and the 
𝑀𝑔2+ ion varies from 3.645 to 352.35 mg/l with an average value of 128.90 mg/l. Similarly, the fair 
limit of Potassium (𝐾+) and Sodium (𝑁𝑎+) ions in the drinking water is 200 mg/l. In this research, the 
Na+ ion ranges from 7 to 1171 mg/l with an average value of 328 mg/l, and the 𝐾+ ion ranges from 1 
to 111 mg/l with an average value of 24.90 mg/l. In this research manuscript, all the acquired water 
samples has fair limit of 𝐾+ in the drinking water.  
 
4.3.3. Sulfate (𝑆𝑂4

2−), Bicarbonate (𝐻𝐶𝑂3
−), Chloride (𝐶𝑙−), and Fluoride (𝐹−)  

According to the World Health Organization (WHO), the acceptable concentration of chloride (Cl⁻) in 
drinking water is 250 mg/L. In this study, chloride levels in groundwater samples ranged from 35 mg/L 
to 3,155 mg/L, with an average concentration of 567.50 mg/L, indicating that many samples exceed the 
recommended limit. Similarly, sulfate (SO₄²⁻) concentrations, which should ideally not exceed 200 mg/L 
for safe consumption, were found to vary from 22 mg/L to 720 mg/L, averaging at 122 mg/Lsuggesting 
that while some samples remain within limits, others may pose a concern.For bicarbonate (HCO₃⁻), the 
acceptable threshold is 200 mg/L in drinking water. However, the present analysis recorded values 
ranging between 82.92 mg/L and 671 mg/L, with a mean of 342 mg/L, indicating substantial variation 
and potential for water hardness. Regarding fluoride (F⁻), WHO recommends a fair limit of 1 mg/L and 
a permissible upper limit of 1.5 mg/L. The fluoride concentration in the samples ranged from 0.008 
mg/L to 2 mg/L, with an average value of 0.73 mg/L, suggesting that while most samples are within safe 
limits, a few may exceed the permissible threshold, posing a health risk if consumed over long periods. 
 
Table 5. The physio-chemical parameters of water samples 

Well_I
D 

𝒑𝑯 𝑬𝑪 𝑪𝑶𝟑
− 𝑻𝑫𝑺 𝑺𝑶𝟒

𝟐− 𝑯𝑪𝑶𝟑
− 𝑪𝒍− 𝑭− 𝑲+ 𝑴𝒈𝟐+ 𝑵𝒂+ 𝑪𝒂+ Hardnes

s 

W001 
8.
9 

912 37 564 35 298.
4 

76 1.1
5 

11
2 

27.01 70 33 191 

W002 
8.
5 

123
0 

31 676 27 278.
8 

15
5 

1.5
5 

45 42.21 13
9 

24 235 

W003 
8.
2 

778 1.5
4 

456 36 132.
5 

13
2 

0.1
6 

17 14.26 12
5 

27 131 

W004 
8.
1 

121
0 

31 647 65 342.
4 

16
5 

2.0
1 

17 27.15 19
8 

35 201 
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W005 
8.
3 

970 13 564 58 385.
3 

56 1.9
9 

11 53.23 88 37 305 

W006 
8.
7 

157
0 

14 897 103 409.
7 

23
6 

1.5
8 

9 119.0
5 

13
5 

29 561 

W007 
8.
0 

198
0 

47 112
3 

108 467.
5 

25
5 

1.9 15 65.23 28
9 

25 323 

W008 
7.
8 

306
0 

17 189
7 

154 465.
7 

47
0 

0.4
6 

17 209.0
9 

20
1 

89 1110 

W009 
7.
3 

147
0 

21 878 98 308 21
7 

0.3
7 

15 75.4 15
5 

51 423 

W010 
8.
1 

730 1.0
0 

456 56 161.
3 

11
4 

0.0
9 

7 33.56 87 31 201 

W011 
7.
7 

920 1.7
8 

546 49 187.
3 

15
4 

0.0
8 

7 34.09 13
4 

25 152 

W012 
7.
9 

125
0 

1.1
0 

867 87 214.
7 

25
4 

0.4
5 

47 25.5 18
6 

35 189 

W013 
8.
2 

167
0 

21 986 69 316.
6 

20
1 

0.8
7 

11 115.9 10
1 

89 690 

W014 
8.
4 

143
0 

.98 814 97 298.
9 

17
6 

0.6 5 67.98 16
7 

31 335 

W015 
7.
0 

214
0 

0.5
4 

123
1 

98 564.
8 

28
9 

0.9
8 

29 99.80 24
1 

27 471 

W016 
7.
3 

213
0 

41 132
1 

57 500.
8 

47
6 

0.8
8 

15 65.76 35
4 

29 325 

W017 
7.
5 

309
0 

31 189
7 

79 311.
5 

49
8 

1.1
5 

17 3.76 46
5 

11 245 

W018 
7.
7 

650 0.9
8 

398 68 155.
6 

55 0.5
3 

6 23.65 71 9 189 

W019 
8.
1 

970 1.3
4 

599 76 213.
7 

12
5 

0.2
5 

8 35.45 12
5 

21 205 

W020 
8.
9 

560 1.0
5 

675 56 147.
6 

14
5 

0.3
3 

4 23.61 87 7 205 

W021 
7.
9 

789 23 543 87 209.
8 

20
1 

0.1
3 

6 33.56 21
5 

5 210 

 

4.3.4. 𝑯𝒂𝒓𝒅𝒏𝒆𝒔𝒔,𝒑𝑯, 𝑬𝑪, Carbonate (𝑪𝑶𝟑
−) and𝑻𝑫𝑺 

According to the World Health Organization (WHO) guidelines, the permissible pH level for drinking 
water is up to 8.5, while the recommended limit for electrical conductivity (EC) is 750 μs/cm. In the 
present study, the pH of groundwater samples varied between 7.7 and 8.9, with an average value of 
8.3indicating slightly alkaline conditions. The EC values ranged from 620 μs/cm to 10,000 μs/cm, with 
a mean of 3,981 μs/cm, suggesting significant mineralization in many samples.The maximum observed 
concentration of carbonate ions (CO₃²⁻) was 60 mg/L, which falls within the acceptable range for 
drinking purposes. Regarding water hardness, the WHO recommends a threshold of 300 mg/L. However, 
in this investigation, hardness levels ranged from 65 to 2,000 mg/L, with an average value of 387 mg/L, 
highlighting that several samples exceeded the recommended limits and may pose concerns for potable 
use. 
 
4.3.5. Sodium Adsorption Ratio (SAR)  
The Sodium Adsorption Ratio (SAR) is a key hydrochemical indicator used to evaluate groundwater 
suitability for irrigation, particularly in managing sodium-impacted soils. It serves as a diagnostic tool to 
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assess the sodicity hazard, which directly influences soil permeability and structure. Elevated 
concentrations of sodium ions (Na⁺) in groundwater contribute to the development of alkaline soils, 
while high overall salinity can lead to saline soil conditions, both of which negatively affect crop 
productivity.Based on SAR values, irrigation water is classified into four categories: 
• Low alkali water (SAR < 6), 
• Moderate alkali water (SAR 6–12), 
• High alkali water (SAR 12–18), and 
• Very high alkali water (SAR > 18). 

As detailed in Table 6, the SAR values observed in this study range from 1 to 18, encompassing a wide 
spectrum of sodicity risk levels. 
 
Table 6. Sample SAR Values for the Locations 

Well_ID Well_Type SAR_Value 
W001 Bore Well 3.175 
W002 Dug Well 3.054 
W003 Dug Well 4.895 
W004 Dug Well 5.897 
W005 Bore Well 3.789 
W006 Bore Well 5.432 
W007 Dug Well 6.453 
W008 Dug Well 5.342 
W009 Dug Well 5.543 
W010 Dug Well 6.533 
W011 Dug Well 2.345 
W012 Bore Well 4.238 
W013 Dug Well 5.187 
W014 Dug Well 5.342 
W015 Dug Well 4.987 
W016 Bore Well 3.654 
W017 Dug Well 4.678 
W018 Dug Well 6.897 
W019 Bore Well 4.345 
W020 Bore Well 5.653 
W021 Bore Well 4.231 

 

4.3.6. Residual sodium carbonate (RSC) 
The Residual Sodium Carbonate (RSC) index is a critical indicator used to assess the alkalinity risk posed 
by irrigation water on soil health. An RSC value below 2.5 signifies water that is suitable for irrigation, 
while values between 2.5 and 5 suggest moderate suitability with caution. RSC values exceeding 5 indicate 
water that is unsuitable for agricultural use due to its high potential to deteriorate soil structure. The 
classification of RSC values for the analyzed water samples is summarized in Table 7. 
 

Table 7. RSC index value of sample locations  
Well_ID Well_Type RSC_Value 
W001 Bore Well 0.756 
W002 Dug Well 3.654 
W003 Dug Well 1.895 
W004 Dug Well 2.897 
W005 Bore Well 3.789 
W006 Bore Well 2.432 
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W007 Dug Well 2.453 
W008 Dug Well 3.342 
W009 Dug Well 1.543 
W010 Dug Well 2.533 
W011 Dug Well 1.345 
W012 Bore Well 7.238 

 
4.3.7. Sodium percentage and Water Quality Index  
The sodium percentage serves as a key metric in determining the suitability of groundwater for irrigation, 
as outlined in Table 8. Meanwhile, the Water Quality Index (WQI) is a vital tool used to evaluate and 
track groundwater quality by condensing complex hydrochemical data into a single, interpretable 
score.To calculate the WQI, fourteen essential physico-chemical parameters are considered, including 
major anions such as𝑁𝑂2

−+𝑁𝑂3
−, 𝐶𝑂3

−, 𝐹−, 𝐻𝐶𝑂3
−, 𝐶𝑙− and 𝑆𝑂4

2−, as well as major cations 
like𝐾+,𝐶𝑎+, 𝑀𝑔2+ and 𝑁𝑎+, additional parameters such as total hardness, 𝑝𝐻 electrical conductivity 
(𝐸𝐶), and total dissolved solids (𝑇𝐷𝑆) are also included in the assessment. By assigning weights to each 
parameter based on its significance to water quality, the WQI provides a comprehensive understanding 
of groundwater conditions. The step-by-step computation process is illustrated through Equations (1–4) 
and visually represented in Figure 6. 

 
Figure 6. Sodium (Na) Percentage in Sample Collected from Various Wells 
 
Classification and Interpretation of Water Quality Index (WQI) 
The Water Quality Index (WQI) is a comprehensive indicator that categorizes water quality into five 
distinct levels: 
• WQI < 50: Excellent (pure) water 
• WQI 50–100: Good (suitable for drinking) 
• WQI 100–200: Poor (contaminated) 
• WQI 200–300: Very poor (highly contaminated) 
• WQI > 300: Unsuitable for drinking 
In this study, WQI values for the 800 analyzed groundwater samples ranged from 30 to 280, with 
an average WQI of 39, indicating predominantly high-quality water conditions. 
The classification results show that: 
• 22% of the samples fall within the excellent category (WQI < 50), 
• 63% are classified as good and suitable for drinking (WQI 50–100), 
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• The remaining 15% exhibit higher contamination levels and are deemed more suitable 
for irrigation rather than consumption. 

These findings reflect spatial variability in groundwater quality and emphasize the need for targeted water 
management strategies. 
 
Table 8. Sodium (Na) Percentage in Sample Collected from Various Wells 

Well_ID Well_Type Sodium (Na%) 
W001 Bore Well 65.776 
W002 Dug Well 35.654 
W003 Dug Well 51.895 
W004 Dug Well 29.897 
W005 Bore Well 63.789 
W006 Bore Well 67.432 
W007 Dug Well 50.453 
W008 Dug Well 69.342 
W009 Dug Well 73.543 
W010 Dug Well 52.533 
W011 Dug Well 62.345 
W012 Bore Well 42.238 
W013 Dug Well 35.765 
W014 Dug Well 32.546 
W015 Bore Well 35.789 

 
4.3.8. Kelly Index and Magnesium hazard  
Excessive magnesium content in groundwater can adversely affect soil health by elevating soil alkalinity, 
which in turn reduces agricultural productivity. Groundwater with magnesium hazard values exceeding 
50 is considered detrimental and unsuitable for irrigation applications. In the present study, magnesium 
hazard values ranged between 19 and 72, with a mean of 36, indicating variability in irrigation potential 
across sampling locations. 
Furthermore, Kelly’s Index, a key indicator of sodium hazard, suggests that water is considered suitable 
for irrigation when the index is less than 1, while values greater than 1 denote unsuitability. The analysis 
revealed Kelly’s Index values spanning from 0.11 to 7, with an average of 4.82, highlighting that a 
significant proportion of the sampled groundwater poses irrigation risks due to elevated sodium content. 
 

5. CONCLUSION  
The predictive evaluation of groundwater quality was conducted using the proposed GeoWaterNet model, 
which leverages deep feature learning to assess the water’s suitability for domestic and agricultural 
applications. Experimental analysis revealed that GeoWaterNet achieved a prediction accuracy of 93%, 
with specificity and sensitivity scores of 94.57% and 91.47%, respectively surpassing conventional deep 
learning models in both precision and reliability.Physico-chemical characterization of approximately 900 
samples, collected from 200 diverse hydrogeological sites, indicated that the majority fell within the 
permissible thresholds set by the Bureau of Indian Standards (BIS), affirming a controlled environmental 
condition in most regions.Further hydrochemical analysis using Kelly’s Index identified that only 30% of 
samples were classified as suitable for irrigation, while the remaining 70% indicated high sodium hazard, 
making them unsuitable. Meanwhile, Water Quality Index (WQI) results categorized 22% of the samples 
as excellent, 63% as good for drinking, and 15% as more suitable for agricultural use. Additionally, 
the Sodium Adsorption Ratio (SAR) highlighted that 38% of the water sources contained elevated alkali 
levels, which could pose significant risks to soil health and crop yield, while the remaining samples 
demonstrated acceptable alkali content.To further boost prediction robustness, the GeoWaterNet 
architecture integrates a feature extraction module, enhancing its ability to distinguish subtle variations in 
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ionic composition and environmental factors. This modular enhancement refines the model's capability 
to generalize across complex, real-world groundwater datasets, making it a scalable and effective solution 
for intelligent water resource management. 
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