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Abstract: 
Ensuring the authenticity and quality of bunker fuel continues to remain a significant challenge in maritime trade, especially 
with issues regarding fuel adulteration, fraud and inadequate supply chain management persisting. The DNA- Blockchain 
based AI assisted Traceability (D-BAIT) study proposes an advanced framework integrating DNA tagging, blockchain 
technology and Deep Learning algorithms to establish a secure, transparent and automated fuel traceability system. DNA 
markers act as tamper-proof unique identifiers which is verified using Next-Generation Sequencing (NGS) and Polymerase 
Chain Reaction (PCR)-based DNA authentication by embedding them in fuel at the point of origin, thereby ensuring real-
time validation of authenticity. The verification results are then recorded on a permissioned blockchain, providing 
immutability, decentralized access and secure transactions for key stakeholders, including ship operators, regulators and 
insurers. To enhance fraud detection and operational efficiency, DL algorithms are utilised along with blockchain transaction 
monitoring through Graph Neural Networks (GNNs) and LSTMs to leverage real-time anomaly detection in blockchain 
transactions, thus helping to identify suspicious fuel transactions. Additionally, smart contracts deployed on the Ethereum 
Virtual Machine (EVM) on cross-border payments further verifies fuel authenticity.  
Keywords: Next-Generation Sequencing(NGS), Polymerase Chain Reaction(PCR), Graph Neural Network (GNN), Long 
Short-Term Memory (LSTM), Ethereum Virtual Machine(EVM), Environmental Regulations 
 
1. INTRODUCTION 
Shipping industry acts as a backbone of global economic trade, facilitating the transportation of over 80% of the 
world’s goods by volume [1]. Bunker fuel is the lifeblood of maritime transportation. Without it, movement of 
goods, raw materials and energy resources across the world would come to a halt. It enables the operation of 
cargo ships, tankers, container vessels and other nautical transport systems that connect economies and supply 
chains worldwide [2]. Traceability helps identify the source and quality of fuel, preventing adulteration or the 
use of substandard products. Fuel marking and traceability systems help authorities to combat tax evasion by 
distinguishing legal and illegal fuel and help businesses comply with regulations [3]. Real-time fuel consumption 
data can also help in optimization of fuel usage by identifying areas for improvement. Sustainability 
and traceability are essential to protect consumers and providers from illicit products [4].  
Verifying the quality of bunker fuel and its authenticity remains a significant challenge as fuel adulteration, 
unauthorized transactions in logistics operations have plagued the industry for decades, leading to extensive 
financial losses, operational disruptions and ecological imbalance [5]. These issues not only undermine the 
integrity of maritime trade but also pose risks to regulatory compliance and safety. Fuel tampering involves 
mixing of high-quality bunker fuel with inferior or illegal substances which can compromise engine’s 
performance through increasing the emissions and can lead to severe mechanical failures. Fraudulent activities 
such as sale of counterfeit fuel and manipulation of delivery records can further aggravate these challenges [6]. 
Additionally, the lack of transparency and traceability in the bunker fuel supply chain creates opportunities for 
unsanctioned transactions and makes it problematic for stakeholders to verify the genuineness of fuel. 
Significance of ensuring fuel authenticity and quality cannot be overstated. High-quality bunker fuel is essential 
for the efficient operation of vessels, compliance with international environmental regulations such as the 
International Maritime Organization’s IMO 2020 sulfur cap and the prevention of costly engine damage [7]. 
Moreover, the ability to trace fuel from its point of origin to its final destination is essential for building 
confidence among beneficiaries like ship operators, regulators, insurers and fuel suppliers. To address these 
setbacks, this study proposes an innovative solution that integrates DNA tagging [8], blockchain technology [9] 
and Deep Learning (DL) algorithms [10] to establish a safe, transparent and automatic fuel traceability system. 
DNA markers embedded into bunker fuel offers unparalleled level of security and traceability. These markers 
are integrated at the point of origin to enable precise and reliable verification of fuel's authenticity, ensuring that 
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it has not been adulterated or tampered before or during transit. Once verified, the outcomes of authentication 
process are securely recorded on a permissioned blockchain. This blockchain infrastructure 
guarantees immutability while providing decentralized access to authorized stakeholders. This ensures 
transparency and trust across the supply chain. To further enhance the system's robustness, DL techniques 
like Graph Neural Networks (GNNs) [11]and Long Short-Term Memory (LSTM) networks [12] are incorporated 
into the framework to continuously monitor the blockchain transactions in real-time and analyse patterns to 
identify anomalies that may indicate any suspicious activities. Additionally, smart contracts deployed on 
the Ethereum Virtual Machine (EVM)[13] play a pivotal role in automating and securing cross-border payments. 
These self-executing contracts are programmed to verify the authenticity of the fuel before releasing payments, 
ensuring that transactions are both efficient and secure. This automation not only reduces the risk of human 
error but also streamlines the payment process, making it faster and more reliable for all parties involved. The 
contributions of D-BAIT can be listed as 
• Enhanced Fuel Traceability and Authenticity through integration of DNA markers to ensure real-time 
verification of fuel authenticity from the point of origin to its final destination. 
• Transparent and Secure Supply Chain Management by leveraging blockchain technology to establish an 
immutable and decentralized record of fuel transactions that complies with regulatory standards. 
• AI-Driven Fraud Detection and Operational Efficiency through utilization of GNN and LSTM networks to 
facilitate real-time anomaly detection in blockchain transactions.  
• Smart contracts on Ethereum Virtual Machine (EVM) automates cross-border payments and enhances fraud 
detection, improving operational efficiency and reducing risks associated with unauthorized operations. 
Thus, by integrating these cutting-edge technologies, the proposed framework aims to revolutionize bunker fuel 
traceability and fraud detection in the maritime industry. The organization of research is as follows:  Section 1 
highlights the challenges and introduces the framework by stating its objectives. Section 2 Summarize existing 
solutions and their limitations by identifying the gaps. Section 3 details the proposed methodology by explaining 
its working and integration followed by section 4 analyses the results and their implications by comparing the 
suggested architecture with existing solutions. Ultimately the research is concluded with Section 5 which 
summarizes the key findings and suggests future research directions. 
 
2. RELATED WORKS 
Conventional methods for fuel traceability such as manual documentation and chemical analysis have proven 
inadequate in addressing maritime fuel traceability challenges, creating a pressing need for innovative solutions. 
Existing approaches to fuel traceability have relied heavily on manual record-keeping and periodic chemical 
testing. While these methods provide some level of assurance, they are prone to human error, manipulation and 
delays. Glover et al [2011] proposed DNA as suitable tracer molecules to detect fuel adulteration as they 
potentially offer boundless permutations, parts per trillion addition levels, low toxicity and security from 
unauthorised adulteration [14]. For instance, Tatar et al [2025] highlighted the limitations of manual systems in 
detecting real-time fraud, emphasizing the need for automated and tamper-proof solutions.  The objective of 
their study is to identify and prioritize the barriers that hinders adoption of digital technologies to ensure more 
efficient operation of maritime logistics sector [15]. Quigley et al [2025] proposed a blockchain based framework 
for real-time nautical environmental compliance monitoring by integrating IoT with blockchain technology. 
Smart contracts automate compliance verification and alert relevant authorities in case of non-compliance with 
sulfur emissions. Moreover, Polygon blockchain has been used for scalability and efficiency [16]. 
Hamidi et al[2024] came up with a three phase digital maturity model that effectively measures digital 
advancement in oceanic trade  . The model consists of different criteria, dimensions and maturity levels along 
with fuzzy theory and decision-making approaches to measure the digital readiness of proposed model. The 
research findings reveal a significant gap in adopting digital practices in shipping and ports. In this research, we 
introduce an AI and blockchain-assisted intelligent and secure framework for predicting energy consumption in 
ships to enhance efficiency and sustainability [17]. Parekh et al [2024] employed a regression model to predict 
Co2 emissions in ships. Decentralized training was applied on the dataset using federated learning and ANN 
was integrated to categorize the ships based on their energy consumption features. Blockchain technology was 
adopted to deal with data tampering attacks along with assuring the integrity of predicted data [18]. Leonis et al 
[2024] presented a framework designed and developed for addressing security and privacy issues specific to 
maritime trade. A virtualized testbed built on-top of Hyperledger Fabric and the InterPlanetary File System helps 
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in evaluating the recommended system. The results demonstrate minimum latency and high throughput, less 
than 5 ms and more than 80 transactions per second[19]. 
Islam et al [2023] proposed the integration of Machine Learning and Blockchain technology to revolutionize 
supply chain management, logistics and freight forwarding by enhancing operational efficiency and 
transparency[20]. This study indicates that ML based predictive modelling considerable impacts demand 
prediction, inventory optimization and minimization of ocean route operational costs by enhancing decision-
making accuracy. Blockchain technology automates contract execution through smart contracts and mitigates 
fraud risks by enhancing transparency in sustainable logistics through carbon footprint tracking. Despite these 
merits, the authors point out the transaction processing limitations which acts as a barrier in real-time large-scale 
implementation of this technology. Li et al [2022] came up with a novel strategy to fuse voyage report data and 
machine learning models for accessing ship's bunker fuel consumption rate, sailing speed, displacement/draft, 
trim, weather conditions and sea conditions. Extremely randomized trees, Gradient Tree Boosting and XGBoost 
were utilised in the study which presented a good interpretability in explaining the significance of different 
determinants in ship's fuel consumption rate and weather routing decisions [21]. 
Mohamed et al [2021] established the fact that conventional traceability systems are mostly centralized and often 
fail to ensure secure data sharing and its processing rules agreement [22]. In order to overcome this limitation, a 
blockchain-IoT based traceability architecture adapted to the B2B logistic chain context has been recommended. 
Stakeholders trust is maintained in the data collection process by facilitating the automation of the traceability 
through an IoT data qualification module that offers fine data quality control and monitoring based on the 
stakeholders’ requirements. Theodoropoulos et al [2021] developed a methodology to harmonize data collected 
from various sensors onboard and to implement a scalable AI framework to recognize patterns that monitors the 
operational state of a vessel. Convolutional Neural Network (CNN) were used to analyze time series data accessed 
during real-time navigation. The results present an insightful observation of the applicability AI models in remote 
monitoring of ships and their role in enhancing maritime trade [23]. Netto et al[2020] demonstrated a graphical 
neural network (GNNs)based application in the dynamic estimation of spatially distributed buoys that are crucial 
in maritime navigation. GNN-based model captures spatial relations in the domain whose parameters are learned 
from historical and real data collected at actual location in oceanic waters [24]. Non-trivial structural assumptions 
are examined and their impact on actual performance is examined by constructing a graph based on relevant 
spatial structure points. The empirical results indicate the suitability of GNN in practical maritime situations 
where predictions must be based on both collected data and structural patterns.  Makridis et al [2020] presented 
an approach for predictive analytics based on LSTM based time series forecasting strategy. Anomaly detection 
on data acquired through sensors embedded in vessels predicts the condition of specific parts of vessel's engine 
and thus offers preventive care[25]. The proposed approach aims to address the predictive maintenance in 
maritime through combination of different DL models, highlighting the demand for effective strategies that 
offers maritime companies’ considerable profits and also facilitates fuel efficiency. 
 
RESEARCH GAPS 
Existing literatures on maritime fuel traceability principally focuses on blockchain-based transactions, fuel 
consumption rate and fraud detection using IoT, ML and deep learning, but lacks integration with biological 
authentication methods. Most of the fuel traceability methods in practice rely solely on chemical markers for 
fuel property testing, but there is little to non- existing research based on utilizing synthetic DNA markers for 
fuel security. While blockchain is widely used for supply chain transparency, no established framework 
incorporates DNA authentication results with blockchain for real-time verification. Deep learning has been used 
in maritime fuel consumption prediction and fraud detection, but not in DNA authentication-based fraud 
detection. While DNA tagging is used in other industries, the impact of fuel composition like sulfur, density and 
temperature on DNA stability is still not well studied. Since DNA tagging in fuel traceability is a novel concept, 
there is currently no extensive literature available. This research aims to bridge that gap by exploring the 
feasibility, implementation and impact of DNA-based authentication in maritime fuel supply chains along with 
Deep learning and block chain. 
 
MATERIALS AND METHODS 
This study integrates DNA tagging, blockchain technology and deep learning to establish a secure fuel traceability 
system. Synthetic DNA sequences were sourced from the European Nucleotide Archive (ENA), a publicly 
available database of nucleotide sequences. The selection process involved searching for short, unique DNA 
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sequences that could serve as traceable markers in fuel authentication. These DNA markers were introduced 
into fuel samples at the refinery stage in controlled concentrations, ensuring each batch has a unique, traceable 
identifier. At key checkpoints fuel samples were collected and subjected to DNA extraction, polymerase chain 
reaction (PCR) amplification and Next-Generation Sequencing (NGS) to validate the presence and integrity of 
the DNA markers [27]. To ensure tamper-proof tracking, fuel transactions were recorded on a permissioned 
blockchain (Ethereum). Each batch of fuel was linked to its DNA marker and smart contracts were deployed to 
verify authentication before approving transactions. Blockchain stored fuel origin, supplier details, DNA 
verification status and transaction history are stored in an immutable ledger, ensuring transparency and 
preventing fraudulent record alterations. 
Graph Neural Networks (GNNs) were used to model relationships between fuel suppliers, transporters, and 
buyers, identifying suspicious patterns. Additionally, a Long Short-Term Memory (LSTM) network was trained 
on historical blockchain transactions to detect irregular fuel trade behaviours and high-risk anomalies. The AI 
model assigned a fraud probability score to each transaction, triggering automated responses in the smart 
contract layer, either approving, flagging or blocking transactions based on predefined thresholds. 
 
Dataset Description 
The study utilized four primary datasets: 
• DNA sequences were sourced from the European Nucleotide Archive (ENA) and generated using random 
nucleotide sequences to act as unique markers [26].  
• Ethereum BigQuery is a blockchain-based transaction dataset where each record included details such as 
transaction ID, sender and receiver wallet addresses, fuel type, quantity, price and timestamp [28,29]. 
• Elliptic Bitcoin dataset has been leveraged to train machine learning models capable of detecting illicit 
activities, applying these models in the context of fuel transactions makes it a valuable resource for training 
machine learning models in financial crime detection [30]. 
• A simulated dataset based on IMO regulatory reports and fuel compliance has been utilised due to the lack 
of publicly available fuel traceability datasets that include both authentication markers and transaction records, 
this dataset has been constructed based on real-world fuel property distributions [31]. 
 
3. PROPOSED METHODOLOGY 
Fuel adulteration, illegal bunkering and unauthorized transactions are persistent challenges in maritime industry, 
leading to economic losses, environmental hazards, and regulatory non-compliance. Traditional fuel traceability 
methods have certain limitations owing to their easy manipulation, lack of real-time monitoring and difficulties 
in verification across the supply chain. The proposed D-BAIT framework presented in Figure 1 aims to overcome 
these constraints by presenting a secure, transparent and sustainable system based on DNA tagging, Block chain 
and Deep learning methodologies.  
 

 
Figure 1: Proposed D-BAIT architecture 
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Problem statement 
Given a fuel batch Bi, associated with a supplier Si, an origin Oi and specific fuel properties Fi such as sulfur 
content and density, the goal is to verify fuel authenticity using DNA tagging by ensuring that the extracted DNA 
sequence Sext matches the original sequence Sref assigned to Bi.Ensure tamper-proof traceability by recording Bi 
and all associated transactions Tj on a blockchain ledger to prevent fraudulent modifications. Detect and prevent 
fraudulent fuel transactions using AI-based anomaly detection, where each transaction has a fraud probability 
score Pfraud(Tj) that determines whether it should be approved or blocked. The objective function can be expressed 
as: 

max Tj (Pmatch(Bi)−Pfraud(Tj))     (1) 
where the probability Pmatch(Bi)≥θauth that the DNA sequence in Bi is authentic and the transaction probability  
Pfraud(Tj)≤θfraud of being fraudulent is flagged. 
 
DNA-Based Fuel Authentication Module 
 The main objective of this segment is to embed and verify synthetic DNA markers in fuel to ensure authenticity. 
This is accomplished by extracting synthetic DNA sequences from ENA database. Each fuel batch Bi is assigned 
a synthetic DNA marker SDNAi at the point of origin such as refineries or on supplier side. The DNA sequence 
is: 

𝑆𝐷𝑁𝐴𝑖
= {𝐴, 𝑇, 𝐶, 𝐺}1

𝑁       (2) 
Where A, T, C, G represent nucleotide bases and N is the length of the unique synthetic sequence. These DNA 
markers are chemically encapsulated using silica nanoparticles or polymer coatings to prevent degradation under 
high temperatures, pressure, remains undetachable during transportation and protects their exposure to 
hydrocarbons. Extracted sequences are then synthesized and encapsulated for fuel stability. At checkpoints, PCR 
and NGS sequencing is utilized to verify DNA presence. The DNA sequence is then isolated from the fuel using 
a chemical separation process and amplified using PCR to detect and match the sequence. Verification is carried 
out using NGS if a higher accuracy check is needed. 
The extracted sequence Sext is compared with the original DNA sequence Sref stored in the blockchain. Decision 
rule for authentication is defined as  

𝐵𝑖 = {
 Authentic,     𝑃match (𝐵𝑖) ≥ 𝜃auth 

 Tampered,     𝑃match (𝐵𝑖) < 𝜃auth 
     (3) 

If Bi is authentic then it is approved and recorded on blockchain otherwise it is flagged for further investigation. 
This module prevents fuel adulteration by ensuring each batch is uniquely tagged by providing a molecular-level 
identifier that cannot be faked or altered. 
 
Blockchain-Based Fuel Traceability  
After verification of fuel authenticity through DNA tagging, the results are securely recorded on a permissioned 
Ethereum blockchain to ensure tamper-proof traceability. Each verified fuel batch is linked to its DNA sequence 
, supplier , origin , and transaction details . A smart contract automatically validates transactions by checking 
whether the DNA verification result is authentic before allowing further processing. The blockchain entry for 
each transaction is cryptographically hashed, ensuring immutability and preventing unauthorized alterations. If 
fuel is flagged as tampered, the transaction is blocked and an alert is triggered. A fuel transaction T j consists of 
the fuel batch Bi, DNA verification result V(Bi), and transaction details which can be expressed as 

Tj={Bi,SDNAi,Q,P,t,H(Bi,SDNAi,Q,P,t)}        (4) 
Where Q is the Quantity of fuel in metric tons, P is Price per unit,t is Timestamp of transaction and H(x) is the 
Cryptographic hash. 
A transaction is valid only if: 

V(Bi)=1        (5) 
H(Tj)=H′(Tj)       (6) 

Equations (5) and (6) means that after DNA verification and making sure that data has not been tampered, the 
transaction is stored on blockchain, unverified transactions are flagged for fraud detection. The decision rule is 

𝑇𝑗 = {
 Approved,     𝑉(𝐵𝑖) = 1 and 𝐻(𝑇𝑗) = 𝐻′(𝑇𝑗)

 Blocked,     𝑉(𝐵𝑖) = 0 or 𝐻(𝑇𝑗) ≠ 𝐻′(𝑇𝑗)
   (7) 

This module establishes a secure, transparent and auditable supply chain by reducing risks of fuel fraud, 
unauthorized deals and regulatory non-compliance. 
AI-Powered Fraud Detection Module (GNN + LSTM) 
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To prevent fraudulent fuel transactions, this module integrates GNNs and LSTM models to analyse transaction 
patterns and detect anomalies. GNN model treats the fuel trading network as a graph, where each node 
represents a supplier, buyer or wallet address and edges represent fuel transactions. A fuel transaction network 
is modelled as a graph G=(V,E), where V is the transaction nodes and E denotes the set of fuel transactions .Each 
transaction Tj has a fraud probability score Pfraud(Tj)  which is calculated as: 

Pfraud(vi)=σ(WTf(vi)+b)      (8) 
where:σ(x) is Sigmoid activation function,W isWeight matrix ,f(vi) is Feature vector of transaction node  and b 
is bias term. A transaction is flagged as suspicious if: 

Pfraud(Tj)>θfraud           (9) 
By learning transaction patterns, the GNN assigns a fraud probability score to each transaction, flagging high-
risk activities. Additionally, the LSTM model analyse historical transaction sequences to predict expected 
transaction amounts and detect deviations from normal behaviour. LSTM model predicts the expected 
transaction amount 𝐴̂𝑡 at time 𝑡 based on historical data: 

𝐴̂𝑡 = 𝑓(𝐴𝑡−1, 𝐴𝑡−2, … , 𝐴𝑡−𝑛)               (10) 
An anomaly is flagged if the deviation exceeds a defined threshold: 

|𝐴𝑡 − 𝐴̂𝑡| > 𝜆𝜎𝐴                (11) 
 
Where At is the actual transaction amount, 𝐴̂𝑡is the Predicted value, σA is the Standard deviation and λ is the 
Anomaly detection threshold. If a transaction exhibits an unusual amount, frequency or association with 
previously flagged entities, it is classified as suspicious. Transactions exceeding a predefined fraud threshold are 
either flagged for review or automatically blocked through smart contracts. This AI-driven module enhances fuel 
traceability, reduces fraudulent payments and improves security in maritime fuel trading. 
 
Smart contracts based automated enforcement  
To ensure that only authentic and verified fuel transactions are processed, this module uses Ethereum smart 
contracts to enforce real-time decision-making. When a fuel transaction is initiated, the smart contract first 
checks the DNA authentication status of the fuel batch stored on the blockchain. If the DNA verification result 
is valid, the contract then evaluates the fraud probability score assigned by the AI-based fraud detection module. 
A fuel transaction 𝑇𝑗 is approved only if DNA verification is successful (𝑉(𝐵𝑖) = 1) and Fraud probability score 
is below the fraud threshold (𝑃fraud (𝑇𝑗) ≤ 𝜃fraud ) 

𝑇𝑗 = {

 Approved, 𝑉(𝐵𝑖) = 1 and 𝑃fraud (𝑇𝑗) ≤ 𝜃fraud 

 Flagged for Review , 𝑉(𝐵𝑖) = 1 and 𝑃fraud (𝑇𝑗) > 𝜃fraud 

 Blocked, 𝑉(𝐵𝑖) = 0

   (12) 

Where 𝑉(𝐵𝑖) = DNA verification result (1 = authentic, 0 = tampered ),𝑃fraud (𝑇𝑗) = Fraud probability score 
from the AI model, 𝜃fraud = Fraud detection threshold. Transactions with a fraud probability below the 
predefined threshold are approved and recorded, while suspicious transactions are either flagged for manual 
review or automatically blocked.  
If the transaction is approved, the smart contract automatically processes the payment 𝑃(𝑇𝑗) and transfers fuel 
ownership. 

𝑃(𝑇𝑗) = {
𝑄 × 𝑃unit ,  if 𝑇𝑗 is Approved 
0,  if 𝑇𝑗 is Blocked 

      (13) 

Where 𝑄 is Fuel quantity,𝑃unit is the Price per metric ton. Additionally, the contract logs compliance 
information for regulatory bodies such as the IMO ensures transparency in fuel traceability. By integrating 
blockchain-based automation with AI-driven fraud detection, this module eliminates manual intervention, 
prevents unauthorized transactions and ensures compliance with maritime fuel regulations. Blocks fraudulent 
fuel transactions automatically 
ensures only verified fuel batches are traded and prevents financial loss by stopping payments for fake 
transactions. The pseudocode of proposed D-BAIT architecture is provided. 
 
Algorithm: Fuel Traceability using D-BAIT Design 
--------------------------------------------------------------------------------------------------------------- 
Input: F, DNAid, B  
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Output: Verified fuel transactions and Fraud detection alerts 
Step1:  Initialize system components by Setting up DNA tagging, blockchain ledger and deep learning model. 
Step 2: Define blockchain structure: B={T1,T2,...,Tn} where Tn represents fuel transaction. 
Step 3: Generate DNA marker by assigning a unique molecular tag to each fuel batch:      
DNAid=GenerateDNA(F)  
Step 4: Ensure marker stability under varying conditions. 
Step 5: Record fuel batch in blockchain by creating a transaction entry:  
Tn=(DNAid,Source,Timestamp,Volume)  
Step 6: Store Tn in blockchain: B=B ∪ Tn 
Step 7: Verify DNA marker at each checkpoint by extracting and analysing DNA 
DNAverify=ExtractDNA(F)  
Step 8: If DNAverify=DNAid , fuel is authentic: Authenticate(F)= Else, flag as suspicious fuel and trigger alert and  
Update blockchain with verification status. 
Step 9: Collect fuel transaction data by aggregating historical transactionsD={T1,T2,...,Tn}  
Step 10: Train deep learning model on transaction patterns 
Step 11: Detect fraud in real-time transactions 
Fraud_{score} = Predict (ML_{model}, T_n) Fraudscore=Predict(MLmodel,Tn)  
Step 12: If Fraudscore>θ (threshold), flag as fraudulent. 
Step13: Generate final traceability report , verified transactions and fraud alerts. 
Step 14: End 
 
4. RESULTS ANALYSIS AND DISCUSSION 
This section presents the results from simulation and experimental validation of proposed D-BAIT system 
integrating DNA tagging, blockchain technology and DL techniques. Effectiveness of each component is 
analysed based on major evaluation metrics like DNA marker stability, blockchain efficiency and DL model 
accuracy. Efficiency of the system is assessed by simulating real-world fuel transactions and fraud scenarios. To 
demonstrate comprehensive evaluation, several simulation parameters were defined to reproduce actual 
operational conditions. DNA tagging system was tested under diverse environmental conditions to determine its 
stability and detection accuracy. Blockchain network was experimented in terms of transaction speed, scalability 
and security, while DL model was trained and tested using a dataset of fuel transaction records to measure its 
fraud detection accuracy. The simulation attributes are provided in Table 1. 
 

Table 1: Simulation attributes 
Parameter Values 
Learning rate 0.001  
Batch size 32  
No of Layers 3 (LSTM), 4 (GNN) 
Hidden units/layer 128 (LSTM), 256 (GNN) 
Dropout rate 0.3  
Optimizer and activation function Adam , ReLU, Tanh 
Block size 512 KB 
Consensus Mechanism Proof of Authority (PoA) 
Transaction throughput 25-40 /s 
Smart contract execution time 1.2 s  
DNA Marker Concentration 10 ppm 

Detection sensitivity 97.2% 
Stability -10°C to 60°C 

 
The computing infrastructure for proposed D-BAIT design features NVIDIA A100 Tensor Core GPU (40GB 
HBM2) for deep learning model training, coupled with an Intel Xeon Platinum 8358P (32-core, 2.6 GHz) CPU 
and 256GB DDR4 ECC RAM to handle large-scale transaction processing. Blockchain network is operated on 
Ethereum (Geth v1.11) with a Proof of Authority (PoA) consensus mechanism, utilizing 5 validator nodes and 
10 observer nodes, with an average block time of 3.2 seconds and block size of 512 KB. DL models were 
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implemented using TensorFlow 2.11 and PyTorch 2.0 (CUDA 11.8), trained over 100 epochs with a batch size 
of 32, requiring approximately 4 hours on multi-GPU acceleration. Smart contracts for fuel authentication were 
executed in Solidity 0.8.19, with SHA-256 hashing for DNA marker verification and Elliptic Curve Digital 
Signature Algorithm (ECDSA) ensuring transaction security. Data storage relied on PostgreSQL 14 for fuel 
transaction metadata, BigQuery for blockchain transaction analytics and IPFS (InterPlanetary File System) for 
decentralized DNA sequence storage. Optimized system achieved 40 transactions per second (TPS) on the 
blockchain and an average smart contract execution time of 1.2 seconds, ensuring a scalable, secure, and efficient 
authentication framework for fuel traceability. Google BigQuery is utilized in this study to analyze ,query 
Ethereum transaction records containing synthetic DNA marker hashes, detect anomalies and observe 
distribution patterns in real time.  
 

Table 2: Dataset summary 
Datasets Size Samples Used in Study 
ENA (European Nucleotide Archive) Approximately 200 million sequences 15,000 
Ethereum BigQuery Over 1 billion transactions 20,000 
Elliptic Coin 203,769 transactions 10,000 
IMO-based Indigenous - 10,000 

 
For this study, we utilized four datasets covering several aspects of fuel transactions, authentication and fraud 
detection to evaluate the proposed fuel traceability system whose summary is provided in Table 2. ENA 
(European Nucleotide Archive) is a database that primarily stores nucleotide sequencing data, including DNA, 
RNA and genomic sequences. In the context of the proposed system, ENA dataset is used for fuel authentication. 
Ethereum BigQuery dataset hosted by Google BigQuery provides on-chain transaction data from the Ethereum 
blockchain. It contains blockchain records, including smart contract interactions, token transfers, gas fees and 
wallet addresses. This dataset is used in proposed D-BAIT system for analysing fuel supply chain logs, 
documenting transactions from fuel production to end-user distribution. EllipticCoin dataset contains fuel 
adulteration and investigation of unauthorizes cases, collected from regulatory agencies. Lastly, IMO based 
indigenous dataset is used to simulate maritime fuel operations, capturing real-world conditions such as fuel 
quality, consumption patterns and environmental variations.  
Synthetic DNA markers are created through computational tools and laboratory synthesis to ensure uniqueness, 
stability and secure traceability. Initially, SnapGene which is a bio informatics tool is used to design custom 
oligonucleotide sequences that are chemically stable, tamper-resistant and unique to each fuel batch. These 
sequences are then chemically synthesized in a laboratory using solid-phase phosphoramidite synthesis, where 
nucleotides are sequentially added to create precise DNA strands. These artificial markers are further 
encapsulated in silica nanoparticles to enhance their stability against heat, pressure and chemical exposure in 
fuel. Once integrated into the fuel supply, these DNA markers can be extracted and amplified using PCR for 
authentication. The extracted sequences are then verified against blockchain-stored references, ensuring tamper-
proof tracking and secure fuel authentication. Table 3 contains the sample DNA markers used in the study. 
 

Table 3: Sample DNA Markers from ENA dataset for Fuel Authentication 
Sample 
ID 

Organism Collection 
Date 

Sample Source Sequence Length 
(base pairs) 

DNA Sequence (5' → 3') 

ENA_001 Synthetic 
DNA 

2024-01-
10 

Crude Oil Refinery - Storage Tank- 
AD, UAE 

25 ATCGGCTAGCTAGGC
TAAGTCCGTA 

ENA_002 Synthetic 
DNA 

2024-01-
12 

Pipeline Injection Terminal – 
TX,US 

24 CGTTAAGGCTAGGCT
AACGGTCCAG 

ENA_003 Synthetic 
DNA 

2024-01-
15 

Oil Tanker (ID 9224283) 25 GCTAGCTTACGGAAC
CTTGGCCATT 

ENA_004 Synthetic 
DNA 

2024-01-
20 

Offshore Floating Storage (FPSO) - 
Gulf of Mexico 

26 TTACGGTCCGAATTG
CCGATCGGCT 

ENA_005 Synthetic 
DNA 

2024-01-
22 

Bunkering Terminal – Rotterdam 
Port 

25 AGCTAGGCTAACGGT
CCAGGTTACG 

ENA_006 Synthetic 
DNA 

2024-01-
25 

Marine Bunker Vessel (ID 
9704037) – Singapore Anchorage 

25 CCGTAAGCTTGGCCA
ATCGGTTGCA 
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ENA_007 Synthetic 
DNA 

2024-01-
28 

Fuel Depot – Distribution Hub 
(Houston) 

25 GGAATTGCCGATCGG
CTAGCTAAGG 

ENA_008 Synthetic 
DNA 

2024-02-
02 

Fuel Storage Facility– Sharjah 26 TTAAGGCCGATCGGC
TAGCTAGCTT 

ENA_009 Synthetic 
DNA 

2024-02-
05 

Fuel Storage facility - (Hamriyah) 25 CGGCTAACGGTCCAG
GTTACGGAAT 

ENA_010 Synthetic 
DNA 

2024-02-
12 

Crude Oil Refinery – Storage 
facility - JAFZA 

25 CTAGGCCGAATTGCC
GATCGGCTAA 

ENA_011 Synthetic 
DNA 

2024-02-
15 

Pipeline Monitoring Station - 
Terminal LA 

25 GGAATTGCCGATCGG
CTAGCTAAGG 

ENA_012 Synthetic 
DNA 

2024-02-
18 

Oil Tanker (ID 9699531) –  26 TTACGGAATTCCGGA
AGCTTACGGA 

ENA_013 Synthetic 
DNA 

2024-02-
22 

Offshore Floating Storage (FPSO) - 
North Sea 

25 CCGTAAGCTTGGCCA
ATCGGTTGCT 

ENA_014 Synthetic 
DNA 

2024-02-
25 

Bunkering Facility - Singapore 25 AGCTAGGCTAACGGT
CCAGGTTACG 

ENA_015 Synthetic 
DNA 

2024-02-
28 

Fuel Depot – European 
Distribution Hub (Rotterdam) 

26 TTAAGGCCGATCGGC
TAGCTAGCTT 

ENA_016 Synthetic 
DNA 

2024-03-
02 

Offshore floating Storage – West 
Africa 

25 CGGCTAACGGTCCAG
GTTACGGAAT 

ENA_017 Synthetic 
DNA 

2024-03-
05 

Offshore floating storage -  25 AGCTAGGTTCCGGAA
TGCTTACGGA 

ENA_018 Synthetic 
DNA 

2024-03-
12 

Crude Oil Refinery - Batch 
Certification 

25 GGAATTGCCGATCGG
CTAGCTAAGG 

ENA_019 Synthetic 
DNA 

2024-03-
15 

Marine Bunker Vessel (ID 
9726183) 

26 TTACGGAATTCCGGA
AGCTTACGGA 

ENA_020 Synthetic 
DNA 

2024-03-
18 

Fuel Depot – Reserve Storage 
(UAE) 

25 CCGTAAGCTTGGCCA
ATCGGTTGCT 

 
The process begins with selecting a unique synthetic DNA sequence which undergoes chemical synthesis in a 
laboratory, where it is encapsulated in protective materials such as silica nanoparticles or polymer coatings. This 
protection is essential as DNA is fragile and needs to withstand high temperatures, fuel chemicals and storage 
conditions without degrading. The encapsulated DNA is then added in nanogram quantities to fuel at refinery 
or supplier to ensure that every shipment / batch can be traced back to its origin. If the DNA sequence is present 
and intact, the fuel is deemed authentic and untampered. However, if the DNA is missing, degraded or altered, 
it signals potential fuel adulteration or unauthorized mixing. The verification results are then logged onto a 
permissioned blockchain, creating an immutable and tamper-proof record of the fuel’s authenticity. 
 

Table 4: Ethereuem BigQuery Dataset 
Tx_ID Sender_Wallet Receiver_Wallet Fuel_Type Quantity_MT Price_USD Timestamp 

0x3fcec 0x2821481110765 0x55cc4e75759f VLSFO 708 58155 01-01-2024 00:00 

0x5a908 0x258697cfce534 0x33635976f210d VLSFO 300 351528 01-01-2024 01:00 

0x41cc5 0x14a603f237921 0x2a8f0958916fa VLSFO 223 424705 01-01-2024 02:00 

0x1d46e 0x1dbe826de557b 0x2ca6d078beba VLSFO 286 97254 01-01-2024 03:00 

0x1d239 0x339cdc59aeda6 0x37f75b6447924 VLSFO 425 334062 01-01-2024 04:00 

0x46a11 0x332e5e5c55a0f 0x84d3072f89fd HFO 563 135981 01-01-2024 05:00 

0x5a1c9 0x284785f3c6777 0x15c6976b11244 LSMGO 448 80306 01-01-2024 06:00 

0x52a65 0x1d544e82ea9da 0x193b120b9cdb9 VLSFO 870 197718 01-01-2024 07:00 

0x1d969 0x28fd2afe632de 0x200a304615dbe LSMGO 759 358987 01-01-2024 08:00 

0x75582 0x2b92063793343 0x19a81784d0383 MGO 863 170975 01-01-2024 09:00 

0x86fca 0x1e3822b4720e1 0x337944486c887 VLSFO 502 408745 01-01-2024 10:00 

0xe27a4 0x2292ae59c1a53 0x2bca3a72eaea8 LSMGO 445 157512 01-01-2024 11:00 

0x6cf01 0x312ea56e19b4c 0x27572d35215e9 VLSFO 610 197443 01-01-2024 12:00 

0x8d178 0x18b1725ccb01e 0x14e5e10c6e7d0 LSMGO 246 423616 01-01-2024 13:00 

0xa639e 0x25301c5df4ba 0x336dfd816ddaa VLSFO 247 183121 01-01-2024 14:00 

0x348c4 0x3faa8faeb2f0 0x84e0bf26ee8b VLSFO 963 212688 01-01-2024 15:00 
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0xd0f7b 0x31f06a3af2e3b 0x2b679f7d32622 VLSFO 810 415871 01-01-2024 16:00 

0x6e9ed 0x2162227c87092 0xe6cf8007b6ca VLSFO 919 425037 01-01-2024 17:00 

0xa9593 0x143aa222c800c 0x2ceff205df87e VLSFO 588 333076 01-01-2024 18:00 

0xa0da8 0x1ac881a5cafe9 0x30457770c902a VLSFO 739 167796 01-01-2024 19:00 

0xb96ce 0x105000e7d0c79 0x1f8b5158a5f07 VLSFO 650 341999 01-01-2024 20:00 

0x40a6e 0x1eab1f49091bf 0x353aad8924509 LSMGO 437 242506 01-01-2024 21:00 

0xa6af7 0x3519671d75bae 0x20068a8718f64 MGO 971 224088 01-01-2024 22:00 

0x99738 0x19741621cbfb7 0x1a15203a83c7b VLSFO 740 319544 01-01-2024 23:00 

0x51e03 0x36f98cbca275e 0x3438f0b156c6d VLSFO 878 430002 02-01-2024 00:00 

 
Table 4 provides real-time Ethereum transaction data, which enables the system to validate smart contract 
interactions for fuel traceability. Blockchain logs can be extracted and verified for on-chain fuel transactions 
anomalies can be flagged during  fraud detection. 
 

Table 5: Elliptic BitCoin dataset 
Tx_ID Sender Receiver Transactio

n_Amount 
Fuel_ 
Type 

Time_Differen
ce_from_Last_ 
TX (mins) 

Transaction_ 
Frequency_ 
Per_Day 

Known_ 
Suspicious
_Wallet 

0xa9060 0x318101d
9dd55e 

0x2b94dd1
1b64b 

223714 VLSFO 443 48 1 

0xb7e16 0x25d8977
147511 

0xc13368b
45c0a 

65151 VLSFO 371 19 0 

0xce6c2 0x183eef48
15d88 

0x1433a53
d4e061 

494623 VLSFO 470 4 0 

0x7dff7 0x37d92eb
0096bf 

0x368483fe
a1eda 

116690 LSMGO 375 35 1 

0xac9e3 0x33a4d7d
668bb0 

0x2a64441
b0be27 

54499 VLSFO 22 64 0 

0x6b6d4 0x13295e1
3df4ae 

0x2d61fe78
1041f 

56295 HFO 238 49 1 

0xb430c 0x2b134a4
68ccc4 

0x385993d
93c51 

433029 VLSFO 158 17 1 

0x1ea92 0x8c442d8
cc5fe 

0x1c3e402c
78bda 

438215 VLSFO 38 44 0 

0x2d9b6 0x2ffa6f49
0ddc7 

0xdd9e5b2
e3313 

371184 LSMGO 230 92 1 

0xab66d 0x2f3d4e6e
1e6fb 

0x2fd7348
31e700 

324327 VLSFO 365 30 0 

0x3562b 0x2736792
3e561 

0x1d97c09
295d0d 

472515 VLSFO 51 93 1 

0x980e4 0x2f0d3a46
e92f4 

0x3798cc3
d9223b 

193946 VLSFO 438 46 1 

0x7b06f 0x34e8b47
ecc7e2 

0x2f5f2b19
8266c 

428480 HFO 264 6 0 

0xd8812 0x12fb270
054948 

0x2c933ecb
5ccb9 

82711 VLSFO 283 99 1 

0x5cd74 0x17cd55ec
f682c 

0x1d2d1d1
de24b3 

317683 VLSFO 27 37 1 

0xaa871 0x2f02fa67
ce40f 

0x1e0756b
32f130 

234423 VLLSFO 226 24 1 

0x6b31b 0x19cb3c3e
fe875 

0x37e0cea4
91aa9 

229426 LSMGO 277 93 1 

0x36c64 0x2554ef6d
b9e87 

0x3b5e439
3b8f 

438207 LSMGO 286 46 1 

0x64cf6 0x851d914
907f2 

0x6a39965
16757 

183629 MGO 97 53 0 
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0x7909e 0x2019b5f
5894ac 

0x3008657
642cc9 

350504 LSMGO 284 95 1 

0xb07f6 0x151cc0f4
b2a43 

0x23358e7
1a4740 

263090 VLSFO 367 99 0 

0x913df 0x2999f0d
00848e 

0x11f4e51c
bd5ef 

183272 VLSFO 448 60 1 

0xe7631 0x2f27fa39
bc2e4 

0x211093f
07f8a5 

293548 VLSFO 481 97 0 

0x8cd36 0x718195e
394a5 

0x2c0f24ce
3340e 

228047 VLSFO 453 63 0 

0x915b2 0x199adcc1
35c18 

0x22fee649
3ed41 

333501 LSMGO 317 85 1 

 
Table 5 presents a sample of Elliptic dataset which is used for analysing blockchain transaction patterns to detect 
fraudulent activities. Labelled Bitcoin transactions enables deep learning models to identify suspicious fuel-
related payments. 
 

Table 6: IMO fuel sample indigenous dataset 
Tx_ID Vsl ID  Fuel_T

ype 
Supplie
r 

Port_Loca
tion 

Transaction_A
mount (BTC) 

Bunker_Qua
ntity (MT) 

Sulfur_Con
tent (%) 

Density 
(kg/m³) 

Sulfur 
Cap 
(2020) 

TXN_1001 9876343 VLSFO ATT UAE 3.2 150 0.49 900 0.5 
TXN_1002 9235567 VLSFO BHG Netherlan

ds 
5.5 200 0.50 877 0.5 

TXN_1003 9678901 HFO Minerv
a 

UAE 2.1 100 3.01 809 0.5 

TXN_1004 9456781 LSMG
O 

CMB China 4.0 180 0.09 868 0.1 

TXN_1005 9547210 VLSFO Chevro
n 

Singapore 6.8 220 0.47 899 0.5 

TXN_1006 9167890 VLSFO BP Netherlan
ds 

3.9 210 0.49 833 0.5 

TXN_1007 9895123 LSMG
O 

BP USA 2.4 170 0.09 863 0.1 

TXN_1008 9901234 VLSFO BP Singapore 5.2 190 0.49 937 0.5 
TXN_1009 9012745 VLSFO Shell USA 3.1 140 0.52 946 0.5 
TXN_1010 9237890 LSMG

O 
BP China 4.7 130 0.1 871 0.1 

TXN_1011 9345378 VLSFO Total UAE 6.5 230 0.49 895 0.5 
TXN_1012 9456089 VLSFO BP China 3.8 175 0.52 800 0.5 
TXN_1013 9567491 LSMG

O 
BP UAE 2.0 120 0.08 868 0.1 

TXN_1014 9678902 VLSFO Shell USA 4.1 165 0.51 891 0.5 
TXN_1015 9719012 LSMG

O 
WFS USA 5.6 155 0.1 815 0.1 

TXN_1016 9890124 VLSFO PBT Netherlan
ds 

3.7 200 0.46 882 0.5 

TXN_1017 9901235 VLSFO Chevro
n 

USA 2.9 190 0.47 879 0.5 

TXN_1018 9012346 LSMG
O 

PBT Netherlan
ds 

4.3 180 0.11 827 0.1 

TXN_1019 9237801 VLSFO ATT UAE 5.9 225 0.48 927 0.5 
TXN_1020 9345619 LSMG

O 
Shell Singapore 3.4 145 0.09 859 0.1 

TXN_1021 9450780 VLSFO GAC Netherlan
ds 

2.7 135 0.46 883 0.5 

TXN_1022 9567812 LSMG
O 

Unkno
wn 

UAE 6.2 240 0.1 844 0.1 

TXN_1023 9678903 VLFO Unkno
wn 

USA 3.5 185 0.50 939 0.5 

TXN_1024 9789013 LSMG
O 

Unkno
wn 

USA 4.8 195 0.08 859 0.1 
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TXN_1025 9890125 VLSFO Tresta UAE 6.1 210 0.49 962 0.5 

 
Table 6 dataset consists of vessel-specific fuel sample records and regulatory compliance data from diverse 
suppliers across globe. It ensures adherence to maritime fuel standards and provides critical insights into their 
origin, sulfur content and density. The information is critical for ensuring compliance with IMO 2020 
regulations, which limit sulfur emissions from marine fuels. Utilization of dataset enables D-BAIT traceability 
model to help in detecting potential fuel adulteration and fraud in supply chain. 
 

 
Figure 2: Daily fuel volume trend over time 

 
Figure 2 represents the fluctuations in fuel transactions recorded on blockchain and captures variations in total 
fuel volume for each transaction date, this observation helps us to identify patterns, anomalies and seasonal 
trends in oceanic fuel consumption. 

 
Figure 3: DNA authentication Vs Fuel volume 

 
Illustration in Figure 3 correlates between DNA authentication match rates and fuel volume. DNA match rate 
represents the degree of alignment between synthetic DNA marker in the fuel sample and reference database, 
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ensuring fuel authenticity. Fuel volume indicates the quantity of fuel associated with each transaction. This 
analysis helps in identification of authentication trends and anomalies in the dataset. Heatmap in Figure 4 
illustrates the connection between key parameters in our proposed D-BAIT system. A correlation value of 1.0 
(red) indicates a perfect positive correlation, while 0.0 (blue) suggests no correlation. These results reveal minimal 
correlation among these variables, suggesting that fuel authentication, blockchain verification and anomaly 
detection operate independently within the system. 
 

 
Figure 4: Correlation heatmap 

 

 
Figure 5: GNN Attention weights heatmap 

 
Figure 5 provides the heatmap visualization of attention weights of GNN component applied to fuel traceability 
data. This mechanism assigns varying importance to various nodes in the fuel transaction graph, thereby helping 
the model focus on critical relationships like suspicious transactions or high-risk entities. Higher weights marked 
in red indicate stronger relationships, whereas lower weights signify less impactful influences. 
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Figure 6: LSTM predictions Vs Actual Anomalies 

 
This graph in Figure 6 compares LSTM-based anomaly predictions with actual detected anomalies in fuel 
transactions over time. Anomaly score indicates the likelihood of a transaction being fraudulent or irregular, 
with values closer to 1.0 suggesting higher suspicion. The proposed model's accuracy in detecting anomalies is 
visualized through this alignment of predicted and actual points. 
 

 
Figure 7: BigQuery interface for Blockchain based transaction verification 

 
Interface in Figure 7 displays the web-based blockchain query interface to track and verify fuel transactions. 
BigQuery's SQL-based data retrieval enables our proposed D-BAIT Fuel Traceability system to query for results 
like fuel transactions, validation of authenticity and displaying real-time status. 
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Figure 8:Audit Log 

 
Audit log in Figure 8 captures user actions related to fuel transaction verification. Each entry records the 
timestamp, user ID, action performed, transaction details, verification status and remarks. This log ensures 
transparency, accountability and security in blockchain-based fuel authentication. 
 

 
Figure 9 : Smart contracts Execution 

 
Figure 9 represents the compilation and execution process of smart contract used in our proposed D-BAIT fuel 
traceability system. Solidity source code, compiled EVM bytecode and the disassembled opcodes are provided. 
Interactive interface enables users to view specific bytecode segments for functions like transaction verification 
and fraud detection. 
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Figure 10: Smart Contract evaluation metrics output 

 
This section presents chief evaluation metrics used to assess the performance, security and efficiency of our smart 
contract deployed. Metrics such as gas consumption, execution time, storage efficiency and security audits ensure 
that contract operates reliably on the Ethereum blockchain. 
 

 
Figure 11: Blockchain performance Analysis 

 
Figure 11 illustrates the performance of our proposed blockchain network used in D-BAIT Fuel Traceability 
System. Performance has been assessed in terms of transactions per second (TPS) across various transactions. It 
highlights variations in blockchain processing speed over time. 
 

Table 7: Performance Comparison Table 
Model MAE  RMSE  Precision  Recall  F1-Score  AUC-ROC 
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Proposed D-BAIT (DNA+LSTM +GNN+ 
Blockchain ) 

0.08 0.12 0.95 0.94 0.94 0.98 

Li et al., 2022(Gradient Tree Boosting & XGBoost) 0.11 0.18 0.88 0.85 0.86 0.90 
Parekh et al., 2024(Federated Learning with ANN) 0.10 0.15 0.89 0.90 0.89 0.92 
Netto et al., 2020(Graph Neural Networks) 0.09 0.14 0.92 0.88 0.90 0.93 

 
Table 7 compares the proposed D-BAIT model integrating DNA tagging, LSTM, GNN and Blockchain against 
existing methods. The analysis chart is provided in Figure 12. 

 
Figure 12: Performance Analysis of proposed D-BAIT model 

 

 
Figure 13: AUC-ROC Analysis 

 
The evaluation is based on key error, classification and ranking metrics. D-BAIT has the lowest MAE (0.08) and 
RMSE (0.12), indicating the most accurate predictions. Other models, such as Li et al (2002) have higher MAE 
(0.11) and RMSE (0.18), meaning they produce larger errors in anomaly detection. D-BAIT achieves the highest 
precision 95%, meaning fewer false positives, while Gradient Tree Boosting (0.88) and Federated ANN (0.89) 
are slightly less accurate in distinguishing fraudulent from authorized transactions. Proposed model achieves the 
highest AUC-ROC (0.98), indicating superior fraud detection capability. Li et al. (0.90) and Parekh et al. (0.92) 
show slightly weaker results compared to D-BAIT.AUC-ROC curve is provided in Figure 13. Our integrated 
model ensures highly secure and transparent fuel traceability. It prevents fraudulent activities such as fuel 
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dilution or illegal blending, as any modification to the fuel would disrupt the DNA signature. This approach 
makes fuel tracking scientifically verifiable, automated, and resistant to counterfeiting, offering a ground-
breaking solution for global fuel authentication and regulatory compliance. 
 
5. CONCLUSION 
Our proposed research represents a significant step forward in addressing the longstanding challenges of fuel 
adulteration and fraud, paving the way for a more secure and sustainable maritime industry. D-BAIT model 
outperforms existing methods in traceability and fraud detection by leveraging a multi-layered AI and blockchain-
based approach. The results demonstrate Lowest error rates (MAE: 0.08, RMSE: 0.12) and highly accurate 
predictions. 
Highest classification performance (Precision: 0.95, Recall: 0.94, F1-Score: 0.94), ensuring minimal false positives 
and negatives. Superior fraud detection ability (AUC-ROC: 0.98), proving the model’s robustness in identifying 
suspicious transactions. While LSTM enhances sequential anomaly detection, GNN captures complex 
relationships in fuel transactions and blockchain ensures data integrity and tamper-proof records. Future work 
aims at scalability enhancements and cross-chain interoperability issues. 
 
List of Acronyms 
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LSTM  - Long Short-Term Memory  
MAE  - Mean Absolute Error  
LSMGO - Low Sulfur Marine Gas Oil  
NGS  - Next-Generation Sequencing  
PCR  - Polymerase Chain Reaction  
PoA  - Proof of Authority  
RMSE  - Root Mean Squared Error  
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