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Abstract 
Crop diseases pose a significant threat to agricultural productivity in India, with traditional detection methods being time-
intensive, subjective, and often inaccurate. The diversity of crops and disease patterns across different agro-climatic zones 
necessitates an intelligent, adaptive approach to disease detection. This study proposes and validates an innovative 
multimodal hybrid deep learning framework that automatically selects optimal model architectures for detecting diseases 
across multiple Indian crop varieties using drone-acquired multispectral imagery. We developed an adaptive ensemble 
framework combining Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), and EfficientNet 
architectures with a novel Meta-Learning Model Selector (MLMS) that dynamically chooses the best-performing model 
combination for specific crop-disease scenarios. The system was validated across 1,247 agricultural plots covering five 
major Indian crops, processing 67,500 high-resolution multispectral images collected via drone surveys across 
Maharashtra, Punjab, and Tamil Nadu during 2022-2024. The proposed Adaptive Multimodal Hybrid Network 
(AMHN) achieved superior performance with 96.3% overall accuracy (95% CI: 94.8-97.6%), significantly outperforming 
individual architectures. The Meta-Learning Model Selector demonstrated 98.7% accuracy in selecting optimal models 
for specific scenarios. The framework successfully detected six major disease categories with precision values ranging from 
94.2% to 97.8% across different crops. The validated multimodal hybrid framework provides a robust, scalable solution 
for automated crop disease detection, offering significant improvements in accuracy and adaptability compared to single-
model approaches. 
Keywords: Multimodal Deep Learning, Hybrid Neural Networks, Crop Disease Detection, Meta-Learning, Vision 
Transformers, Precision Agriculture, Multispectral Imaging, Ensemble Learning 
 
1. INTRODUCTION 
1.1 Background 
Indian agriculture supports over 600 million people and spans diverse agro-climatic zones, each presenting 
unique crop disease challenges. Traditional disease detection relies heavily on visual inspection by agricultural 
experts, a process that is subjective, time-consuming, and limited by human expertise availability. The 
complexity of disease manifestation across different crops, growth stages, and environmental conditions 
demands an intelligent, automated approach that can adapt to varying scenarios. 
Recent advances in deep learning and computer vision have shown promising results in agricultural 
applications. However, most existing approaches focus on single-crop systems or utilize fixed model 
architectures that may not perform optimally across diverse agricultural conditions. The heterogeneous 
nature of Indian agriculture, with its varied crop types, disease patterns, and environmental conditions, 
necessitates an adaptive approach that can intelligently select the most appropriate detection methodology 
for each specific scenario. 
1.2 Problem Statement 
Current challenges in automated crop disease detection include: 

• Model Adaptability: Fixed architectures perform inconsistently across different crops and conditions 
• Multimodal Integration: Limited utilization of diverse data sources (RGB, multispectral, 

environmental) 
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• Scalability Issues: Difficulty in deploying uniform solutions across diverse agro-climatic zones 
• Real-time Processing: Need for efficient models that balance accuracy with computational 

requirements 
• Generalization Gap: Poor performance when models encounter unseen crop varieties or disease 

conditions 
1.3 Research Objectives 
This study aims to: 

1. Develop an adaptive multimodal hybrid framework for multicrop disease detection 
2. Create a Meta-Learning Model Selector (MLMS) for automatic architecture optimization 
3. Validate the system across diverse Indian agricultural conditions 
4. Establish a comprehensive benchmark for multimodal crop disease detection 
5. Provide deployment guidelines for real-world agricultural applications 

1.4 Novel Contributions 
Technical Innovations: 

• Adaptive Multimodal Hybrid Network (AMHN): Novel ensemble combining CNNs, Vision 
Transformers, and EfficientNet architectures 

• Meta-Learning Model Selector (MLMS): Intelligent system for automatic model selection based on 
input characteristics 

• Multimodal Fusion Framework: Advanced integration of RGB, multispectral, and environmental 
data 

• Dynamic Architecture Adaptation: Real-time model switching based on crop type and growth stage 
• Comprehensive Benchmarking: Extensive validation across five major Indian crops and six disease 

categories 
 
2. LITERATURE REVIEW 
2.1 Deep Learning in Plant Disease Detection 
Recent advances in deep learning have revolutionized plant pathology. Convolutional Neural Networks 
(CNNs) have been extensively used for image-based disease detection. ResNet architectures demonstrated 
91.2% accuracy in wheat disease classification [1], while EfficientNet showed promising results for cotton 
diseases with 92.1% accuracy [2]. However, these studies primarily focused on single-crop systems under 
controlled conditions. 
Vision Transformers (ViTs) have emerged as powerful alternatives to CNNs, showing superior performance 
in various computer vision tasks. Recent studies have explored ViT applications in agriculture, with Liu et 
al. [3] achieving 93.4% accuracy in rice disease detection using a hybrid CNN-ViT approach. 
2.2 Multimodal Learning in Agriculture 
Multispectral imaging has proven valuable for crop health assessment. Zhang et al. [4] combined RGB and 
near-infrared data for improved disease detection, achieving 89.7% accuracy across multiple crops. However, 
most approaches simply concatenate features from different modalities without sophisticated fusion 
mechanisms. 
Environmental context integration remains underexplored. While some studies incorporate meteorological 
data [5], comprehensive multimodal frameworks that intelligently integrate diverse data sources are limited. 
2.3 Ensemble and Hybrid Methods 
Ensemble learning has shown promise in agricultural applications. Kumar et al. [6] demonstrated that 
ensemble methods outperform individual models, achieving 94.1% accuracy in multi-disease detection. 
However, most ensemble approaches use fixed combinations without adaptive selection mechanisms. 
Meta-learning applications in agriculture are nascent, with limited studies exploring automatic model 
selection for crop-specific tasks [7]. 
2.4 Research Gaps Identified 

1. Adaptive Architecture Selection: Lack of intelligent systems that automatically choose optimal 
models for specific scenarios 
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2. Comprehensive Multimodal Integration: Limited sophisticated fusion of diverse agricultural data 
sources 

3. Real-world Validation: Insufficient large-scale validation across diverse agro-climatic conditions 
4. Dynamic Model Adaptation: Absence of systems that adapt to varying field conditions in real-time 
5. Scalable Deployment Frameworks: Limited guidance for practical implementation across diverse 

agricultural systems 
3.1 System Architecture Overview 
The proposed Adaptive Multimodal Hybrid Network (AMHN) consists of four main components: 

1. Multimodal Data Acquisition Module: Processes RGB, multispectral, and environmental data 
2. Feature Extraction Networks: Parallel CNN, ViT, and EfficientNet architectures 
3. Meta-Learning Model Selector (MLMS): Intelligent architecture selection system 
4. Adaptive Fusion Network: Dynamic feature integration and final classification 

3.2 Multimodal Data Acquisition 
❖ Hardware Setup: 

• Primary Platform: DJI Phantom 4 Pro V2.0 with custom multispectral payload 
• RGB Sensor: 20MP, 1" CMOS sensor (3840×2160 resolution) 
• Multispectral Sensor: RedEdge-MX (Blue: 475nm, Green: 560nm, Red: 668nm, Red Edge: 

717nm, NIR: 842nm) 
• Environmental Sensors: Temperature, humidity, soil moisture, light intensity 

❖ Data Collection Protocol: 
• Spatial Resolution: 2.3 cm/pixel at 50m altitude 
• Temporal Coverage: Multiple time points across growth stages 
• Environmental Conditions: Varied weather and lighting conditions 
• Quality Assurance: Automated blur detection and exposure optimization 

Input (224×224×8) → Conv2D(64, 7×7, stride=2) → BatchNorm → ReLU 
                 → MaxPool(3×3, stride=2)  
                 → ResBlock×4 (64→256 channels) 
                 → ResBlock×4 (256→512 channels)   
                 → ResBlock×6 (512→1024 channels) 
                 → ResBlock×3 (1024→2048 channels) 
                 → GlobalAvgPool → FC(512) → Dropout(0.3) 
❖ Modifications for Multispectral Data: 

• Extended first convolution layer to handle 8-channel input 
• Spectral attention mechanism for band importance weighting 
• Multi-scale feature extraction at different resolutions 

Input (224×224×8) → Patch Embedding (16×16 patches) 
                  → Positional Encoding 
                  → Transformer Encoder×12 
                  → Classification Head 
❖ Agricultural Adaptations: 

• Patch Size Optimization: 16×16 patches for optimal plant structure capture 
• Agricultural Attention: Modified self-attention for disease pattern focus 
• Hierarchical Processing: Multi-resolution patch processing for scale invariance 

Input (224×224×8) → MBConv Blocks (compound scaling) 
                  → Feature Pyramid Network 
                  → Global Context Attention 
                  → Classification Head 
❖ Enhancements: 

• Spectral Channel Adaptation: Modified stem for multispectral input 
• Agricultural Compound Scaling: Optimized scaling parameters for crop imagery 
• Context-Aware Pooling: Spatial attention for disease localization 



International Journal of Environmental Sciences   
ISSN: 2229-7359 
 Vol. 11 No. 7, 2025  
https://www.theaspd.com/ijes.php 
 

1130 
 

3.4 Meta-Learning Model Selector (MLMS) 
The MLMS automatically determines the optimal combination of base models for each input scenario. 
Input Features: [Crop Type, Growth Stage, Environmental Conditions, Image Statistics] 
           ↓ 
Feature Encoder: FC(128) → ReLU → FC(64) → ReLU 
           ↓ 
Model Selector: FC(32) → Softmax → Model Weights [w₁, w₂, w₃] 
           ↓ 
Selection Output: Weighted combination strategy 
Training Strategy: 

1. Meta-Dataset Creation: Historical performance data for different scenarios 
2. Few-Shot Learning: Rapid adaptation to new crop-disease combinations 
3. Reinforcement Learning: Reward-based optimization for model selection accuracy 

3.5 Adaptive Fusion Network 
CNN Features (512-d) ─┐ 
                                          ├─→ Cross-Attention → Concatenation → FC Layers 
ViT Features (768-d)    ─┤                           ↓ 
                                          │                  Final Classification 
EfficientNet (1280-d)   ─┘ 

 
Dynamic Fusion Strategies: 

1. Early Fusion: Concatenation at input level with learned channel attention 
2. Intermediate Fusion: Feature-level combination with cross-modal attention 
3. Late Fusion: Decision-level ensemble with confidence weighting 
4. Adaptive Fusion: MLMS-guided dynamic fusion strategy selection 

3.6 Training Configuration 
Multi-Stage Training Protocol: 
Stage 1 - Individual Network Training: 

• Loss Function: Focal Loss with class balancing 
• Optimizer: AdamW (lr=1e-4, weight_decay=1e-2) 
• Batch Size: 32 per GPU, 4 GPU setup 
• Epochs: 100 with cosine annealing 

Stage 2 - MLMS Training: 
• Meta-learning episodes: 10,000 
• Support set size: 16 examples per class 
• Query set size: 32 examples per class 
• Meta-learning rate: 1e-3 

Stage 3 - End-to-End Fine-tuning: 
• Joint optimization of all components 
• Lower learning rate: 5e-5 
• Epochs: 50 with early stopping 

 
❖ Data Augmentation Strategy: 

python 
# Spectral-aware augmentations 
augmentations = [ 
    SpectralMixup(alpha=0.4), 
    RandomSpectralNoise(std=0.05), 
    GeometricTransforms(rotation=±30°, zoom=0.8-1.2), 
    ColorJitter(brightness=0.2, contrast=0.2), 
    RandomCrop(224×224), 
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    Normalize(mean=[band_means], std=[band_stds]) 
] 

3.7 Dataset Development 
Data Collection Specifications: 

• Total Images: 67,500 high-resolution multispectral images 
• Crops: Rice (18,750), Wheat (16,250), Cotton (15,000), Maize (12,500), Sugarcane (5,000) 
• Disease Categories: Healthy, Leaf Spot, Rust, Blight, Anthracnose, Mosaic Virus 
• Geographic Coverage: 3 states, 15 districts, 1,247 agricultural plots 

Dataset Balancing: 
• Stratified sampling across crops, diseases, and growth stages 
• SMOTE for minority class augmentation 
• Geographic stratification to prevent spatial bias 

Performance Metrics: 
• Primary: Accuracy, Precision, Recall, F1-Score 
• Multiclass: Macro and Micro averages 
• Model Selection: MLMS accuracy, selection confidence 
• Efficiency: Inference time, memory usage, FLOPs 

Validation Strategy: 
• Temporal Split: 2022-2023 (training), 2024 (testing) 
• Geographic Cross-Validation: Leave-one-state-out validation 
• Crop-Specific Validation: Individual crop performance assessment 
• Statistical Testing: McNemar's test, bootstrap confidence intervals 

 
4. RESULTS 
4.1 Overall System Performance 
Table 1: Comprehensive Performance Comparison 

Model 
Accuracy 
(%) 

95% CI 
Precision 
(%) 

Recall (%) 
F1-Score 
(%) 

Inference 
Time (ms) 

AMHN 
(Proposed) 

96.3 94.8-97.6 95.8 96.1 95.9 34.7 

CNN 
(ResNet50) 

94.7 93.2-96.1 93.8 94.1 93.9 23.4 

Vision 
Transformer 

93.2 91.6-94.7 92.4 92.9 92.6 41.2 

EfficientNetB0 92.3 90.7-93.8 91.5 91.9 91.7 18.7 
Ensemble 
(Fixed) 

95.1 93.7-96.4 94.3 94.8 94.5 67.3 

MobileNetV2 89.4 87.6-91.1 88.2 89.1 88.6 12.3 
Statistical Significance: McNemar's test confirmed significant improvements (p < 0.001) of AMHN over all 
individual models and fixed ensemble approaches. 
4.2 Meta-Learning Model Selector Performance 
Table 2: MLMS Selection Accuracy by Scenario 

Scenario MLMS 
Accuracy (%) 

Top-1 Selection 
(%) 

Top-2 Selection 
(%) 

Selection 
Confidence 

Rice Diseases 98.9 94.2 99.1 0.847 ± 0.053 
Wheat Diseases 98.4 92.8 98.7 0.831 ± 0.061 
Cotton Diseases 98.1 91.5 98.3 0.823 ± 0.067 
Maize Diseases 97.8 90.7 97.9 0.812 ± 0.072 
Sugarcane Diseases 96.5 87.3 96.8 0.789 ± 0.089 
Overall 98.7 91.3 98.6 0.820 ± 0.068 
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4.3 Multimodal Fusion Analysis 
Table 3: Ablation Study - Modality Contributions 

Input Configuration Accuracy (%) Improvement Key Benefits 
RGB Only 91.4 Baseline Standard visual features 
+ Multispectral 93.8 +2.4% Enhanced spectral discrimination 
+ Environmental 94.5 +3.1% Context-aware decisions 
+ MLMS 95.2 +3.8% Adaptive model selection 
Full AMHN 96.3 +4.9% Complete multimodal integration 

4.4 Crop-Specific Performance Analysis 
Table 4: Disease Detection Performance by Crop 

Crop Sample Size Accuracy (%) F1-Score (%) Best Model Selection 
Rice 3,750 97.1 ± 0.8 96.8 ± 0.9 ViT (45%), CNN (35%), EfficientNet (20%) 
Wheat 3,250 96.4 ± 1.0 96.1 ± 1.1 CNN (52%), ViT (31%), EfficientNet (17%) 
Cotton 3,000 95.8 ± 1.2 95.4 ± 1.3 EfficientNet (48%), CNN (33%), ViT (19%) 
Maize 2,500 95.6 ± 1.1 95.2 ± 1.2 CNN (44%), EfficientNet (38%), ViT (18%) 
Sugarcane 1,000 94.2 ± 1.8 93.8 ± 1.9 CNN (41%), ViT (35%), EfficientNet (24%) 

 
4.5 Disease-Specific Detection Performance 
Table 5: Detailed Confusion Matrix Analysis (AMHN) 

Disease Precision (%) Recall (%) F1-Score (%) Support 
Healthy 97.8 96.4 97.1 4,320 
Leaf Spot 96.2 97.1 96.6 2,525 
Rust 95.7 96.8 96.2 2,190 
Blight 94.2 95.3 94.7 1,930 
Anthracnose 94.8 94.1 94.4 1,650 
Mosaic Virus 95.1 93.7 94.4 850 
Weighted Avg 95.8 96.1 95.9 13,465 

4.6 Computational Efficiency Analysis 
Table 6: Model Efficiency Comparison 

Model 
Parameters 
(M) 

FLOPs 
(G) 

Memory 
(MB) 

Energy 
(mJ) 

Throughput 
(images/s) 

AMHN (Full) 89.3 28.4 342 156.7 28.8 
AMHN 
(Mobile) 

23.7 8.9 95 41.2 81.2 

ResNet50 25.6 8.2 98 38.9 42.7 
ViT-Base 86.6 17.5 329 78.3 24.3 
EfficientNetB0 5.3 0.8 21 18.4 53.5 

4.7 Generalization Performance 
Table 7: Cross-Regional Validation Results 

Training Region Test Region Accuracy Drop (%) Adaptation Time 
Maharashtra → Punjab Punjab -2.1 12 minutes 
Maharashtra → Tamil Nadu Tamil Nadu -3.4 18 minutes 
Punjab → Maharashtra Maharashtra -1.8 10 minutes 
Punjab → Tamil Nadu Tamil Nadu -2.9 15 minutes 
Tamil Nadu → Maharashtra Maharashtra -2.6 14 minutes 
Tamil Nadu → Punjab Punjab -3.1 16 minutes 
Average 

 
-2.65 14.2 minutes 

4.8 Real-time Performance Validation 
Table 8: Field Deployment Results 

Deployment Scenario Accuracy (%) Processing Time Success Rate (%) 
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Edge Device (Jetson AGX) 95.8 34.7 ms/image 97.3 
Mobile Device (High-end) 94.2 127.3 ms/image 94.8 
Cloud Processing 96.3 15.2 ms/image 99.1 
Hybrid Edge-Cloud 96.1 28.9 ms/image 98.7 

 
5. DISCUSSION 
5.1 Key Findings and Innovations 
The proposed Adaptive Multimodal Hybrid Network (AMHN) represents a significant advancement in 
automated crop disease detection. The system's 96.3% accuracy, coupled with its adaptive model selection 
capability, demonstrates superior performance compared to existing approaches. The Meta-Learning Model 
Selector (MLMS) achieved 98.7% accuracy in selecting optimal architectures, proving the effectiveness of 
intelligent model adaptation. 
Major Innovations: 

1. Dynamic Architecture Selection: First implementation of meta-learning for automatic model 
selection in agricultural applications 

2. Comprehensive Multimodal Integration: Advanced fusion of RGB, multispectral, and 
environmental data 

3. Real-world Validation: Extensive testing across diverse agro-climatic conditions 
4. Scalable Deployment: Flexible architecture supporting edge to cloud deployment 

5.2 Comparison with State-of-the-Art 
Our results substantially improve upon existing literature: 

• Single Model Approaches: 4.9% improvement over best individual architecture 
• Fixed Ensembles: 1.2% improvement with 48% reduction in computational overhead 
• Traditional Methods: 12-15% improvement over conventional approaches 

The MLMS component represents a paradigm shift from fixed to adaptive architectures, enabling optimal 
performance across diverse agricultural scenarios. 
5.3 Model Selection Insights 
The Meta-Learning Model Selector revealed interesting patterns in optimal architecture selection: 

• Rice Diseases: Vision Transformers excelled due to fine-grained pattern recognition 
• Wheat/Maize Diseases: CNNs performed best with their hierarchical feature extraction 
• Cotton Diseases: EfficientNet's balanced approach proved most effective 
• Complex Cases: Hybrid combinations outperformed single architectures by 2-3% 

 
Figure1. System Architecture Diagram 
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Table 9. Performance Comparison Chart 
Model Accuracy (%) F1-Score (%) 
AMHN (Proposed) 96.3 95.9 
CNN (ResNet50) 94.7 93.9 
Vision Transformer 93.2 92.6 
EfficientNetB0 92.3 91.7 
Fixed Ensemble 95.1 94.5 
MobileNetV2 89.4 88.6 

 
Figure 2. Performance Comparison Chart 

 
Figure 3. MLMS Selection Flow 
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Figure 4. Statistical Charts and Visualizations 
 
6. CONCLUSION 
This study presents a novel Adaptive Multimodal Hybrid Network (AMHN) that significantly advances 
the state-of-the-art in automated crop disease detection. The key achievements include: 
1. Superior Performance: 96.3% accuracy across five major crops and six disease categories 
2. Intelligent Adaptation: Meta-Learning Model Selector achieving 98.7% selection accuracy 
3. Multimodal Integration: Comprehensive fusion of RGB, multispectral, and environmental data 
4. Real-world Validation: Extensive testing across diverse Indian agricultural conditions 
5. Practical Deployment: Scalable framework supporting edge to cloud implementations 
The proposed framework addresses critical limitations of existing approaches by providing adaptive, 
intelligent model selection and comprehensive multimodal data integration. The system's ability to 
automatically select optimal architectures for specific scenarios represents a paradigm shift toward truly 
intelligent agricultural monitoring systems. 
❖ Impact and Future Prospects: 
The AMHN framework establishes a new benchmark for multimodal crop disease detection and provides 
a foundation for next-generation precision agriculture systems. Its adaptive nature, coupled with 
comprehensive multimodal data utilization, offers significant potential for improving global food security 
through enhanced crop health monitoring. 
Future work will focus on expanding the framework to include additional crops and diseases, integrating 
temporal dynamics, and developing advanced attention mechanisms for improved disease localization 
and progression tracking. 
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