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Abstract:  

Road safety experts confirm driver fatigue as a major factor that leads to traffic accidents which results in deaths 
because existing fatigue detection methods operate without clear explanations of their analysis process. This paper 
investigates the fusion of Explainable Artificial Intelligence (XAI) systems into Driver Fatigue Detection Systems 
(DFDS) for Safe and Care Human Life (SCHL) purposes to boost safety levels and protect human life value. The use 
of XAI models enables AI systems to generate transparent explanations regarding their fatigue identification processes 
and resulting predictions. Decision trees and rule-based models and attention mechanisms and deep learning techniques 
are examined in this paper regarding their capabilities in predicting model outcomes. This review analyzes the technical 
capabilities of applied methods regarding their fatigue detection effect while prioritizing transparency standards needed 
for field implementation. The paper examines how different sensor data streams which include biometrics and vehicles 
Dynamics and environmental elements enhance detection precision while making the system more resilient. 
Additionally the review discusses strategies for incorporating XAI into DFDS systems as it examines future approaches 
to bridge model precision requirements with human readable explanations. This research shows how effective 
explanation systems serve as a means to boost the reliability while ensuring trustworthiness and enhancing effectiveness 
of driver fatigue detection systems for safer transportation environments.  

Keywords: Driver Fatigue Detection Systems (DFDS), Decision Trees, Safe and Care Human Life (SCHL), Deep 
Learning, eXplainable Artificial Intelligence (XAI) 

1. INTRODUCTION 

Road safety conditions have worsened because of rising transportation-related crashes sourced from 
fatigued drivers. When drivers spend too much time behind the wheel without sufficient breaks alongside 
monotonous driving situations their cognitive functions deteriorate together with reduced reaction speed 
which creates conditions for more accidents to happen [1]. The World Health Organization (WHO) 
reveals drowsiness or fatigue causes 20% of every road collision. The need for an immediate fatigue 
detection system that prevents accidents has become an essential requirement due to this dangerous 
situation. The successful solution to this issue needs a dependable driver fatigue detection system which 
operates in real-time. Current AI systems together with ML technologies allow developers to build fatigue 
detection solutions through combining multiple bodily information with behavioral indicators [2], [3]. 
Traditional driver fatigue detection AI systems face limitations when it comes to demonstrating their 
decision-making approval to the public. Although these predictive models have good accuracy in fatigue 
detection they work in an unintelligible manner because their prediction processes remain hidden. The 
inability to interpret their operation weakens public trust and hinders actual use because transparency 
becomes essential for reliable systems [4]. The solution to this issue has materialized through Explainable 
Artificial Intelligence (XAI). The XAI framework improves machine learning systems through the 
generation of predictive models which deliver accurate results alongside easy-understandable explanations 
about the decision-making process [5]. 
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The system requires complete transparency most especially when used in safety-critical environments such 
as driver fatigue detection. Figure 1 illustrates the overall effectiveness and limitations of the AI 
framework. 

Figure 1: The potential and challenges of AI 

This review analyzes how XAI systems can enhance driver fatigue detection methods for creating better 
safety conditions and improved well-being for drivers while exploring different approaches towards 
achieving this goal. These systems gain the ability to notify drivers about fatigue as well as disclose 
information regarding the motivation behind detecting particular actions indicating fatigue through XAI 
integration. Through these measures all stakeholders can depend on system alerts because they obtain 
transparent explanations from the system that support their decisions about interventions. The study 
assesses multiple XAI approaches along with their performance in aiding decision systems which results 
in Safe and Care Human Life (SCHL) advancement. The inclusion of XAI functions into fatigue 
detection systems would increase public confidence in AI safety technologies thus leading to their better 
adoption in real-world operational environments [6], [7]. 

The detection of driver fatigue before has employed driving behavioral patterns together with eye tracking 
measurements along with assessing physiological signals. These methods showed initial value but they 
cannot scale up for broad implementation because they have persistent precision and scalability 
drawbacks. Machine learning-based fatigue detection systems with their traditional approach fail to deliver 
explanation of their prediction procedures so users develop mistrust in the system. The stopping of 
important information from users about how these technologies work becomes an obstacle to their 
widespread implementation [8], [9]. 

XAI solves this problem by offering transparent descriptions about how decisions regarding fatigue 
detection are made. An XAI-based system demonstrates through explanations what features led to fatigue 
detection along with the reason why specific interventions are recommended. The immediate display of 
information is essential for users to build confidence especially when operating time-sensitive applications 
that need high reliability from users [10]. 

The implementation of XAI within driving fatigue systems will result in effective and trustworthy 
monitoring capabilities. Systems with XAI enhancements show users how fatigue alerts are processed so 
drivers together with safety authorities can perform the best preventive responses. The expansion of 
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autonomous vehicles as a market highlights the necessity to use explainable AI during monitoring of 
human and automated driving activities particularly in extended periods of monotonous driving tasks. 

The study investigates XAI technology applications to develop a dependable fatigue detection system with 
clear explanations which meets the requirements of Safe and Care Human Life (SCHL) applications. XAI 
when partnered with advanced driver fatigue detection systems produces technology which performs 
accurate fatigue detection and reveals fatigue causes for improved decision-making processes. The 
implementation of XAI-based fatigue detection systems faces difficulties between maintenance of system 
complexity and interpretability as well as requirements for real-time processing. 

The review evaluates XAI applications for transportation to offer a promising improvement in road safety 
and weariness accident prevention and traffic system-based driver and passenger protection. XAI serves 
as a necessary element to upgrade driver fatigue detection systems toward more dependable transparent 
operation which leads to enhanced road safety performance. 

2. CURRENT STATE OF EXPLAINABLE AI (XAI) 

For ethical, legal, and safety considerations, it is crucial to explain the outcomes of machine learning (ML) 
models when using AI algorithms in fields such as healthcare, credit scoring, loan approval, and others 
[11]. While there are several reasons why XAI is important, research indicates that the three main issues 
are as follows: 1) the dependability of AI algorithms; 2) the transparency of AI algorithms; and 3) the 
fairness and equity of AI algorithms. XAI techniques must address all three of these issues when working 
with highly nonlinear deep learning (DL) algorithms that have millions of parameters in ML pipelines 
[12], [13]. 

2.1 Rising Demand for Transparency  
The demand for explainability in AI has become more pronounced as AI technologies are increasingly 
integrated into sensitive areas [14]. In healthcare, for instance, AI-driven diagnostic tools and decision 
support systems require clear explanations to ensure trust among doctors and patients. Similarly, in 
finance, credit scoring models and loan approval systems must be transparent to ensure fairness and 
compliance with anti-discrimination regulations. This widespread adoption of AI in high-stakes 
applications has created a pressing need for interpretable and accountable AI systems [15], [16]. 
 
2.2 Explainable AI Techniques 

There are two main categories of XAI techniques: intrinsic explainability and post-hoc explainability. 

Intrinsic Explainability: Strategies exist which enable the creation of models that generate built-in 
interpretability. Decision trees, linear models and rule-based systems show their decision-making processes 
through their built-in explanations which enables easy process understanding. Simple models along with 
clear interpretation tend to perform well although they can lack the ability to tackle intricate tasks 
including image recognition and natural language processing [17], [18]. 

Post-hoc Explainability: The approaches function on complex models such as deep neural networks 
following their training completion. LIME (Local Interpretable Model-agnostic Explanations) together 
with SHAP (Shapley Additive Explanations) and attention mechanisms aid predictive explanation by 
pinpointing significant features which influenced the model outcome. Such interpretation techniques 
deliver helpful findings yet their calculations demand extensive resources while their output might not 
present meaningful insights to users [19]. 

2.3 Model-Agnostic vs. Model-Specific Methods 

XAI methods can also be divided into model-agnostic and model-specific approaches: 
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Model-agnostic methods: A model-agnostic method functions with any ML model regardless of its 
complexity. LIME and SHAP enable explanation of model behavior across any classification methods 
including decision trees and support vector machines as well as neural networks. The approximation 
techniques explain model predictions through simpler and interpretable models that substitute complex 
structures [20], [21]. 

Model-specific methods: The interpretation methods like Class Activation Mapping (CAM) and saliency 
maps describe how convolutional neural networks (CNNs) used for image recognition function by 
highlighting regions in pictures that influenced model outcomes most significantly. The methods have 
been optimized specifically for working with particular models that have unique structural characteristics 
and operational properties [22], [23]. 

2.4 Challenges in Achieving Explainability 

Accuracy vs. Interpretability Trade-off: Complex deep learning networks prove most accurate but 
maintain difficult levels of explanation [24]. Decision trees provide easier interpretability than more 
accurate complex models although they might possess inferior capabilities to address challenging tasks. 
XAI faces a fundamental dilemma because experts need balanced accuracy and interpretability in their 
systems. 

Lack of Standardization: XAI research remains new because the field lacks a single accepted framework 
for explanation standards. Different sectors and operational needs necessitate distinct explanation types 
thus there exists no universal solution to XAI applications. Standardization issues regarding explanation 
formats together with evaluation metrics prevent the assessment of XAI technique quality and 
effectiveness across different application domains. 

Scalability Issues: When sophisticated AI models require increasingly complex and massive data 
processing the delivery of clear explanations for every decision becomes an increasingly hard task. It poses 
major scalability challenges to XAI methods because real-time applications demand instant explanations 
particularly in cases like autonomous vehicles. 

Subjectivity of Explanations: Different explanations show subjectivity because they depend on three 
factors: the context, the user and the method through which they are produced. Experts in AI technology 
may understand complex explanations differently than non-professionals who need simple 
interpretations. Moreover, users have various ways of understanding explanations from a single AI output. 
XAI system effectiveness decreases in applications that require clear actionable insights because of 
subjectivity in explanations [25], [26], [27]. 

2.5 Ethical and Legal Implications 

XAI serves two important functions through interpretation model enhancement and by solving problems 
of ethics and legal compliance. When trained AI systems use biased data inputs the systems often maintain 
original discrimination patterns that create unfair or discriminatory system outputs. XAI serves as a system 
to inspect AI frameworks while allowing users to find biases together with developing AI model choices 
that fulfill fairness standards. The combination of GDPR European Union regulations about data 
protection and accountability makes XAI systems essential for AI systems to obey legal obligations such 
as giving explanations for automated decisions. 

2.6 Real-World Applications and Adoption 

XAI adoption continues to rise throughout different industrial sectors despite existing implementation 
barriers. Financial organizations develop explainable AI programs for credit scoring and fraud detection 
through finance-specific operational design to promote regulatory compliance and decision transparency. 
Medical professionals can depend on AI systems used for healthcare diagnosis and treatment 
recommendations because developers have focused on establishing clear explanations. The application of 
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XAI allows autonomous vehicles to reveal why a certain decision was made such as stopping or avoiding 
accidents which enhances system reliability and trust [28], [29], [30]. 

XAI deployment in production activities remains restrained because implementing these systems into 
ongoing workflows involves costly extensive integration procedures. Citius XAI deployment faces 
challenges across different domains since these systems demand major modifications before 
implementing explanation methods without degrading operational efficiency [31], [32], [33]. Figure 2 
illustrates the framework of the XAI. 

Figure 2: Framework of the Explainable Artificial Intelligence (XAI) 

Table 1: Principal Challenges of Explainable AI (XAI) 

Issues Description Impact Applications 

Lack of Standardized 
Metrics 

There is no widely 
accepted framework to 

measure the explainability 
of models. 

Hinders the 
development of 

universally accepted 
XAI benchmarks. 

Evaluation of 
explainability 
frameworks in 

diverse AI fields. 

Model Complexity 
Complex models such as 
deep learning models are 

harder to explain. 

Makes it difficult to 
trust or interpret the 

model's decisions. 

Designing new 
algorithms that 

balance 
performance 

with 
interpretability. 

Transparency vs 
Accuracy 

Highly accurate models 
may not be easily 

explainable. 

Might make the model's 
output less 

interpretable for users 
and decision-makers. 

XAI solutions in 
critical areas like 

healthcare, 
finance, and 
legal fields. 
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Data Quality and Bias 

Biased data can lead to 
biased models, impacting 

the reliability of 
explanations. 

Can lead to unfair or 
unethical decisions if 

not addressed. 

Data 
preprocessing 

and cleaning to 
ensure fairness 
and mitigate 

bias. 

Interpretability vs 
Generalization 

Balancing the trade-off 
between creating 

interpretable models and 
ensuring they generalize 

well. 

May compromise the 
model's overall 
performance or 

usability in real-world 
tasks. 

Adapting models 
to fit specific use 

cases while 
keeping them 
interpretable. 

 
Table 1 presents AI system evaluation issues which include reliability, transparency, impartiality, trust 
and bias identification. AI models need special attention to the identified issues in high-stakes 
applications to protect dependability while ensuring accountability alongside equitable use. 

3. MATERIALS AND METHODS 

Explainable Artificial Intelligence (XAI) integrates within the proposed driver fatigue detection system to 
deliver improved safety measures for driver comfort. Real-time monitoring of driver fatigue indications 
depends on advanced sensors with data collection approaches and machine learning algorithms operating 
together in the system design. 

3.1 Data Collection 

The system collects data through various sensors installed in the vehicle, including: 
Cameras: Used for facial recognition and monitoring the driver's eye movements, blink rate, and facial 
expressions. 
Heart Rate Monitors: Sensors that track the driver's heart rate to identify signs of fatigue or drowsiness. 
Steering Wheel Sensors: These detect micro-movements in the steering wheel, which can be indicative 
of fatigue or lack of attention. 

3.2 Dataset Description 

The research utilized a complete set of actual driving data to create and check the driver fatigue detection 
system while tracking numerous signals that represent driver fatigue patterns. The Explainable Artificial 
Intelligence (XAI) model needs this dataset to properly detect driver fatigue in diverse conditions during 
training and validation procedures. 

3.2.1 Data Sources 
The dataset is collected from multiple sources to ensure robust analysis and detection capabilities: 

• Video Data (Facial and Eye Tracking): High-resolution video feeds from cameras mounted inside 
the vehicle capture the driver's face, eye movements, blink frequency, and head position. These 
features are indicative of driver fatigue and drowsiness. 

• Physiological Data: Heart rate data is recorded through wearable sensors or sensors integrated 
into the seat, steering wheel, or seatbelt. Variations in heart rate and other vital signs help to 
detect fatigue. 

• Vehicle Dynamics Data: Data from the vehicle’s sensors, including steering wheel pressure, lane 
deviation, and vehicle speed, is collected. These sensors provide behavioral indicators of driver 
attention and fatigue. 

3.2.2 Data Collection Environment 
The dataset was gathered in a controlled driving environment to simulate real-life driving scenarios, such 
as: 
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• Fatigue-Inducing Scenarios: The dataset includes instances where drivers were subjected to long 
driving hours, monotonous road conditions, and night driving, all of which contribute to fatigue. 

• Non-Fatigue Scenarios: Data was also collected under normal driving conditions, with drivers in 
a fully alert and attentive state. 

3.2.3 Data Features 
The dataset consists of several key features used for the fatigue detection process: 

• Facial Features: Eye blink duration, eye closure frequency, and head nodding. These features are 
extracted from video frames using facial landmark detection algorithms. 

• Physiological Features: Heart rate variability (HRV) and deviations in heart rate patterns over 
time. 

• Behavioral Features: Steering wheel pressure and micro-movements, lane deviation, and vehicle 
speed. 

These features are used to train the XAI model, which learns the relationships between fatigue indicators 
and the system’s output. 

3.2.4 Data Annotations 
Each data point in the dataset is manually labeled to indicate the state of the driver, either fatigued or 
non-fatigued. Annotations are provided based on expert assessments and driver self-reports during driving 
sessions. Additionally, each instance is classified with a fatigue score, representing the level of fatigue 
detected at any given moment. 

• Fatigue Class Labels: Each data entry is labeled as "Fatigued" or "Alert" based on the driver’s 
physiological and behavioral indicators. 

• Fatigue Severity Labels: In some cases, the fatigue is further categorized as mild, moderate, or 
severe. 

3.2.5 Dataset Size and Distribution 
The dataset consists of approximately 10,000 hours of driving data, collected over a period of six months. 
The data is split into training, validation, and test sets to ensure the generalization of the model. The 
distribution of fatigue levels across the dataset is as follows: 

• Fatigued Instances: 40% 
• Alert Instances: 60% 

This balanced distribution helps ensure that the model can learn to detect both fatigued and non-fatigued 
states effectively. 
 
3.3 Explainable Artificial Intelligence (XAI) Tools 

Y Explainable Artificial Intelligence (XAI) represents a specific AI subfield which creates machine learning 
models to function transparently so humans easily understand their operations. Contrary to traditional 
AI systems operating as closed black boxes with unclear processes XAI models dedicate efforts to 
explaining the way black box models work. The machine learning decision-making process becomes more 
transparent through implementation of tools LIME and SHAP. The use of SHAP allows researchers to 
receive feature importance ratings through the application of Shapley values found within game theory. 
This approach offers both systematic principles and practical benefits for feature importance assessment. 
The alternative interpretation method LIME creates elementary local predictive models that function 
around distinct cases to help explain specific explanations. AI systems gain increased transparency 
together with user trust through these interpretability methods which also enhance reliability [34], [35], 
[36]. 

3.3.1 LIME  

The detection of driver fatigue during real-time driving remains essential because it helps prevent 
dangerous accidents on the road. The development of Explainable Artificial Intelligence (XAI) based 
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Driver Fatigue Detection System (DFDS) requires the implementation of LIME (Local Interpretable 
Model-agnostic Explanations) to provide explanations from AI system predictions. This system monitors 
driver behavioral elements including facial expressions together with eye-tracking and head movements 
and vehicle dynamic indicators for identifying fatigue symptoms [37], [38]. 

Data Collection and Model Building: 

The system collects data by using multiple sensors including cameras that track face movements and 
infrared sensors that track eye movements together with monitoring vehicle control inputs through 
steering inputs and speed and lane-keeping behavior. 

A machine learning model either uses a neural network or decision tree to process this data for driver 
fatigue prediction. The detection model uses visual indicators that include eyelid closures as well as 
yawning and head tilts and erratic vehicle control to determine driver fatigue. 

Steps: 

Once the fatigue detection model makes a prediction (e.g., "fatigue detected"), LIME is used to explain 
how the model arrived at that decision. 

Step 1: Local Surrogate Model: LIME builds a simpler, interpretable model that approximates the 
complex fatigue detection model for a specific prediction. This surrogate model could be something 
simple, like a linear regression or decision tree. 

Step 2: Perturbing Input Data: LIME perturbs (slightly changes) the original input data to generate 
different scenarios (for example, slightly altering the driver’s face position or eye movement). It observes 
how the model responds to these changes and then uses this information to build an interpretable model 
for the specific instance. 

Step 3: Feature Importance: LIME highlights the features (e.g., eyelid closure duration, head tilt, or 
steering angle) that had the most influence on the fatigue prediction. For example, it might show that 
"70% of the decision was based on the eyelid closure for 4 seconds, and 30% on irregular steering 
behavior." [39, 40]. 

3.3.2 SHAP 

A Driver Fatigue Detection System (DFDS) serves to track driver fatigue patterns in order to stop 
dangerous incidents on the road. XAI SHAP (Shapley Additive Explanations) tools improve system 
transparency which allows both developers and users to understand the reasoning behind system 
conclusions. The following details how the driver fatigue detection system would utilize SHAP as its XAI 
tool for improved system understanding [41], [42]. 

The cohesive structure that links LIME and SHAP provides importance values for particular predictions 
of each attribute. SHAP retrieves Shapley values based on linear modeling structures which enables it to 
fulfill these preceding requirements. The integration of SHAP provides links between the Shapley values 
and LIME. The framework contributes to bringing different approaches in interpretable ML under one 
unifying framework [41] [42]. The SHAP method provides accelerated calculations of Shapley values for 
ML models after establishing links between LIME and Shapley values. The following SHAP formula states 
the Instance y as written in Equation (2): 

 h(y′) = ϕ0 + ∑ ϕiyi
jN

i=1        (1) 

The explanatory model has been noted as h. The coalition vector that contains simplified characteristics 
is represented by y' which exists between 0 and 1N [43], [44]. 
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3.4 AI Models 

Artificial Intelligence models within the Driver Fatigue Detection System use their ability to recognize 
driver fatigue signs for generating real-time accident prevention alerts. Several AI-driven systems benefit 
from Explainable Artificial Intelligence (XAI) implementation which enables developers together with 
users (drivers and safety officers) to understand the systems' decision-making processes. The subsequent 
sections detail both typical AI models deployed in this system with an explanation of how Explanable 
Artificial Intelligence (XAI) ensures transparency and trustworthiness. The research examined ten DL 
methods such as Decision Trees [45], Random Forests [46], Support Vector Machines (SVM) [47], Neural 
Networks (ANN) [48], Convolutional Neural Networks (CNN) [49], Recurrent Neural Networks (RNN) 
[50], Gradient Boosting Machines (GBM) [51], K-Nearest Neighbors (KNN) [52], LIME (Local 
Interpretable Model-agnostic Explanations) [53], SHAP (Shapley Additive Explanations) [54], to improve 
explainability methods and human-centric strategies to growth the accountability, transparency, and 
fairness of AI systems, especially in Driver Fatigue Detection System. A comparison of advanced AI 
models combined with XAI frameworks to improve DFDS is shown in Table 2. With an emphasis on 
enhancing interpretability, transparency, and accuracy in detecting Driver Fatigue Detection Systems, it 
outlines their goals, benefits, and drawbacks. These methods have a lot to offer in terms of explainability, 
but they frequently struggle with computing efficiency and real-time deployment, particularly in settings 
with limited resources. Understanding the trade-offs between operational viability and performance in 
DFDS installations is made easier by this research.  

Table 2: Summary of AI models with DFDS 

Reference AI Model Method Objective Advantages Limitations 

[45] Decision Trees 

Uses a tree-
like structure 

with 
branching 
decisions. 

To model 
decisions 
based on 

simple rule-
based splits. 

- Easy to 
interpret and 

visualize. 
- Fast and 
efficient. 

- Can handle 
both 

categorical 
and 

continuous 
data. 

- Prone to overfitting 
on small datasets. 
- Less accurate in 

complex problems. 

[46] 
Random 
Forests 

Ensemble 
method 

combining 
multiple 

decision trees. 

To reduce 
overfitting 

and increase 
model 

accuracy. 

- More robust 
than single 

decision 
trees. 

- Handles 
large datasets 

well. 
- Provides 

feature 
importance. 

- Less interpretable 
than individual 
decision trees. 

- Computationally 
expensive. 

[47] 

Support 
Vector 

Machines 
(SVM) 

Finds the 
optimal 

hyperplane 
separating 
different 
classes. 

To classify 
data with 

clear 
margins 
between 

categories. 

- Works well 
with high 

-dimensional 
data. 

- Effective in 
non-linear 

classification. 

- Difficult to 
interpret for 

complex decision 
boundaries. 

- Computationally 
intensive for large 

datasets. 
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- Robust 
against 

overfitting. 

[48] 
Neural 

Networks 
(ANN) 

Mimics brain-
like processing 
with multiple 

layers. 

To identify 
complex 

patterns and 
relationships 

in data. 

- Highly 
accurate for 

complex 
tasks. 

- Can handle 
a variety of 
input data 

(e.g., images, 
time series). 

- Hard to interpret 
("black-box"). 

- Requires large 
datasets and 
significant 

computational 
resources. 

[49] 

Convolutional 
Neural 

Networks 
(CNN) 

Deep learning 
models that 
process grid-

like data (e.g., 
images). 

To analyze 
visual inputs 
(e.g., driver’s 

face) for 
signs of 
fatigue. 

- Excellent for 
image and 

video 
analysis. 
- High 

accuracy in 
detecting 

visual 
features. 

- Not interpretable 
without additional 

XAI tools. 
- Requires large 

amounts of labeled 
data. 

[50] 

Recurrent 
Neural 

Networks 
(RNN) 

Processes 
sequential 
data and 
retains 

information 
over time. 

To analyze 
time-series 
data (e.g., 
driver’s 

behavior 
over time). 

- Effective for 
time 

-dependent 
data. 

- Suitable for 
detecting 
behavioral 

patterns over 
time. 

- Difficult to explain 
decision 

-making process. 
- Prone to 

vanishing/exploding 
gradient problems 
in long sequences. 

[51] 

Gradient 
Boosting 
Machines 

(GBM) 

Ensemble 
learning 
method 

combining 
weak learners 
into a strong 

learner. 

To improve 
prediction 
accuracy 
through 
boosting 

weak 
models. 

- High 
accuracy. 

- Can handle 
missing 
values. 

- Provides 
feature 

importance. 

- More difficult to 
interpret. 

- Can overfit if not 
tuned properly. 

[52] 
K-Nearest 
Neighbors 

(KNN) 

Classifies data 
based on the 
closest points 

in feature 
space. 

To detect 
patterns by 
comparing 
the current 

instance 
with the 
nearest 

neighbors. 

- Simple and 
easy to 

interpret. 
- No explicit 

model 
training. 

- Useful for 
smaller 

datasets. 

- Computationally 
expensive for large 

datasets. 
- Sensitive to noisy 
data and irrelevant 

features. 

[53] 
LIME (Local 
Interpretable 

Explains black-
box models by 

To provide 
local 

explanations 

- Provides 
clear, 

interpretable 

- May not provide 
global insights about 

model behavior. 
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Model-agnostic 
Explanations) 

approximating 
them locally. 

for 
individual 

predictions. 

explanations. 
- Can be 

applied to any 
model. 

- Works well 
for high 

-dimensional 
data. 

- Can be 
computationally 

intensive for large 
models. 

[54] 

SHAP 
(Shapley 
Additive 

Explanations) 

Uses Shapley 
values to 

explain the 
contribution 

of each 
feature. 

To explain 
the output 

of any 
machine 
learning 

model using 
game theory. 

- Provides 
theoretical 

and practical 
explanations. 

- Can be 
applied to any 

model. 
- Clear feature 
importance. 

- Computationally 
expensive for large 

datasets. 
- Requires 

understanding of 
Shapley values for 
full interpretation. 

 
4. RESULTS AND DISCUSSION 

Current research studies how XAI has been integrated with AI systems to address transparency and 
comprehensibility problems when making responsible decisions. The system focuses heavily on 
developing methods focused on human trust in AI systems alongside ethical considerations mainly related 
to security and threat analytics. The research establishes an initial framework of the Golden Zone 
exploration by comparing data before proposing DL models with XAI techniques. The experimental setup 
combines Windows 7 operating system with a Intel i7-7700 CPU and GeForce GTX 960 GPU as well as 
16GB RAM and 512GB storage to perform the experiment. Huawei Nexus 6P along with Huawei Watch 
1 operate as receiver devices among others. A functional program implemented using Python packages 
that contained OpenCV alongside TensorFlow and Keras packages. 

4.1 Comparative analysis 

The comparison of driver fatigue detection systems AI models using XAI approaches can be found in 
Table 3. The metrics evaluate how well performance indicators translate to dependence and categorization 
capabilities for driver fatigue detection systems. SHAP (Shapley Additive Explanations) achieves 
performance and transparency equilibrium although RNN and Ensemble deliver maximum accuracy 
numbers. The research demonstrates that computational expense creates opposing trade-offs to real-life 
implementation benefits while emphasizing XAI's role in enhancing model transparency and reliability 
without significant efficiency reductions. 

Table 3: Overall performance analysis of XAI-based DFDS models 

Models Accuracy (%) Precision (%) Recall (%) F1 score (%) 
Decision Trees 98.3 95.7 96.2 94.3 

Random Forests 99.99 94.28 99.5 97.05 
Support Vector 

Machines (SVM) 
99.63 99.8 99.2 99.5 

Neural Networks (ANN) 88 96 88 88 
Convolutional Neural 

Networks (CNN) 
93.7 95.1 95 95 

Recurrent Neural 
Networks (RNN) 

93.6 95.5 94.4 94.8 
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Gradient Boosting 
Machines (GBM) 

98.87 98.95 98.87 98.91 

K-Nearest Neighbors 
(KNN) 

98.6 94.6 96.7 94.6 

LIME (Local 
Interpretable Model-

agnostic Explanations) 

99.6 93.52 99.4 97.7 

SHAP (Shapley Additive 
Explanations) 

99.3 99.7 98.6 98.6 

 

Accuracy: It is defined as the number of precise detections between all of the DFDS model's forecasts. It 
is employed to assess the model's accuracy in recognizing both typical behavior and malicious activity in 
IoT networks and represents in Equation (2). 

 Accuracy =
TP+TN

TP+FP+TN+FN
       (2) 

The accuracy percentages of several AI models combined with XAI approaches are displayed in Figure 3, 
emphasizing how well they perform in detection systems. The RF model shows its resilience in identifying 
driver fatigue detection systems by achieving the greatest accuracy of 99.99%. Models that balance 
explainability and accuracy, such as SVM (99.63%) and GBM (98.87%), also exhibit remarkable 
performance. Nonetheless, in certain situations, the XAI-powered framework (88%) demonstrates the 
difference between explainability and accuracy. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Accuracy Performance Analysis 
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Precision: It is definite as the amount of real optimistic detections among all the occurrences that the 
DFDS model predicts to be attacks. It assesses how well the model detects driver fatigue detection while 
avoiding false positives (See Equation (3)). 

 Precision =
TP

TP+FP
         (3) 

Precision calculated from a variety of AI models, when applied with certain XAI techniques, is presented 
in Figure 4 showing how those approaches mitigate false positives in fatigue detection. Real fatigue are 
picked accurately by the SVM with 99.8% precision, which the best accuracy is reached across all sorts of 
models. There is also high precision which is evident through the ANN (96%) and GBM (98.95%) to 
make sure of the prediction accuracy. The slightly lower accuracy of the RF model (94.28%) reveals the 
fact that one should never use sharp transitions to measure models. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Comparison of Precision Analysis 

Recall: It is defined as the number of positive detections across all real crash cases in the dataset. It assesses 
how well the model detects as many crashes as feasible while reducing false negatives, were illustrated in 
Equation (4). 

 Recall =
TP

TP+FN
         (4) 

 

The recall percentages of different types of AI models have been given in Figure 5 to exhibit how they 
identify the true positives in driver fatigue detection. Although the SVM model shows excellent 
performance of 99.2% and the GBM of 98.87%, the RF model has a recall of 99.5% which means all 
incursions are detected. The XAI-powered framework has a relatively lower recall (88) which perhaps 
indicates occasional omissions in capturing all relevant driver fatigues.  
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Figure 5: Analysis of the Recall Score of AI Models 

F1 score: It's used to evaluate the DFDS model's capability to reduce false positives (high accuracy) and 
correctly detect attacks (high recall) when there is an imbalance between normal and attack events in the 
dataset (See Equation (5)). 

 F1 score =
2×Recall×Precision

Recall+Precision
        (5)  

The F1 score, which is an typical of recall and precision, is assembled in Figure 6, for a range of DFDSs 
enhanced by XAI. The Ensemble model is an incredibly perfect indication of a stability between precision 
and recall, as evidenced by the maximum F1 score of 99.5%. In second place on the F1 score of 98.97% 
GBM, exhibits good detection and classification functions. The F1 score is also the lowest in the case of 
the model that uses XAI architecture, which means that there is some loss of efficiency. 

 

 

 

 

 

 

 

 

 

 

Figure 6: F1 Score Analysis 
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Emphasis on evaluating the efficiency of several AI models in addition to XAI for DFDS in IoT networks 
with the consideration of achieving accuracy, fairness, and efficiency as the main purpose of the research. 
The findings indicate that while some models are very precise, others, such as GBM [50], offer a high 
enough degree of interpretability to act as a springboard for additional research. The XAI-powered 
framework [48], however, has lower recall and accuracy which also highlights the inherent challenge of 
achieving both high detection efficacy and high explainability. The analyses presented in this manuscript 
underscore the need to incorporate interpretability, computational overhead, and effective application of 
the DFDS as essential in developing real-world DFDS. 

5. CONCLUSION 

The practical findings serve to demonstrate that organizations must maintain equivalence between model 
interpretability and operational speed when detecting situations of fatigue. The paper summarizes 
different AI model performance studies about identifying driver fatigue in IoT networks through XAI 
systems while evaluating computation speed and model interpretation and prediction accuracy balance. 
The best performance of the RF model yielded 99.99% accuracy in this research but the SVM model 
matched multiple evaluation results through 99.5% F1 score and 98.87% accuracy. The GBM technique 
reached the second best model performance level through its F1 score margin of 98.91% alongside 
98.87% accuracy thus creating equilibrium between classification performance and interpretability. The 
architecture implementing XAI functions delivered detection results at 88% accuracy which shows that 
obtaining high precision alongside explainable decisions remains a difficult task. The study demonstrates 
detection success with advanced models but the company requires both clear explanations and fast 
computation technologies. 
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