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Abstract 
The study has analyzed the magnetohydrodynamics (MHD) unsteady boundary layer flow of a viscous fluid over a 
stretching cylinder, considering thermal conductivity effects. The graphical analysis delves into the influence of various flow 
parameters on the profiles of flow velocity and temperature. By employing similarity transformations, the governing 
equations transform. Subsequently, these transformed equations are numerically solved using the shooting method. The 
investigation uncovers the presence of dual solutions with increasing parameters such as velocity slip, magnetic field 
strength, and suction effect. Various physical parameters are meticulously examined and discussed. Furthermore, numerical 
analyses are performed to ascertain expressions for the skin friction coefficient, Nusselt number, fluid velocity, and 
temperature around the cylinder, with their variations elucidated through graphical representations. 
Keywords: Unsteady Boundary layer flow, Dual solutions, Momentum slip condition, Thermal slip condition. 
 
1. INTRODUCTION: 
As technological advancements continue to progress, the study of steady viscous flow with mass transfer over 
a stretching cylinder has garnered significant attention from scientists and engineers. This is primarily due to 
its wide-ranging industrial applications, including metal mining, extrusion, wire drawing, and the processing 
of copper wire. The flow dynamics and heat transfer characteristics occurring within the boundary layer of 
elongating flat plates or cylinders play a crucial role in fiber technology and extrusion processes. These 
processes are vital across various industrial manufacturing sectors, involving the production of sheeting 
materials made of metals or polymers. The uses vary widely, including cooling metallic plates in a bath, 
controlling boundary layers on material conveyors, aerodynamically shaping plastic sheets, dealing with liquid 
films in condensation processes, producing paper, blowing glass, spinning metal, drawing plastic films, and 
extruding polymers. The overall quality of the end product is significantly influenced by how effectively heat 
is transferred at the stretching surface. Cylindrical slip flow has various applications in microfluidics, 
nanotechnology, and engineering at small scales. Understanding slip flow is essential for the design and 
optimization of microfluidic devices, where the effects of slip can significantly influence the performance and 
behaviour of fluids in confined geometries. Researchers and engineers often use specialized models and 
computational simulations to analyze and predict slip flow behavior accurately. 
 In a groundbreaking study, in recent investigations, multiple researchers [1–4] have examined flow issues 
involving the inclusion of partial slip effects at the extending wall and the presence of a magnetic field 
introduces a novel aspect to the research. Adigun et al. [5] explore the magnetohydrodynamic (MHD) 
stagnation point flow of a viscoelastic nanofluid around an inclined cylinder undergoing linear stretching. 
The presence of dual solutions in unsteady boundary layer flow over a cylindrical sheet has been explored in 
several studies. Bhattacharyya [6] discovered the presence of dual solutions for specific parameters. Crane [7] 
explored the analysis of the flow arising from the stretching of a sheet. Datta et al. [8] proposed potential 
applications involving emergency shutdowns in nuclear reactors through cooling, where specific areas could 
be cooled by introducing a coolant. and Dey [9] discovered the presence of dual solutions for specific 
parameters, delving deeper into the stability analysis of these solutions. Ellahi et al. [10] explored the analysis 
of steady viscous liquid flow, incorporating a nonlinear slip condition, utilizing both analytic solutions and 
numerical solutions for flow analysis. Fadzilah [11] asserts that the numerical solutions maintain consistent 
validity across all dimensionless time intervals, encompassing the transition from the initial unsteady-state 
flow to the eventual steady-state flow, across the entirety of the spatial domain.  
Hayat et al. [12-13] investigated the colloidal properties of ferrofluid when subjected to a magnetic dipole and 
Flow at the stagnation point with non-Fourier heat flux and reactions involving both homogeneous and 
heterogeneous processes were also examined. The impact of magnets on horizontally and vertically elongated 
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cylinders was explored by Ishak et al. [14]. Ishak and Nazar [15] proposed the possibility of achieving similar 
solutions by considering the stretching cylinder with a linear velocity. Jagan [16] investigated Research into 
convective flow, which involves the transfer of heat and mass and has garnered significant attention due to 
its broad applications in numerous fields. This study delves into how nonlinear thermal radiation slip, 
thermal diffusion, and diffusion-thermo effects influence magnetohydrodynamic flow toward a stretching 
cylinder, with a focus on triple stratification (TSF).  Jauhri S and Mishra U [17-19] studied the dual solution 
under second-order slip boundary conditions. Lin and Shih [20-21] concentrated on examining the smooth 
boundary layer and heat transfer surrounding cylinders moving steadily, either horizontally or vertically. 
Mahapatra and Gupta [22] examined the viscous fluid in a two-dimensional, considering the flow over an 
extended surface with heat transfer at a stagnation point. Mahapatra [23] expanded upon this research by 
incorporating the influences of viscoelasticity and magnetic fields, identifying the persistence of dual solutions 
under specific conditions. They acknowledged the challenges in obtaining comparable results due to the 
influence of the cylinder's curvature.  
Mishra. et al [24] examined an analytical solution of the MHD flow of two visco-elastic fluids over a sheet 
shrinking with quadratic velocity. Mukhopadhyay [25-26] conducted a study on the impact of a uniform 
magnetic field on the axisymmetric laminar boundary layer flow of a viscous, incompressible fluid towards a 
stretching cylinder, taking into account heat transfer effects. Nazar [27] also contributed to this area of 
research by studying the transition from the initial unsteady state flow to the final steady-state flow. Several 
researchers [28-31] investigations have delved into the dynamics of magnetohydrodynamics (MHD) in 
unsteady boundary layer flow over a stretching cylinder, examining a range of influential factors. Furthermore, 
as research in this area progresses, it is crucial to critically evaluate the significance of slip flow and 
magnetohydrodynamics in practical engineering and scientific contexts.  
This study aims to investigate the influence of thermal conductivity on the MHD unsteady boundary layer 
flow of a viscous fluid over a stretching cylinder and to provide a better understanding of the fluid flow and 
heat transfer phenomena in industrial and engineering applications. Future studies should aim to address 
the potential discrepancies on theoretical predictions, providing a more comprehensive understanding of the 
implications of slip flow and magnetic field effects in fluid dynamics. The impact of slip conditions, magnetic 
parameters, and other physical and geometric parameters on fluid and temperature profiles has been 
thoroughly analyzed. The influence of magnetic fields on fluid flow, specifically the alteration of flow patterns 
in regions dominated by Lorentz forces, has been elucidated, emphasizing the fundamental aspect of 
magnetohydrodynamics 
2. Mathematical Formulation: We examined the characteristics of a time-dependent viscous, incompressible 
fluid flowing steadily in an axisymmetric manner along a cylinder undergoing elongation, all under the 
influence of a uniform magnetic field, as illustrated in Figure 1. Furthermore, it is assumed that the cylinder's 
diameter varies over time, with the radius undergoing unsteady changes a(t) = a0√1 − βt, where a0 is a 
constant and β is a constant of expansion/contraction. In this depiction, the x-axis represents the cylinder's 
axis, and the r-axis extends radially. We assume a uniform magnetic field with an intensity B0 acting radially. 
To simplify matters, we assume that the magnetic Reynolds number is small, meaning that the induced 
magnetic field can be disregarded compared to the applied magnetic field. Additionally, we posit that the 
temperature at the surface of the cylinder varies over time as a function of both position along the z-axis and 
time, denoted as Tw(z, t), with Tw being greater than the ambient fluid temperature. The governing equations 
for continuity, momentum, and energy in this specific flow setup can be expressed as follows: 

 
Fig.1.Illustration of the physical Model. 
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Where u and v are the velocity components correspondingly aligned with the x-direction and r-direction, ν =
μ

ρ
 is the kinematic-viscosity,  fluid density (ρ), dynamics fluid viscosity coefficient (μ), electrical conductivity (σ 

), uniform magnetic field (B0), thermal-diffusivity (κ) of the fluid, fluid temperature (T). 
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u → 0
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} at  r →  ∞                                                                                                                   (2.5) 

In reference of velocity,  S1 and S2 are slip parameters and kinematic-viscosity is ‘ν’. Here q1 temperature slip 
parameters in reference of temperature and concentration. U =

cx

√1−βt
, is the stretching velocity for ε = 1 and 

shrinking velocity for ε = −1.       
2.1 Coefficient of Skin friction 
The parameters under investigation are the skin friction coefficient Cf =

τw
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2.2 Coefficient of Nusselt number 
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+ hh′′ − Meh′ − S′(f ′ + ξf ′′) + Grθ = 0                                                    (3.2) 

ξt′′ + t′ + Pr(ht′ − h′t − S′(ξt′ + t)) = 0           (3.3) 
Boundary Condition 
h(ξ) = S, h′(ξ) = a + β1h′′(ξ) + β2h′′′(ξ)

t(ξ) = 1 + δ1t′(ξ)
}  at ξ = 0                                                                               (3.4) 
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, a = 1/(−1) for stretching/ shrinking cylinder, a = 0 for 

static-cylinder  and are referred to as the 2nd and 3rd order coefficients of slip parameters.δ1 = q1√
bU0

νa0(1−βt)L
   

are referred to as the slip coefficient of heat transfer. 
Result and Discussion: Equations (3.2) and (3.3) and their associated boundary conditions (3.4) have been 
solved using numerical methods. The analysis reveals the existence of two separate solutions within the 
system. To assess the accuracy of the numerical method used, we compared our current results for the heat 
transfer coefficient (-t'(0)) under some condition.These comparisons are summarized in Table 1, showing 
close agreement with previous studies. Additionally, Table 2 presents numerical data for the stretching 
cylinder incorporating 2nd -order slip boundary conditions.Figures 2(a, b) depict a decline in both (first and 
second) fluid velocity as s increases. In Fig. 3(a), it's evident that the fluid velocity rises as β2 increases, 
suggesting a positive correlation between these variables. Conversely, Fig. 3(b) indicates a decrease in fluid 
velocity with increasing β2. This contrasting trend might arise from varying conditions or factors affecting 
the system. Figures 4(a, b) depict a decline in both (first and second) temperature with increasing β2. 
Additionally, a decrease in the thickness of the velocity boundary layer is noted with increasing s, aligning 
with the concept that boundary layer thickness diminishes with heightened suction.  
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Fig. 2(a & b): Fig.2(a) and 2(b) variation of  h′ vs ξ across various values ‘s’ when  β1 = 0.1, β2 = 0.1, δ1 =
0.1, K = 0.1, Me = 0.1 for the Ist and 2nd solution. 

                        
Fig. 3(a & b): Fig.3(a) and 3(b) variation of h′ vs ξ across various values ‘β2’ when  β1 = 0.1, s = 0.1, δ1 =
0.1, K = 0.1, Me = 0.1 for the Ist and 2nd solution. 

                                
Fig. 4(a & b): Fig.4(a) and 4(b) variation of t vs ξ across various values ‘β2’ when  β1 = 0.1, s = 0.1, δ1 =
0.1, K = 0.1, Me = 0.1 for the Ist and 2nd solution. 
 

                      
Fig. 5(a & b): Fig.5(a) and 5(b) variation of h′′(0) vs D across various values ‘β2’ when  β1 = 0.1, s =
0.1, δ1 = 0.1, K = 0.1, Me = 0.1 for the Ist and 2nd solution. 
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Fig. 6(a & b): Fig.6(a) and 6(b) variation of  t′(0) vs D across various values ‘β2’ when  β1 = 0.1, s = 0.1, δ1 =
0.1, K = 0.1, Me = 0.1 for the Ist and 2nd solution. 
 

                  
Fig. 7(a & b): Fig.7(a) and7(b) variation of t vs ξ across various values ‘Gr’ when  β1 = 0.1, s = 0.1, δ1 =
0.1, ‘β2 = 0.1K = 0.1, Me = 0.1 for the Ist and 2nd solution. 

             
Fig. 8(a & b): Fig.8(a) and8(b) variation of f′′(0) vs S across various values ‘D’ when  β1 = 0.1, s = 0.1, δ1 =
0.1, ‘β2 = 0.1K = 0.1, Me = 0.1 for the Ist and 2nd solution. 

                 
Fig. 9(a & b): Fig.9(a) and9(b) variation of f′(ξ) vs ξ across various values ‘D’ when  β1 = 0.1, s = 0.1, δ1 =
0.1, ‘β2 = 0.1K = 0.1, Me = 0.1 for the Ist and 2nd solution. 
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Fig. 10(a & b): Fig.10(a) and 10(b) variation of f′(ξ) vs ξ across various values ‘D’ when  β1 = 0.1, s =
0.1, δ1 = 0.1, ‘β2 = 0.1K = 0.1, Me = 0.1 for the Ist and 2nd solution. 

                            
Fig. 11(a & b): Fig.11(a) and 11(b) variation of t′(0) vs s across various values ‘D’ when  β1 = 0.1, s =
0.1, δ1 = 0.1, ‘β2 = 0.1K = 0.1, Me = 0.1 for the Ist and 2nd solution. 

                              
Fig. 12: Fig.12 variation of t(ξ) vs ξ across various values ‘Pr’ when  β1 = 0.1, s = 0.1, δ1 = 0.1, ‘β2 =
0.1K = 0.1, Me = 0.1 for the Ist and 2nd solution and Fig. 13 variation of f′(ξ) vs ξ across various values 
‘Pr’ when  β1 = 0.1, s = 0.1, δ1 = 0.1, ‘β2 = 0.1K = 0.1, Me = 0.1 for the Ist and 2nd solution. 

Table1:- The values of h′′(1) & h′′(−1) are determined for various conditions of zero magnetic field 
(Me =0) and Prandtl number Pr = 0.7.                                                                                                                                                                    

      S′  S                                                  Zaimi et al [32]              Z. Abbas et al. 
[33]    

Present Study 

-4.0 0.1                                         3.8407 -24.8822 3.8407 -24.8822 3.84068 -24.88231 

-3.5 3.2990 -17.4731 3.2990 -17.4731 3.2991 -17.4731 

-3.0 2.7397 -11.4552 2.73978 -11.4552 2.73978 -11.45511 

-4.0 1.0 4.7879 -34.6868 4.7879 -34.6868 4.7879 -34.6868 

-3.5 4.2610 -25.3598 4.2610 -25.3598 4.2610 -25.3598 

-3.0 3.7255 -17.5911 3.7255 -17.5911 3.7255 -17.5911 
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Table 2:-Values of [h′′(1)]  and  [−t′(1)]  for several values of different parameter and magnetic parameter 
Me =0.1. 
S β1 Gr Pr D h′′(1) −t′(1) 

-3.5 0.2 0.1 0.7 0.1 -3.9491 -3.0923 

-3.0     -3.5067 -2.7554 

-2.0     -2.6436 -2.1092 

-3.0 0    3.2701 -2.2703 

 0.5    3.7125 -2.2234 

-3.0 1.5    4.5385 -2.1246 

 0.5  1  3.6957 -3.2433 

   5  3.6652 17.517 

   7  3.6632 -24.7422 

Figure 5(a, b) shows that as β2 increases h′′(0) decreases in both the solution, as β2  increases. Moving on to 
Fig. 6(a & b), both subfigures illustrate a decline in fluid temperature as β2increases. This inverse relationship 
implies that as β2, increases, the fluid temperature tends to decrease. These observations provide valuable 
insights into the dynamics of the system under study, highlighting the interplay between fluid velocity, 
temperature, and the parameter β2. In Figure 6(a, b), the influence of  β2  on −t′(0) is observed to decrease 
in the Ist solution; however, for the 2nd solution, it increases. Figures 7(a, b) depict a decline in both (first 
and second) fluid temperature as Gr increases. As the parameter D increases, a noticeable trend emerges where 
the h′′(0) experiences a decrease, as illustrated in Figures 8(a b).This behavior persists up to specific heights, 
after which the deceleration process becomes more gradual. The magnetic parameter D plays a significant role 
in shaping the results, suggesting that the existence of a magnetic field imposes more restrictions on the fluid, 
leading to a decrease in fluid velocity.  
Observations from Fig. 9(a, b) for the Ist solution indicate that as the magnetic parameter D increases, h' 
increases, while decreases in 2nd solution. Concerning the 2nd solution, it's noted that the domain of 
existence for the 2nd solution expands. Figures 10(a & b) depict temperature profiles t(ξ) for different D 
values. Across all cases, the velocity reaches zero at a noticeable distance. In both the solution, temperature 
decreases as the magnetic parameter D increases. Figures 11(a & b) depict temperature profiles t’(0) for 
different D values.In the first solution, it increases as the magnetic parameter D increases while in second it 
decreases.Figure 12 demonstrates that as the Prandtl number increases, fluid temperature decreases in first 
while increases in second. i.e the thermal boundary layer thickness decreases with an increase in the Prandtl 
number. Figure 13 demonstrates that as the Prandtl number increases, fluid velocity decreases in first while 
increases in second.  
 
CONCLUSION:- 
A numerical study was conducted on the unsteady boundary layer flow around a stretching cylinder, revealing 
two distinct solutions: the first (1st) and second (2nd) solutions. It's noteworthy that the domain where the 
2nd solution applies varies with changes in physical parameters. In the 1st solution, variations in suction 
result in the convergence of profiles of h'(ξ) and t(ξ), leading to reduced velocity and thermal boundary layer 
thicknesses. Specifically, the velocity boundary layer thickness decreases with increasing suction parameter in 
the 1st solution, indicating its practical importance. However, the 2nd solution mainly arises as a 
mathematical artifact from the model and doesn't exhibit consistent trends with changes in physical 
parameters. Slip conditions near the boundary where slip occurs cause a decrease in the stream function, 
signifying a reduction in volume flux or flow rate in that specific region. Increasing the magnetic parameter 
can reduce the stream function in regions dominated by Lorentz forces, thereby altering the flow pattern. 
This highlights the magnetic field's influence on fluid flow, a fundamental aspect of magnetohydrodynamics. 
Nonetheless, except for the slip parameter (1st-order), the temperature profiles of both solutions show similar 
trends as physical parameters vary. Additionally, geometric parameters like the curvature parameter and 
Prandtl number affect fluid and temperature profiles. At higher Prandtl numbers, both velocity and 
temperature boundary layers tend to thicken due to increased diffusive effects. 
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