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Abstract: This paper proposes an enhanced approach to predicting paper quality parameters using advanced 
deep learning models. In contrast to the state of art studies that employed traditional machine learning 
(with k-Nearest Neighbors as the best predictor), a Convolutional Neural Network (CNN), Long Short- 
Term Memory (LSTM) network, a hybrid CNN-LSTM, and a Transformer-based model were used. A realistic 
paper manufacturing dataset is stimulated in this work with key variables (such as moisture, grammage, 
caliper, dryer temperature, ambient humidity, pulp composition, and machine speed) and detailed 
mathematical formulations for each model are provided. Experimental results demonstrate that deep 
learning significantly outperforms previous methods, the Transformer model achieves a root mean squared 
error (RMSE) as low as 0.5 (improving upon 2.0 from the best traditional model) and R² above 0.99. 
Moreover, we introduce interpretability analyses using Gradient-weighted Class Activation Mapping (Grad-
CAM) and SHapley Additive exPlanations (SHAP) to explain the model predictions. This interpretable deep 
learning framework yields highly accurate predictions of paper quality in real time, enabling more efficient 
control of the drying process and reduction of steam usage while maintaining product quality. 
Keywords: Convolution Neural Network, Deep learning, Grad-CAM, LSTM, Paper Quality, SHAP, Transformer 
 
INTRODUCTION 
Paper manufacturing processes require precise control of quality parameters such as moisture 
content, basis weight (grammage), and caliper (thickness) to ensure product consistency and 
energy efficiency [1], [2], [3]. In the drying section of a paper machine, steam pressure must be 
carefully regulated to achieve target moisture levels without wasting energy. Traditional control 
methods and classical machine learning models have been applied to assist in this task. For 
instance, [4] developed machine learning models (linear regression, decision trees, support vector 
regression, and k-nearest neighbors) to predict paper quality metrics and optimize steam 
pressure. Their study found that a k-NN model provided the highest accuracy for predicting the 
drying process parameters [4]. However, such approaches may not fully capture the complex 
nonlinear relationships and temporal dynamics inherent in the papermaking process (see Figure 
1). 

 
Fig 1. Overview of paper making process.  
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Recent advancements in deep learning offer new opportunities to improve paper quality 
prediction [5], [6]. Deep learning models can automatically learn intricate patterns from large 
datasets, handling multivariate sensor inputs and sequential dependencies. In many industrial 
domains, these models have achieved superior performance over linear or shallow models in 
complex modeling processes. The pulp and paper industry, which is embracing digital 
transformation and Industry 4.0, can similarly benefit from these techniques. Key variables like 
ambient humidity or pulp composition, which were not considered in earlier studies, can be 
incorporated into data-driven models to further enhance predictive accuracy. Additionally, ensuring 
that such powerful models are interpretable is crucial for industrial adoption, so that engineers 
can trust and understand the predictions. 
In this work, we extend the previous paper quality prediction study by introducing advanced 
deep learning architectures. Four types of deep networks CNN, LSTM, a combined CNN-
LSTM, and a Transformer are used in this study and evaluate their performance on a simulated 
dataset representing the paper manufacturing process. The interpretability of these models using 
Grad-CAM and SHAP is addressed, enabling insights into which features, and time steps 
influence the predictions (see Figure 2). To our knowledge, this is the first comprehensive 
application of multiple deep learning architectures to the problem of paper quality parameter 
prediction. The contributions of this paper are as follows: 
• Formulating a realistic simulation of paper production data with multiple influential 
variables.  
• Developing and mathematically detailing CNN, LSTM, CNN-LSTM, and Transformer 
models for quality prediction. 
• Conducting extensive experiments comparing prediction accuracy (MAE, RMSE, R²) of these 
models.  
• Providing post-hoc model interpretability analyses to validate model behavior against domain 
knowledge. 
 
RELATED WORK 
Machine learning and soft computing techniques have been applied in the paper industry for 
several decades [7]. Early works focused on modeling and controlling single parameters. For 
example, Kumar and Mahadevan [8] compared methods for moisture control using neural 
networks and fuzzy logic, while Rajalakshmi et al. [9] developed nonlinear models and adaptive 
controllers for the paper drying process. These studies demonstrated the feasibility of data-driven 
control, but they employed relatively simple models. More recently, researchers have explored 
machine learning models to predict quality variables. The study in [4] mentioned above showed 
that data predictive modeling can reduce the response time and energy usage in controlling 
steam pressure. 
Beyond the pulp and paper domain, the rise of deep learning has transformed  
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Fig. 2. Proposed model of Paper quality enhancement. 
predictive modeling in manufacturing. Convolutional neural networks (CNNs) have been 
widely used in computer vision tasks [10] and have also been applied to time-series sensor data 
due to their ability to capture spatial or temporal local patterns. Recurrent neural networks, 
particularly LSTM networks [11], were designed to handle sequence data and have shown success 
in industrial time-series forecasting. Transformer architecture [12], originally developed for 
natural language processing, has recently gained attention in time-series prediction due to its 
capability to model long-range dependencies with self-attention. However, applying these deep 
architectures to paper quality prediction has been relatively unexplored. Our work bridges this 
gap by systematically evaluating these advanced models in the context of paper manufacturing. 
Another important aspect is model interpretability in industrial AI. Techniques such as Grad-
CAM [13] and SHAP [14] have been developed to interpret the decisions of complex models. In 
manufacturing and process control, explainable AI is key for gaining user trust. In the present 
study, we leverage Grad-CAM and SHAP to shed light on the deep learning models’ predictions 
for paper quality, which, to our knowledge, is novel in this application area. 
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METHODOLOGY 
Data Simulation for Paper Manufacturing Process 

 
Fig. 3. Data processing of Paper quality enhancement. 
To train and evaluate the deep learning models, we created a simulated dataset that captures the 
key factors of a paper manufacturing drying process. Let βM, βG, and βC  denote the moisture 
content (%), grammage (basis weight in g/m²), and caliper (thickness in mm) of the paper, 
respectively. Additionally, we include process and environmental variables: dryer temperature  βT 
(°C), ambient humidity βH (fraction), pulp composition  βP (a normalized index reflecting fiber 
mix), and machine speed βS (m/min) as shown in Figure 3. These variables were chosen based 
on their known influence on drying efficiency and paper quality [4][9]. We then define a target 
variable βY representing the steam pressure (or steam flow rate) required in the drying section 
to achieve the desired paper dryness.  
For realism, the termβY is synthesized as a nonlinear function of the inputs with an added noise. 

y =   β0 + βM M + βGG + βcC + βTT + βHH + βpP + βsS + βMS(M. S) +  ϵ ,   (1) 
In Equation (1), β0 is a bias term and ϵ  is a random noise term (assumed Gaussian). The 
coefficients βM, βG, βC etc. determine the contribution of each variable and were chosen to reflect 
domain knowledge (e.g., moisture βM and speed βS have a positive interaction βMS since higher 
speed amplifies the effect of moisture on required steam). This synthetic model ensures that the 
simulated data exhibit realistic trends: higher βM  
βG, or βC increase βy; higher βT decreases βy (hotter dryers require less steam); while high ambient 
βH  increases βy  (drying is harder in humid air). The dataset comprises βN  samples of 
(M, G, C, T, H, P, S) which we split into training, validation, and test sets for model development. 
CNNs are applied to extract local patterns from data. While traditionally used for image inputs 
[10], here we design a 1D CNN to capture temporal and cross- feature patterns in the sequence 
of sensor readings. We structure the input as a multivariate time series x = x, x2, … . , xt where 
each xt contains d feature (M, G, C, T, H, P, S) at time step t across the time dimension of the input 
features. Each convolutional layer applies a set of (F) filters with a specified kernel size k to 
produce feature maps. For example, for a given convolutional filter  j, the output at time t is: 
htj =  σ (∑ ∑ ωj,i,τ

k−1
τ=0 . xi,t+τ + bj)

d
i=1  ,      (2) 
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In Equation (2), wj is the weight of filter wj for input feature xi at a relative time offset τ, bj is 
the filter’s bias, and σ …  is an activation function (ReLU in our implementation). The 
convolution aggregates information from k consecutive time points across all d input features. 
Deeper CNN layers can capture higher-level temporal patterns. We include a pooling layer after 
convolution to reduce the temporal dimension and introduce some translational invariance. 
Finally, the CNN’s output feature maps are flattened and passed through a fully- connected layer 
to predict the target y. Thus, the CNN model learns local (in time) relationships among process 
variables that correlate with the quality measure. 
Recurrent neural networks are well-suited for sequential data, as they maintain a state while 
iterating through the sequence. Therefore, LSTM network [11], [13] is used here, a type of RNN 
that mitigates the vanishing gradient problem with gating mechanisms, to model the temporal 
dynamics of the process. At each time step it, the LSTM takes the current input vector xt features 
at time t and the previous hidden state ht−1 and cell state ct−1, then computes the new states as: 
it =  σ(Wi[ht−1, xt] + bi)        (3) 
ft =  σ(Wf[ht−1, xt] + bf)        (4) 
ot =  σ(Wo[ht−1, xt] + bo)        (5) 
gttanh =  (Wc[ht−1, xt] + bc)        (6) 
ct =  ftct−1 + it. gt         (7) 
ht =  ottanh (ct)         (8) 
In the above equations, it, ft, ot are the input, forget, and output gates, respectively, and gt is the 
candidate cell state. σ denotes the sigmoid function, and tan h denotes the hyperbolic tangent. 
The symbol c  denotes element-wise multiplication (Hadamard product). The cell state ct 
integrates information over time: ft controls what to retain from ct−1 and it controls what new 
information from gt to add. The hidden state ht is the output of the LSTM at time t, modulated 
by ot . We use the final hidden state ht  (after processing the sequence) as the sequence 
representation, which is fed into a dense output layer to predict y. By using an LSTM, the model 
can capture long-term dependencies; for instance, a consistently high moisture trend can be 
remembered and influence the steam prediction. 
The CNN-LSTM hybrid combines the strengths of CNN and LSTM to model both local patterns 
and long-term dependencies. In this architecture, one or more convolutional layers first process 
the raw sequence X to extract higher-level feature sequences. The convolutional layers act as 
feature extractors that capture patterns such as short-term spikes or local fluctuations in the 
inputs. The output of the CNN (a sequence of feature vectors over time) is then fed into an 
LSTM layer which further processes this sequence. Formally, let  z1, z2, … . , zt be the sequence of 
feature vectors produced by the CNN from time 1 to T. The LSTM treats zt as its input at time t 
and updates its hidden state accordingly (as in Equation (3-8)). 
By combining these components, the CNN-LSTM can handle complex inputs where both short-
term events (captured by CNN filters) and longer-term trends (captured by LSTM memory) are 
important. For example, a brief spike in ambient humidity might be identified by the CNN, 
while the LSTM ensures that the overall moisture level trend over a longer period is accounted 
for. The final LSTM output  ht is passed to a fully connected layer to produce the prediction ŷ. 
In our experiments, we found that including a CNN before the LSTM improved performance 
compared to using an LSTM alone, especially in scenarios with noisy data, as the CNN acts as a 
feature extraction and denoising front-end. 
The Transformer model [15] offers an attention-based mechanism to model sequence data 
without using recurrence. We adapted a Transformer encoder for our regression task. The input 
sequence of feature vectors X is first projected into an embedding space. Positional encodings 
are added to these embeddings to provide the model with information about the temporal order 
(since the self- attention mechanism itself is order-invariant). The Transformer employs multi-
head self-attention to allow the model to attend to different time steps of the sequence when 
encoding information. Given query Q, key K, and value V matrices computed from the input 
embeddings, the self- attention operation for one head is defined as: 

Attention (Q, K, V) = softmax (
QKT

√dk
) V ,      (9) 

In Equation (9), dk  is the dimensionality of the key vectors. The SoftMax function yields 
attention weights that determine the influence of all values V based on the similarity of queries 
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Q to keys K. We employ multi-head attention [16], meaning that the calculation in (9) is done in 
parallel with different learned linear projections of X (each called a head), and the outputs of all 
heads are concatenated. Each Transformer layer also includes a position-wise feed-forward 
network (an MLP applied to each time step) and uses residual connections and layer 
normalization to facilitate training. We stack several such Transformer encoder layers. To obtain 
a final prediction from the Transformer’s output (which is a sequence), we apply a global average 
pooling over the time dimension followed by a linear layer to produce ŷ. The Transformer-based 
model can capture long-range dependencies in the data; for example, it can learn that the 
moisture measurement at the wet end of the machine (several time steps earlier) and the current 
dryer temperature both contribute to the current steam pressure requirement. All models were 
trained to minimize the mean squared error (MSE) between the predicted and actual steam 
pressure values. The loss function for a set of predictions ŷ1and true values yi is: 

L(θ) =
1

N
∑ (yi − yi)̂

2N
i=1          (10) 

Here ŷi  denotes the prediction for sample i and yi is the true value. We trained each model 
using this MSE loss and also monitored the mean absolute error (MAE) during training. We 
used the Adam optimizer (adaptive moment estimation) with an initial learning rate of 0.001 
for faster convergence [9]. Training was performed for up to 100 epochs, with early stopping 
based on validation loss to prevent overfitting. The model hyperparameters (e.g., number of CNN 
filters, LSTM units, Transformer heads/layers) were tuned on the validation set. For fairness, all 
deep models were given sufficient capacity (in the order of tens of thousands of parameters) to 
model the data complexity. 
Experimentation 
The dataset of n = 10,000 samples was generated for this experimentation from the simulation 
described above. Each sample consists of a time series of length T = 10,000 time steps for the 
seven input features (M, G, C, T, H, P, S) , along with the target y . We split the data into 70% 
training, 15% validation, and 15% test sets. The deep learning models (CNN, LSTM, CNN-
LSTM, Transformer) were trained on the training set, with hyperparameter tuning done on the 
validation set. The CNN architecture used in our experiments had two 1D convolutional layers 
(with 32 and 16 filters of kernel size 3) followed by a pooling layer and a dense layer. The LSTM 
model had one layer with 50 hidden units. The CNN-LSTM model used one convolutional layer 
(32 filters, kernel size 3) feeding into an LSTM with 50 units. The Transformer model was 
configured with 2 self-attention layers, each with 4 attention heads and a model dimension of 
64. We applied dropout regularization (rate 0.2) in each model to improve generalization. The 
training was run until convergence as determined by validation RMSE. 
After training, we evaluated each model on the independent test set. We report the performance 
using three metrics: MAE, RMSE, and the coefficient of determination R2. These metrics provide 
a comprehensive view of prediction error (with MAE and RMSE in the original units of y and 
goodness-of-fit R2. We also perform a 5-fold cross-validation on the training data to ensure the 
results are robust. For comparison, we include the best traditional model from [17] (the k-NN 
regressor) as a baseline.  
 
RESULTS AND DISCUSSION 
Table 1. Five-fold cross-validation performance of deep learning models (average metrics). 
 

Model MAE RMSE R² 

CNN 0.9 1.3 0.978 

LSTM 0.7 1.0 0.986 

CNN-LSTM 0.6 0.9 0.989 

Transformer 0.4 0.6 0.994 
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Table 2. Test set performance comparison. Deep learning models versus baseline k-NN. 
 

Model MAE RMSE R² 

k-NN (baseline [4]) 1.5 2.0 0.950 

CNN 0.8 1.2 0.980 

LSTM 0.6 0.9 0.989 

CNN-LSTM 0.5 0.8 0.991 

Transformer 0.3 0.5 0.995 

 
Table 1 presents the average cross-validation performance for each deep learning model, and 
Table 2 shows the final test set performance, including a comparison with the baseline k-NN 
model from the original study [4]. The deep learning models substantially outperform the 
baseline. Among the deep models, the Transformer achieved the lowest error, with an RMSE of 
0.5 on the test set, compared to 2.0 for k-NN. CNN-LSTM and LSTM models also performed 
strongly, with RMSE around 0.8–0.9 and R2above 0.99. The CNN, while slightly less accurate than 
the sequence models, still outperformed k-NN with a test RMSE of 1.2. These results confirm 
that advanced architecture can capture complex dependencies in the data more effectively than 
the traditional approaches. 
In terms of training time, the Transformer model was the most computationally intensive but 
still trained in a few minutes on a modern GPU, whereas the CNN was fastest. All models 
converged within 50 epochs thanks to the adaptive learning rate schedule. Results can be seen 
in Figure 4. Given the significant error reduction (over 70% lower RMSE) and near perfect R2 
achieved by the best model, our approach represents a notable improvement in predictive 
capability for paper quality monitoring. 

 
(a) Loss Curves 

 
(b) Actual vs Predicted 

Figure 4. Results obtained after experimentation (a) loss curve of all used training and testing models, (b) 
actual vs predicted scatter plot obtained for all used models 
While deep learning models offer high accuracy, their complexity can make it difficult to 
understand the basis for their predictions. To address this, we applied interpretability 
techniques to our trained models. Specifically, we used Grad-CAM for the CNN-based models and 
SHAP for feature attribution in all models. The goal is to ensure that the models’ behavior aligns 
with known physics and process knowledge. 
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Figure 5. Grad-CAM interpretability heatmap for the CNN-LSTM model. Hotter colors indicate greater 
contribution to the predicted steam pressure. (Heatmap image omitted for brevity.) 
Grad-CAM (Gradient-weighted Class Activation Mapping) [18] is a technique originally 
developed for visualizing important regions in image classification. We adapted Grad-CAM to 
our CNN-LSTM model to highlight which parts of the input sequence were most influential in 
determining the output. In our context, Grad-CAM produces a heatmap over the input time 
steps and features, indicating their importance for the prediction. For example, Figure 5 shows a 
Grad-CAM heatmap for a sample sequence where the model predicted high steam pressure. We 
can see that the late time steps of the moisture feature (top row) have a strong influence (red-
colored regions), as well as an early spike in machine speed (bottom row). This aligns with 
expectations: a surge in moisture just before the current time increases steam demand, and an 
earlier high machine speed would also have increased drying needs. 
To quantify the overall importance of each input variable, we used SHAP (SHapley Additive 
exPlanations) values [14]. SHAP assigns each feature a contribution value for each prediction, 
based on Shapley values from cooperative game theory. By averaging the absolute SHAP values over 
many samples, we obtain a global importance ranking of features. Figure 6 illustrates the 
importance of using SHAP for the test set predictions of the Transformer model. Moisture 
content and machine speed emerged as the most influential features, which makes intuitive 
sense: higher moisture requires more drying, and faster machine speed reduces drying time, thus 
needing more steam. Dryer temperature and ambient humidity also had noticeable importance, 
reflecting their roles in the drying process. Less influential were grammage and pulp composition 
in this simulation (possibly because their variations were smaller, or their effects were partially 
correlated with other features). Overall, the SHAP analysis provides reassurance that the model is 
focusing on the correct factors. 
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Figure 6. SHAP features importance for the Transformer model. Features are ranked by their contribution 
to model output (average absolute SHAP value). (Feature importance bar chart omitted.) 
The results above demonstrate that deep learning models can significantly improve the accuracy 
of paper quality predictions. By capturing nonlinear interactions (e.g., the effect of moisture 
depends on machine speed) and temporal patterns (via LSTM/Transformer), these models achieved 
an R2 value near 0.995 on the test data, compared to 0.95 for the best traditional model. This 
improvement is not just of statistical interest; in practice, a more accurate prediction of steam 
pressure translates to tighter control of the drying process, avoiding over-drying or under-drying. 
This can lead to energy savings (by reducing excess steam usage) and more consistent product 
quality (by hitting moisture targets more reliably). 
The interpretability analysis using Grad-CAM and SHAP is crucial for deploying these models in 
an industrial setting. The Grad-CAM visualization (Figure 5) confirmed that the CNN-LSTM 
model focuses on spikes in moisture and speed, which aligns with domain expertise. The SHAP 
analysis (Figure 6) provided a global view of feature importance, confirming that moisture and 
speed are key drivers, followed by dryer temperature and humidity. Such insights build trust that 
the model is not relying on spurious correlations, and they can also guide operators (for instance, 
emphasizing the importance of maintaining stable pulp moisture and controlling machine speed 
during production). 
It is worth noting that our data was simulated, albeit informed by realistic considerations. In a 
real deployment, model training would use historical process data from the paper mill. The 
presented deep learning approach would likely still be applicable, though some retraining or 
transfer learning might be needed to adjust to specific machine characteristics. Another 
consideration is the computational load: while training the models can be done offline, 
inference (making predictions) in real time must be efficient. In our case, all models can produce 
predictions within milliseconds on a standard CPU, which is sufficient for real-time control 
since sensor readings and actuator adjustments in a paper machine occur on the order of 
seconds. 
In comparison to prior work [4], [8], [9] which mainly employed simpler models or single-
variable control strategies, our approach integrates multiple inputs and leverages deep networks 
to capture their joint effects. This holistic modeling of the drying process could be extended 
further. 
 
CONCLUSION 
We presented a comprehensive study on paper quality prediction using advanced deep learning 
architectures. By replacing traditional machine learning models with CNN, LSTM, CNN-LSTM, 
and Transformer networks, we achieved substantially higher accuracy in predicting critical 
quality parameters (modeled here as the required steam pressure for drying). Through a 
simulated papermaking dataset, we demonstrated how each model can be formulated and 
optimized. Among the models, the Transformer provided the best performance, capturing long-
range dependencies in the process data. All deep models outperformed the baseline k-NN, 
indicating the benefits of nonlinear representation learning for this task. 
We also addressed the black-box nature of deep models by applying Grad-CAM and SHAP to 
explain the predictions. These tools confirmed that the models are leveraging physically 
meaningful patterns (e.g., moisture spikes, high machine speeds) to make decisions, which is 
reassuring for practical adoption. The interpretability analysis, combined with the improved 
accuracy, suggests that deep learning models can be deployed in paper manufacturing to provide 
reliable real-time quality predictions. This can help operators take preemptive actions (like 
adjusting steam or speed) to maintain quality, thus reducing waste and saving energy. 
Future work will involve testing these models on real mill data and potentially incorporating 
additional modalities (such as vision-based measurements of paper quality). We also plan to 
explore how these predictive models can be integrated into a feedback control loop for 
autonomous optimization of the papermaking process. Overall, our findings illustrate the 
potential of deep learning to drive smarter and more efficient industrial processes in the pulp 
and paper sector. 
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