
International Journal of Environmental Sciences   
ISSN: 2229-7359 
 Vol. 11 No. 7, 2025  
https://www.theaspd.com/ijes.php 
 

 

 

1199 

A Handheld Device for Apple Ripeness and Sweetness Grading 
with Convolutional Neural Network 
  
Shilpa Shailesh Gaikwad1*, Sonali Kothari2 

1*Electronics and Telecommunication Engineering, Symbiosis Institute of Technology, Symbiosis 
International (Deemed) University, Near Lupin Research Park, Gram-Lavale, Pune-412115, 
shilpa.gaikwad.phd2020@sitpune.edu.in, https://orcid.org/0000-0002-2516-9238 
2Computer Science and Engineering, Symbiosis Institute of Technology, Symbiosis International 
(Deemed) University, Near Lupin Research Park, Gram-Lavale, Pune12115, 
sonali.kothari@sitpune.edu.in, https://orcid.org/0000-0002-3797-9932 
 
Abstract This research describes a handheld system developed for capturing multispectral images of apple fruit to 
evaluate quality based on ripeness and sweetness. The device consists of a 7-inch touchscreen display powered by a 
Raspberry Pi 5 and a rechargeable power bank, offering flexibility for field operation. A USB digital microscope 
camera with 1000× magnification is used to acquire detailed images. Multispectral data is captured using a Digitek 
lighting device, which provides sequential illumination in six color wavelengths: red, yellow, green, cyan, blue, and 
magenta. Image capture is automated through Python-based code that controls the lighting sequence and image 
acquisition. To grade apples by ripeness, a DenseNet-121 convolutional neural network was trained on the collected 
images, achieving an accuracy of 73.77%. For grading by sweetness, a multi-architecture approach, evaluating both 
custom convolutional neural networks (CNNs) and transfer learning models based on pre-trained VGG16, ResNet50, 
and EfficientNetB0 architectures fine-tuned on ImageNet weights was employed, reaching an accuracy of 66.22%. 
The results demonstrate the feasibility of using low-cost, handheld device paired with deep learning techniques for non-
destructive fruit quality evaluation. The system holds promise for on-site grading in agricultural environments, reducing 
the dependence on hard-to-use and costly laboratory equipment. 
Keywords: handheld device, grading, ripeness, sweetness. 
 
1. INTRODUCTION  
The evaluation of fruit quality is essential from a consumer and market perspective. Traditionally, human 
experts have evaluated fruit by visual inspection, which is often labor-intensive, time-consuming, and 
prone to inconsistencies [1]. Manual sorting cannot guarantee accuracy across large quantities, especially 
when internal attributes such as sweetness or ripeness are not visible. In recent years, the use of imaging 
techniques—particularly multi-spectral imaging—has enabled automation in fruit grading, helping to 
reduce labour costs while improving speed and consistency.  
Fruit quality includes both external and internal characteristics. External factors such as color, size, shape, 
and surface defects are commonly used for initial grading [2]. Internal attributes like sweetness, acidity, 
firmness, and nutritional content play a critical role in determining the fruit’s taste and market value [3]. 
Among these, ripeness and sweetness are two key indicators that directly affect consumer satisfaction. 
Accurate grading of these qualities not only helps sellers maintain quality standards but also reduces post-
harvest losses and supports better cost.  
Conventional methods used to examine internal quality are often destructive. In many cases, a fruit must 
be cut or pierced to measure sugar levels or determine ripeness. This leads to fruit loss, especially when 
used for large batch sampling. Some commercial tools such as the Wensar LMSP-V320 Spectrophotometer 
[4], Felix F-750 Produce Quality Meter [5], and NIRMagic Fruit Analyzer [6] use advanced spectral imaging 
for internal evaluation, but these devices are costly and not suitable for routine use by small-scale farmers 
or field workers. For instance, while the Felix F-750 offers rapid, non-destructive sugar analysis, its cost 
exceeds Rs. 7.5 lakhs, placing it out of reach for most users in low-resource settings. Additionally, such 
devices are often bulky, limiting their use to lab-based environments. 
In contrast, non-invasive techniques such as multi-spectral imaging, combined with deep learning, provide 
a practical solution. Multi-spectral images are captured under different lighting wavelengths to reveal 
properties not visible under normal light. These images can be processed using deep learning methods, 
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especially Convolutional Neural Networks (CNNs), to classify fruit based on learned patterns. CNNs are 
especially useful in image-based classification tasks due to their ability to extract fine-grained spatial 
features, reduce manual feature engineering, and adapt to different types of image data. By using separate 
models for each task, such as DenseNet-121 for ripeness grading and a custom deep CNN for sweetness, 
the system can be optimized for higher accuracy over time. 
This research introduces a low-cost, handheld device for grading apples based on ripeness and sweetness. 
The device is powered by a Raspberry Pi 5, includes a 7-inch touchscreen display for easy operation, and 
uses a USB micro scope camera with 1000× magnification. Six different color illuminations—red, yellow, 
green, cyan, blue, and magenta—are provided through a Digitek lighting device, and image capture is 
controlled through Python code. The system is lightweight, portable, and can be operated in field 
conditions without access to a lab. It enables users to collect image data and analyze it on-site using deep 
learning models trained on the same type of images. The device offers an affordable solution in the range 
of Rs. 20,000 to 25,000, making it a practical choice for small-scale fruit sellers, farmers, or researchers 
working in agricultural quality evaluation. 
 
2.  RELATED WORK 
The non-destructive evaluation of fruit and vegetable quality is a critical area of research, aiming to reduce 
postharvest losses, ensure consumer satisfaction, and optimize supply chain logistics. Spectral imaging, 
encompassing both multispectral (MSI) and hyperspectral (HSI) techniques, has emerged as a powerful 
tool for this purpose. A review by Lorente et al. [7] established the foundational potential of HSI for 
evaluating a wide range of quality attributes, from ripeness and defects to chemical composition. However, 
a significant historical limitation was the reliance on bulky, expensive, and lab-based equipment, which 
hindered practical, in-field application. The subsequent literature demonstrates a clear and concerted 
effort to overcome this challenge by developing portable, low-cost, and user-friendly spectral imaging 
systems. 
A main trend in the field is the development of custom-built, portable devices. Lopez Ruiz et al. [8] 
pioneered an early example with a portable MSI system based on a Raspberry Pi, demonstrating the 
feasibility of using affordable, off-the-shelf components. This concept was further refined by Noguera et 
al. [9], who developed a new, low-cost, hand-held multispectral device specifically for in-field fruit-ripening 
assessment, emphasizing practicality and accessibility. Similarly, Guo et al. [10] created a novel handheld 
detector for measuring soluble solids content (sweetness), and Singh et al. [11] designed an “ultra-low-
cost” self-referencing multispectral detector, showcasing that cost reduction is a central goal. More 
complex systems, such as the portable 3CCD camera system by Lee et al. [12], also contributed to the 
miniaturization of high-quality imaging technology for biological samples.  
The ubiquity of smartphones has catalyzed a new wave of innovation. Goel et al. [13] introduced 
“HyperCam”, a groundbreaking project that adapted HSI for ubiquitous computing applications, laying 
the groundwork for mobile integration. More recently, Stuart et al. [14] demonstrated a low-cost HSI 
method using a standard smartphone, and Sharma et al. [15] introduced “MobiSpectral”, a system 
explicitly designed to bring hyperspectral imaging to mobile devices. These efforts democratize the 
technology, moving it from the specialized lab to the everyday user. 
As hardware has become more accessible, research has increasingly focused on tailored applications and 
the sophisticated algorithms needed to interpret the spectral data. For instance, mango maturity has been 
a popular target. Wendel et al. [16] used HSI on a ground-based mobile platform for maturity estimation, 
while J¨odicke et al. [17] employed MSI to monitor quality during the mango drying process. A crucial 
aspect of this work is the data processing pipeline. Zhang et al. [18] addressed the practical challenge of 
translating complex HSI data into more manageable MSI systems, investigating the portability and 
stability of algorithms for defect detection. This highlights the necessary trade-off between the rich data 
of HSI and the speed and simplicity of MSI, especially for portable devices. More recently, the focus has 
shifted towards advanced machine learning and deep learning models. He et al. [19] developed a handheld 
device that not only used MSI but combined it with fluorescence imaging and a lightweight convolutional 
neural network (CNN) for the rapid detection of citrus Huanglongbing. This represents a significant step 
forward, integrating multiple data sources and modern AI techniques into a single, portable solution. 
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3. METHODOLOGY 
3.1 Component requirement for Handheld Device 
The components required for the Handheld Device are given in Table 1. 
Table 1: Component list for the Handheld Device. 

Sr. 
No. 

Component Name Cost 
(INR) 

1 Official Raspberry Pi Touch Display 2 6731 
2 Raspberry Pi 5 Model 8GB 8289 
3 Pro-Range 3 in 1 1000X 8 LED USB Microscope Camera Endoscope with stand 

Type-C Electronic Magnifier 
1599 

4 SanDisk V30 Extreme Pro 128GB microSDXC Card with 200MB/s Read, 
90MB/s Write 

1599 

5 Ambrane 45W Fast Charging Powerbank, 15000mAh, USB-C and USB-A, 
Powerlit 45 

2499 

6 DIGITEK(LED-D10WRGB) 10W Portable RGB LED Light, 3 Color Modes, 
360° Rotation, 2500–9000K 

1899 

7 4 bolts (8mm width by 120mm length), 16 washers, and 16 nuts 140 
8 Foam Wood 180 
 Total Cost 22,491 

These components are grouped together to form the Portable Handheld device. 
3.2 Device Design. 
 The device developed for this study is a portable, handheld system designed to capture multispectral 
images of apple fruits as shown in Figure 1. It consists of a Raspberry Pi 5 single-board computer 
connected to a 7-inch touchscreen display for interactive control. A USB microscope camera with up to 
1000x magnification is used to capture detailed images of the fruit surface.  
For lighting, a Digitek device is used to illuminate the apple under different color conditions. The system 
supports image capture under six specific colors: Red, Yellow, Green, Cyan, Blue, and Magenta. The 
entire setup is powered using a rechargeable power bank, making it suitable for use in the field without 
the need for direct power supply. The compact and lightweight design allows the device to be held and 
operated manually without any supporting frame or tripod. Python scripts control the lighting sequence 
and image capture process, making the device simple to operate.  
 

 
(a) The front view 
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(b) The rear view 
Figure 1. The Handheld Device. 
3.3 Image Capture Process.  
For each apple sample, a total of six multispectral images are captured—each under a different coloured 
light. The six colors used for illumination are Red, Yellow, Green, Cyan, Blue, and Magenta. The magenta 
illumination falling on the apple from the Digitek device is shown in Figure 2. These colors help in 
highlighting different surface features of the fruit that relate to its ripeness and sweetness. The lighting 
and image capture process is controlled using a Python script, which coordinates with the camera to 
capture an image under each lighting condition. However, the color selection on the Digitek light is done 
manually using two control knobs on the side of the device: The lower knob must be set to the HSI mode 
before capturing. The upper knob is a rotating dial, which sets the hue angle corresponding to the desired 
color:  
• 0° for Red 
• 60° for Yellow  
• 120° for Green 
• 180° for Cyan  
• 240° for Blue  
• 300° for Magenta  
During image capture, the camera is kept at a fixed distance of approximately 7 cm from the apple. The 
system is handheld, allowing flexible use in natural environments. 

 
Figure 2. The Handheld Device with Magenta illumination on the apple. 
 

 
Figure 3. The Concatenated Multi-Spectral image of Epli Apple. 
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3.4 Dataset Preparation 
Apple Samples and Image Counts:  
For ripeness grading, three apple varieties were used: 
 1. Red Delicious USA 
 2. Epli  
 3. Royal Gala 
Each variety had 4 apples, observed over a period of 10 days. For each apple, 6 multispectral images were 
captured corresponding to six wavelengths (Red, Yellow, Green, Cyan, Blue, Magenta).  
• Images per variety per day = 4 apples × 6 wavelengths = 24 images  
• For 3 varieties, images per day = 24 × 3 = 72 images  
• Over 10 days, total images = 72 × 10 = 720 images  
For sweetness grading, eight apple varieties were used:  
1. Epli (label: epli) 
 2. Red Delicious USA (rdu)  
3. Royal Gala (rg)  
4. Granny Smith (gs)  
5. Red Pop (redpop)  
6. Washington USA (w)  
7. Fuji (fuji) 
 8. Pink Lady (pl)  
Each variety consisted of 4 apples, and 6 multispectral images were captured per apple, resulting in:  
Total images = 8 varieties × 4 apples × 6 wavelengths = 192 image 
Label Assignment  
Labels were assigned according to apple variety codes as mentioned above, allowing classification by 
sweetness based on variety and ripeness over time.  
 
Concatenation of the multi-spectral images 
The multi-spectral images are concatenated with the help of the python code for all varieties of apple for 
grading by sweetness and ripeness and the concatenated image formed for Epli apple is shown in Figure 
3.  
Data Preprocessing  
Images were preprocessed before training to improve model performance. For ripeness grading, images 
were preprocessed using the DenseNet121 input function which normalizes images accordingly. Data 
augmentation was applied during training but not directly in preprocessing. For sweetness grading, all 
input images underwent standardized preprocessing involving resizing to 224×224 pixels using OpenCV’s 
INTER_ LINEAR interpolation, color space conversion from BGR to RGB format, and pixel intensity 
normalization to the range [0,1] through division by 255. To enhance model generalization and mitigate 
overfitting, comprehensive data augmentation was implemented using Keras Image DataGenerator with 
the following parameters: rotation range (±20°), width and height shifts (±20%), horizontal flipping 
enabled, while maintaining aspect ratio integrity. The augmentation pipeline was applied exclusively 
during training phases to preserve validation set authenticity. 
Data Splitting 
For ripeness grading, the dataset was split into 80% training and 20% validation sets. Similarly, the dataset 
was split into 75% training and 25% for the validation sets during sweetness grading to evaluate 
performance.  
3.4 CNN Model for Ripeness Grading 
 For the ripeness grading, the DenseNet-121 architecture was used due to its ability to extract deep and 
meaningful features from images. The model was trained using a two-phase approach. In the first phase, 
only the classifier head was trained for 10 epochs. In the second phase, the entire model was fine-tuned 
for another 10 epochs to improve performance. The input images were resized and augmented using 
standard image augmentation techniques such as rotation, flipping, and zooming to increase data 
diversity and reduce overfitting. A batch size of 32 was used during training. The Adam optimizer was 



International Journal of Environmental Sciences   
ISSN: 2229-7359 
 Vol. 11 No. 7, 2025  
https://www.theaspd.com/ijes.php 
 

 

 

1204 

chosen for its adaptive learning capabilities. The dataset was divided into training and validation sets in 
an 80:20 ratio. That is, 80% of the images were used for training, and 20% were used for validation. The 
DenseNet-121 model follows a deep feature extraction structure consisting of initial convolutional and 
pooling layers, followed by a series of dense blocks and transition layers, and a batch normalization layer 
before classification. The model achieved an accuracy of 73.77% in predicting the ripeness category of 
apples using multispectral images captured at six different color wavelengths. 
3.5 CNN Model for Sweetness Grading 
To classify apples by sweetness levels, a robust deep learning framework was developed utilizing Bayesian 
optimization for hyperparameter tuning across multiple neural network architectures. The classification 
system employed a multi-architecture approach, evaluating both custom convolutional neural networks 
(CNNs) with 2-4 convolutional blocks and transfer learning models based on pre-trained VGG16, 
ResNet50, and EfficientNetB0 architectures fine-tuned on ImageNet weights. Input images were 
standardized to 224×224 pixels with RGB color space normalization (pixel values scaled to 0-1 range), and 
data augmentation techniques including rotation (±20°), width/height shifts (±20%), and horizontal 
flipping were applied to enhance model generalization. The hyperparameter optimization process utilized 
Keras Tuner’s Bayesian optimization with 30 maximum trials, systematically exploring optimizer selection 
(Adam vs. RMSprop), learning rates 10−5 to 10−3, architectural parameters (filter sizes, dense units, 
dropout rates), and training configurations over 25 epochs per trial with early stopping patience of 5 
epochs. The final model evaluation employed stratified train-validation splits (75:25 ratio) with 
performance evaluation including per-class precision, recall, and F1-score, confusion matrix evaluation, 
and prediction confidence distributions, ensuring robust validation of the five-class sweetness 
classification system (levels 10,11,12,13, and 14) with categorical cross entropy loss optimization.  
The goal was to evaluate which architecture worked best for detecting subtle differences in multispectral 
images corresponding to varying sugar content in apples. The training setup was designed to be flexible 
for future improvements. Among all architectures evaluated, the custom CNN achieved the highest 
validation accuracy of 66.22%, outperforming the pre-trained VGG16, ResNet50, and EfficientNetB0 
models in classifying sweetness levels. 
Refractometer 
A handheld refractometer is employed for manual measurement to evaluate the sweetness of each fruit in 
percentage Brix, and the fruits will be classified according to established grading methodologies [20]. First, 
cut the apple into 5 or 6 pieces and take the apple juice using a mixer. Then, sieve the apple juice with 
the help of Sieveer and pour it into a glass. Then, using a dropper, put one or two drops of the apple juice 
on the prism and close the flap. After this, hold the refractometer toward the light to read the apple 
sweetness through the eyepiece accurately. 
The Lookup table for sugar content measurement of apples is shown in Table 2. 
 
Table 2: Sugar Content Measurement of Apples in % Brix. 

Sr. 
No. 

Variety of Apple Apple 
1 

Apple 
2 

Apple 
3 

Apple 
4 

1 Red Delicious 
USA 

10  10  10  10 

2 Epli 12   11  11 12 
3 Royal Gala 11  10 11 13 
4 Pink Lady 12  13 12 12 
5 Red Pop 13  12 13 13 
6 Washington 12  10 12 12 
7 Granny Smith 10  11 10 10 
8 Fuji 13 11 10 10 
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3.6 Model Architecture and Training 
Ripeness Grading 
For grading apples by ripeness, the DenseNet-121 convolutional neural network was used. The model was 
trained in two steps:  
1. Initial Training: The classification head was trained for 10 epochs 
2. Fine-Tuning: The full model was fine-tuned for an additional 10 epochs 
 Other training parameters included:  
1. Batch Size: 32  
2. Optimizer: Adam  
3. Loss Function: Categorical Cross-entropy  
4. Validation Split: 20% of data  
5. Training Split: 80% of data  
The architecture included key blocks such as:  
1. Initial convolution and pooling layers (conv1, pool1)  
2. Four dense blocks  
3. Transition layers in between  
4. Final classification layer with softmax activation  
Data augmentation was included during training to improve model robustness. 
Sweetness Grading 
For sweetness classification, a deep learning approach with hyperparameter tuning was used. A tunable 
model was created with the following architecture options: 
 1. Custom CNN  
2. Transfer Learning Models: VGG16, ResNet50, and EfficientNetB0  
The models used pre-trained weights (ImageNet) with the classification head adapted for five sweetness 
classes: 10, 11, 12, 13, and 14.  
The tuning process included:  
1. Optimiser: Adam vs. RMSprop  
2. Epochs per Trial: 25  
3. Hyperparameter Trials: 30 
4. Input Image Preprocessing: Resizing to 224×224 pixels using OpenCV’s INTER_LINEAR 
interpolation, color space conversion from BGR to RGB format, and pixel intensity normalization to the 
range [0,1] through division by 255. 
The model was trained using a custom Keras Tuner setup for optimal performance. 
 
4. RESULTS 
4.1 Grading by Ripeness 
The ripeness classification model was evaluated using multiple metrics, including training and validation 
accuracy, loss, per-class performance, confusion matrix analysis, and timing breakdowns as shown in 
Figure 4. The overall classification achieved a final accuracy of 73.77% after a two-phase training 
procedure involving initial training and fine-tuning. 
Accuracy and Loss Evaluation 
As shown in the top left graphs of Figure 4, training and validation accuracy improved significantly after 
the fine-tuning phase, with validation accuracy rising from approximately 51.7% (initial training) to 
73.8%. Correspondingly, the validation loss reduced from around 1.3 to 0.8, indicating better 
generalization after fine-tuning. The gap between training and validation metrics narrowed in later 
epochs, suggesting a reduction in overfitting. 
Training Time and Speed 
The total training time was 6073.69 seconds, with 1263.24 seconds spent on initial training and 4810.45 
seconds on fine-tuning. Training time per epoch increased significantly during fine-tuning (Training Time 
per Epoch graph), leading to a shift in average training speed from approximately 6.5 images/sec to 3.5 
images/sec (Training Speed graph). Fine-tuning accounted for 78.8% of total training time, as depicted 
in the time distribution pie chart. 
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Confusion Matrix and Class-wise Performance 
The confusion matrix reveals that the model performed best on the ”over-ripe” class, correctly classifying 
149 instances, while under-ripe was more challenging, with noticeable confusion with the “ripe” class. 
Class-wise metrics (Precision, Recall, F1-Score) show that the model achieved the highest recall for the 
ripe class, while precision was strongest for over-ripe. The F1-score was relatively balanced across all classes, 
ranging from 0.70 to 0.76. 
Overall Performance Metrics 
The aggregated performance metrics indicate an accuracy of 0.738, precision of 0.757, recall of 0.738, 
and an F1-score of 0.731. These values affirm that the model is reasonably effective across all classes, with 
balanced precision and recall. 
Prediction Time 
Prediction efficiency was also evaluated. As shown in the “Prediction Time vs Batch Size” plot, prediction 
time increased linearly with batch size. The total time required for prediction on the test set was 28.84 
seconds, corresponding to an average of 70.69 milliseconds per image. 
 

 
 
Figure 4. The Detailed Ripeness Classification Evaluation with Timing 
 
4.2. Grading by Sweetness 
The detailed model evaluation was conducted using multiple metrics, including accuracy, precision, 
recall, and F1-score, calculated for both overall performance and per-class metrics. Confusion matrices 
were generated for training and validation sets to evaluate classification patterns and identify potential 
class-specific weaknesses. Statistical significance was evaluated through stratified validation, while 
prediction confidence distributions were analyzed to evaluate model uncertainty quantification. 
Performance timing evaluation included total prediction time and per-image inference latency to evaluate 
computational efficiency. 
Overall Performance Metrics  
The trained model demonstrated robust performance across multiple metrics, achieving a validation 
accuracy of 66.22% with well-balanced precision (70.50%), F1-score (66%), and recall (66.22%). 
Training Dynamics:  
• Accuracy vs. Epoch: Shows convergence from ∼ 25% to 65% with validation volatility indicating 
learning complexity.  
• Loss vs. Epoch: Demonstrates consistent loss reduction from 1.6 to below 1.0, confirming effective 
optimization. 
 • Training Progress: Linear progression through 25 epochs showing systematic learning advancement.  
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Classification Performance:  
• Training Confusion Matrix: Reveals strong diagonal patterns with Level 10 (54 correct) and Level 12 
(41 correct) showing excellent classification.  
• Validation Confusion Matrix: Shows balanced performance across classes with Level 10 (16 correct) 
and Level 12 (11 correct) maintaining consistency. 
 • Key Insight: Most errors occur between adjacent sweetness levels (e.g., The mappings are 10 ↔ 11 and 
12 ↔ 13, which is expected and reasonable. 
 

 
Figure 5. The Detailed Sweetness Classification Evaluation  
Detailed Metrics Evaluation  
• Per-Class Metrics: Level 14 achieves perfect precision (100%) but lower recall, while Level 10 shows 
strong recall (84%).  
• Overall Metrics Comparison: Training and validation metrics are well-aligned (both ∼66-70%), 
indicating good generalization without overfitting. • Balanced Performance: Precision, recall, and F1-
scores are consistently around 66.70% across both sets.  
Data Insights and Model Behaviour Evaluation  
• Class Distribution: Both training and validation sets show balanced representation across sweetness 
levels. 
• Prediction Confidence: Bimodal distribution with peaks at 0.5 and 0.9 suggests the model makes both 
confident and uncertain predictions appropriately. 
 • Performance Summary: Final validation accuracy of 66.22% with 294 total images and 3.45s 
prediction time. 
 The dashboard reveals a well-trained model that successfully learned to distinguish apple sweetness levels 
with reasonable accuracy. The 66% validation accuracy represents strong performance for a 5-class visual 
classification, especially considering the subtle visual differences between sweetness levels. The balanced 
metrics across training and validation sets confirm robust generalization capability.’ 
 
5. CONCLUSIONS 
This study demonstrates an effective deep learning-based approach for grading apple ripeness into 
overripe, ripe, and underripe categories using multispectral images. The results demonstrate that the 
model achieved a final accuracy of 73.77%, with notable improvements during the fine-tuning phase. 
Performance metrics, including precision (0.757), recall (0.738), and F1-score (0.731), confirm the model’s 
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balanced predictive capability across all three ripeness levels. Analysis of the confusion matrix revealed 
that ripe and overripe classes were better identified compared to underripe, suggesting a need for more 
representative training samples or feature enhancement for underripe detection. Training and validation 
curves showed clear improvement across epochs, with fine-tuning substantially enhancing the model’s 
generalization ability. Timing analysis indicated that fine-tuning constituted the majority of training time 
(over 78%), which contributed positively to performance gains. Additionally, the model maintained 
efficient prediction speeds, with an average inference time of 70.69 ms per image, supporting its suitability 
for real-time applications. Overall, the model offers a promising solution for automated, non-destructive 
ripeness assessment in agricultural contexts. Future work could explore advanced augmentation strategies, 
optimized class balancing, and lightweight architectures to further enhance accuracy while maintaining 
low computational overhead. In addition, this study also demonstrates a deep learning-based approach 
for classifying apples according to sweetness levels ranging from 10 to 14, using multispectral image data. 
The proposed model achieved a validation accuracy of 66.22% with a corresponding F1-score of 0.6600, 
precision of 0.7050, and recall of 0.6622, suggesting moderate but consistent classification performance 
across all sweetness levels. 
The model exhibited particularly strong performance in classifying extreme sweetness levels, with Level 
14 achieving near-perfect precision (100%) and Level 10 showing excellent recall (84%), suggesting the 
model successfully learned to distinguish between distinct sweetness categories. The confusion matrices 
reveal that classification errors primarily occurred between adjacent sweetness levels, which is expected 
given the inherent similarity between neighbouring categories and represents reasonable model 
behaviour. The balanced class distribution in both training (25.9% Level 10, 26.8% Level 12) and 
validation sets (25.7% Level 10, 27.0% Level 12) ensured fair evaluation across all sweetness levels, while 
the prediction confidence distribution shows the model’s ability to make confident predictions with peaks 
around 0.5 and 0.9 probability ranges, indicating appropriate uncertainty quantification in its decision-
making process. Despite these challenges, the model’s ability to distinguish between fine sweetness levels 
in apples without invasive methods makes it a valuable tool for post-harvest quality sorting. Future 
enhancements could involve dataset balancing, integration of spectral feature selection, and model fusion 
to improve classification robustness and generalizability. 
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