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Abstract: Most contemporary deep learning deployments are plagued by inefficiencies in pipeline setup and data 
mining, especially with large-scale, semi-structured, and unstructured text-based datasets. Non-adaptive nature of 
traditional systems means they need frequent manual interventions to sync data preprocessing with changing model 
needs. The limitations are addressed through this research by proposing AutoDL-Pipeline, an intelligent, modular 
system that combines adaptive pipeline training and automated data integration. It uses the Improved Rüppell's Fox 
Optimizer (IRFO) to dynamically manage data flow operations such as load scheduling, batch optimization, and 
schema flexibility. A hybrid storage architecture is used in order to support both archival requirements and real-time 
analytical processing. In the center of the pipeline, a Multilayer Interactive RoBERTa based Bidirectional 
Convolutional Gated Recurrent Unit (MIRBCGRU) model is used to analyze the effect of data quality on the 
classification result. The system integrates explainability modules such as Local interpretable model-agnostic 
explanations (LIME) to provide complete transparency to both loading and prediction stages. Experiments across 
IMDb, Yelp, Amazon Reviews, and Sentiment140 datasets show statistically significant improvements (p < 0.05) in 
accuracy, time cost, and stability, with Kendall’s W values between 0.74 and 0.78 confirming consistent 
superiority.Finally, the AutoDL-Pipeline not only streamlines end-to-end deep learning pipelines but also offers 
transparent and scalable solutions to practical data pipeline problems—filling an essential gap in automated model 
life cycle management. 
Keywords: Data mining, Deep Learning, Explainable AI, Sentiment Analysis, Data loading automation, Improved 
Optimizer 
 
1. INTRODUCTION 
In today’s data-centric world, the ability to derive meaningful insights from vast and heterogeneous 
datasets and data mining is critical to decision-making across industries. Data mining, as a core analytical 
discipline, plays a pivotal role in identifying hidden patterns, relationships, and trends from structured 
and unstructured data sources. One of its most influential applications is in the area of sentiment analysis, 
where it facilitates the interpretation of human emotions and opinions expressed in natural language—
commonly extracted from platforms such as social media, online reviews, customer feedback, and forums. 
By identifying subjective content, sentiment-oriented data mining empowers businesses, governments, 
and researchers to make informed, sentiment-driven decisions [1].The advancement of Machine Learning 
(ML) and Deep Learning (DL) has significantly expanded the analytical power of sentiment analysis 
systems. These models thrive on large-scale, well-preprocessed datasets that enable them to learn complex 
linguistic and contextual patterns. However, achieving this level of performance is heavily dependent on 
the reliability of the data pipeline—a structured process responsible for acquiring, preparing, transforming, 
and delivering data to learning models. An inefficient pipeline can degrade model accuracy, slow down 
processing, and introduce inconsistencies that misrepresent real-world sentiment patterns [2, 3]. 
Despite the growing importance of data pipelines, current implementations often face challenges related 
to scalability, adaptability, and maintainability. Many are manually constructed and rigid, making them 
poorly suited to handle dynamic environments where data formats evolve rapidly and real-time insights 
are essential. In the context of sentiment analysis, where data is often noisy, unstructured, and context-
dependent, these limitations become even more pronounced. Pipelines that cannot respond to shifts in 
vocabulary, expression styles, or schema changes risk undermining the entire sentiment inference process. 
Moreover, the lack of automation and transparency in traditional pipelines hampers efficiency and 
interpretability. Simultaneously, most DL-based sentiment systems operate as black boxes, offering little 
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to no explanation of how data is processed or how predictions are derived—raising concerns about trust 
and accountability, especially in domains like politics, healthcare, and finance [4, 5]. 
The streamlining of data flow was investigated by Wu J et al. [6] using the incorporation of AutoML 
processes within data pipelines. AutoML was used to enhance pipeline intelligence and flexibility, which 
resulted in improved performance in ML activities. Attempts were made to automate and optimize data 
management, allowing pipelines to adapt to changing data ecosystems. Consequently, faster model 
creation and creative solutions to difficult data problems were facilitated across different fields. Haddad 
O et al. [7] combined DL with batch and streaming analytics for sentiment forecasting. Distributed 
platforms such as Hadoop and Spark were utilized to preprocess big streaming data using cleaning, 
reduction, and optimization. NLP methods were employed for analyzing short text data to derive semantic 
context and sentiments. Word embeddings were created using GloVe and passed on to convolutional 
and recurrent neural networks to enhance prediction accuracy. A 41-factor taxonomy of factors impacting 
data pipeline quality was proposed by Foidl H et al. [8] in a multivocal literature review and was verified 
through interviews of eight data engineering experts. The factors impacting were organized under five 
broad themes: data, infrastructure, lifecycle management, development and deployment, and processing. 
Root causes of data issues were further explored in terms of their occurrences in various phases of data 
pipelines. Common issues faced by developers in data processing were determined via mining GitHub 
repositories and Stack Overflow discussions.A general architecture, named as FRTSPS, was suggested by 
Deepthi BG et al. [9] based on the popular Lambda architecture for big data processing. It was realized 
in a distributed computing setup, where Apache Flink was utilized for data processing activities. Flink was 
noted for handling real-time and historical data streams together. Its stateful stream processing was 
discovered to provide higher scalability, flexibility, high throughput, and lower latency than other models 
of stream processing.A new autonomous ETL pipeline architecture, FlowETL, was proposed by Di Profio 
M et al. [10] to standardize and prepare input datasets automatically according to a target format specified 
by a user. The system was implemented as a network of intercommunicating components that 
collaborated to accomplish data transformation objectives. A Planning Engine was used to create 
transformation plans by examining paired sets of source and target datasets as examples. These plans were 
run by an ETL employee on the entire dataset. Monitoring and logging functionality was added to 
guarantee observability and traceability across the pipeline run. 
Avornicului MC et al. [11] created a modular and high-performance prototype of real-time event 
extraction to overcome unstructured data processing difficulties in areas such as crisis management and 
social media monitoring. Methods such as TF-IDF, LSI, and NER were combined with data mining 
techniques to enhance relevance scoring, clustering, and entity recognition. Contrary to transformer-
based models limited by latency, this hybrid pipeline was developed to provide higher scalability and real-
time performance. An end-to-end framework was presented by Alotaibi A and Nadeem F [12] that 
incorporated unsupervised BERTopic-based aspect identification with sentiment classification through a 
fine-tuned CAMeLBERT model, and summarization through a fine-tuned AraBART model. A large 
Arabic traffic services dataset was established, and a whole pipeline for aspect identification, sentiment 
analysis, and summarization was used without manual annotation. A platform was created by Korontanis 
I [13] in order to fulfill deployment and scalability requirements through the use of technologies like K3s, 
RabbitMQ, and KEDA. It was discovered to be superior to conventional systems by providing enhanced 
flexibility and user experience. Automated configuration was utilized in order to simplify the deployment 
of user-specified functions, which increased efficiency and minimized manual configuration 
requirements. This enabled developers to concentrate on developing functions without handling intricate 
configurations. Orange software was tested by Dobesova Z [14] to determine whether it can be used in 
schools when integrated with ArcGIS Pro to process spatial data. Through the application of Moody's 
Physics of Notation, its visual vocabulary was analyzed on all nine principles and found to have high 
cognitive effectiveness because of semantic transparency and appropriate dual coding. Practical exercises, 
including clustering the cafés in Olomouc and the analysis of European towns in land use, were shown 
to geoinformatics students and teachers, demonstrating the program's capability to teach ML exercises. A 
framework based on DL was introduced by Zhang Z [15] to classify UX user needs based on the Kano 
model and text analysis. User needs of Gen Z LEGO users were gathered, categorized through surveys, 
and utilized to train models using annotated online reviews. The RCNN model demonstrated better 
performance, allowing effective classification in a mature UX tool. An overview of the existing review is 
displayed in Table 1. 
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Table 1: Summary of Reviewed Works 

Refs 
Technologies / Tools 
Used 

Key Findings Limitations 

[6] 
AutoML, Data 
Pipelines 

AutoML improved adaptability 
and intelligence in pipelines, 
accelerating model 
development. 

Scalability and adaptability in 
highly dynamic environments 
were not fully validated. 

[7] 
Hadoop, Spark, NLP, 
GloVe, CNN, RNN 

Enabled sentiment forecasting 
by integrating DL with batch and 
streaming analytics. 

Limited to short text; 
dependency on quality of word 
embeddings. 

[8] 
Multivocal Literature 
Review, Expert 
Interviews 

Proposed a 41-factor taxonomy 
affecting pipeline quality under 
five themes. 

Empirical validation across 
industries was minimal. 

[9] 
Apache Flink, Lambda 
Architecture 

Flink-based FRTSPS achieved 
real-time and historical stream 
processing with high 
throughput. 

Generalization to non-Lambda 
architectures remains 
unexplored. 

[10] 
FlowETL, ETL 
Planning Engine 

Autonomous ETL pipelines 
achieved standardization and 
transformation with traceability. 

Requires example-based training; 
limited automation for highly 
diverse datasets. 

[11] 
TF-IDF, LSI, NER, 
Data Mining 

Real-time event extraction 
prototype showed scalability and 
improved unstructured data 
handling. 

Limited use of deep transformer 
models due to latency. 

[12] 
BERTopic, 
CAMeLBERT, 
AraBART 

Built a full Arabic NLP pipeline 
for aspect detection, sentiment, 
and summarization. 

Dataset and findings restricted to 
Arabic language and traffic 
service domain. 

[13] 
K3s, RabbitMQ, 
KEDA 

Enabled scalable function 
deployment with simplified 
auto-configuration. 

Limited evaluation in large-scale 
or high-load environments. 

[14] 
Orange, ArcGIS Pro, 
Physics of Notation 

Demonstrated Orange’s 
applicability in spatial data 
teaching with high cognitive 
effectiveness. 

Targeted only educational 
settings; lacks industrial 
deployment insight. 

[15] 
RCNN, Kano Model, 
DL 

UX needs of Gen Z classified 
accurately using RCNN-based 
tool. 

Domain-specific to LEGO users; 
model generalizability not 
discussed. 

1.1 Research gaps 
Existing data pipeline automation and training models have a number of key limitations. Foremost among 
these is their inability to be easily adaptable, scalable, and have an intelligent self-optimization 
component—especially in environments where unstructured, large-volume, and heterogeneous data 
sources are involved. Human configuration is still a persistent bottleneck with the need for extensive 
intervention due to the inability of completely autonomous transformation within those frameworks. 
Current solutions also have poor interpretability and rigid automation structures that constrain 
performance in fast-changing data settings.Also, most methods are based on static templates or examples 
of ETL workloads, which makes them ineffective for a variety of datasets. Event processing pipelines for 
real-time tend to shun deep transformer models due to latency issues, thus sacrificing performance for 
semantic-intensive tasks. Additionally, pedagogically efficient tools, though cognitively useful, are seldom 
production-scale workload-optimized. There is a strong need for filling the gap in integrating intelligent 
training methodologies, optimization methods, and explainable AI (XAI) into pipeline systems. An end-
to-end framework to cover these needs—tested on real-world tasks like sentiment classification—is a gap 
still unmet. 
1.2 Research questions and hypothesis 
Research questions: 
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i.How can automation be efficiently incorporated into DL pipelines in order to minimize human 
involvement and maximize model accuracy? 

ii.How does IRFO contribute to real-time data adaptability and batch optimization? 
iii.How does the integration of XAI increase the interpretability of the data pipeline as well as model 

predictions? 
iv.Can a data lake-warehouse hybrid architecture efficiently handle both archival and active processing 

within DL workflows? 
Researchhypothesis: 

i.The incorporation of an automated loading process through the IRFO has a substantial impact on data 
throughput, pipeline latency, and response to schema changes compared to static loading methods. 

ii.Using a hybrid data lake-warehouse architecture enhances archival productivity and real-time data 
availability, catering to varied DL workflows better than one-mode storage systems. 

iii.Sentiment classification using the MIRBCGRU model results in better performance (accuracy, precision, 
recall, F1-score, and AUC-ROC) than traditional DL models in terms of handling contextual and 
sequential dependencies. 

iv.Combining Explainable AI elements like LIME into the pipeline increases user interpretability and 
transparency of the data processing steps and ultimate model predictions, promoting trust and 
accountability within automated decision-making systems. 
1.3 Research Contributions 
➢ Development of AutoDL-Pipeline: This work presents a novel modular framework that seamlessly 
integrates data ingestion and pipeline training. Unlike traditional systems that require manual setup and 
tuning, AutoDL-Pipeline automates the entire data flow, thereby reducing human intervention and 
minimizing configuration errors across varied data formats. 
➢ IRFO for Data Loading Optimization: The suggested strategy uses the IRFO to deal with batch 
sizing dynamically, load scheduling dynamically, and schema fluctuation dynamically. This strategy is 
more adaptable and efficient compared to traditional static data loading approaches that predominantly 
fail in dynamic environments with varying data structures. 
➢ Improved Sentiment Classification through MIRBCGRU: A novel DL framework called 
MIRBCGRU is utilized to improve the capturing of semantic and temporal properties from text data. 
This remedies the shortcomings of prior models that fare poorly with either contextual richness or 
temporal dependence. 
➢ Hybrid Data Lake-Warehouse Architecture: The pipeline output is stored in a dual-mode system. 
This mode is supporting long-term archiving and has real-time query processing capacities. Traditional 
single-mode storage systems are beaten out by this architecture because it ensures scalability, flexibility, 
and rapid access of relevant data. 
➢ Explainability with LIME: To meet the lack of transparency in automated pipelines, this research 
includes the use of XAI with LIME, making it easy to interpret both model predictions and preprocessing 
choices. This is a big leap ahead of black-box systems with limited insight into their internal workings. 
1.4 Research organization 
Section 2 presents the proposed methodology in detail, outlining the design, underlying principles, and 
implementation steps. Section 3 provides the experimental results obtained through the application of 
the proposed approach, while Section 4 offers a critical discussion, interpreting the findings and 
comparing them with existing works. Finally, Section 5 concludes the study by summarizing key 
contributions and insights, and outlines potential directions for future research. 
2. Materials and Methods 
The suggested approach introduces AutoDL-Pipeline, a smart and modular framework meant to simplify 
and refine DL processes through the automation of data pipeline and loading operations.  
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Figure 1: Workflow of proposed methodology 
The proposed approach highlights the importance of effective data management in training strong 
models, in which the pipeline carries out tasks like tokenizing raw text, mapping tokens to numerical 
feature vectors, and training predictive models based on these features. The architecture incorporates a 
Python-driven automation manager with MySQL/PostgreSQL integration for effortless scheduling and 
execution of data loading. It provides for reactive modifications by utilizing APIs and cloud connectors 
to retrieve data from unstructured and semi-structured sources. For achieving performance enhancement, 
the IRFO algorithm is used for adaptive batch sizing, dynamic scheduling, and schema-aware loading—
providing resiliency against data volatility. Also integrated into the pipeline is a data profiling and anomaly 
detection module to ensure consistency and reliability throughout the data flow, and all output routed 
into a hybrid lake-warehouse structure well-suited for archival as well as real-time applications. Figure 1 
illustrates the block diagram of proposed methodology.For the testing of the trained pipeline, the system 
employs a new DL architecture referred to as MIRBCGRU, particularly designed for sentiment 
classification tasks. For interpretability and faith in automated processes, the last layer of the pipeline 
includes XAI methods, specifically LIME, which emphasizes major attributes and data transformation 
choices involved in data loading, and the rationale behind predictions produced by the model.  
2.1 Auto DL framework and data collection 
Raw, structured, or semi-structured input data is fetched from different sources based on API connectors 
and cloud-based interfaces orchestrated from a Python+MySQL/PostgreSQL backend. The automated 
loaders of this design will support scheduled and reactive operations in order to acquire timely and 
adaptive data gathering. Such a design does not require manual intervention, and thus, allows for 
continuous data ingestion that aligns with real-world data stream behaviors. After data retrieval, 
PyCaretflows the data into the AutoDL pipeline, including clever data screening, feature selection, and 
transformation, all in an automated fashion. Abstraction of data preprocessing complexities allows 
PyCaret to expedite rapid experimentation and model readiness without the need for heavy manual 
configurations, assuring uniform formatting and optimization of the recovered data before training 
begins. 
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2.2 Data preprocessing 
Preprocessing transforms raw text input to a structured numerical representation appropriate for 
automated examination and model training in the outlined framework with the following steps. 
➢ Tokenization 
Text pre-processing starts with the splitting of raw input sentences into word units, a function called 
tokenization. From a given unstructured sentence S , tokenization returns a token sequence 

 nttttT ,...,,, 321= , where every it  represents a token from the sentence. Tokenization serves to split 

the free flow of text into computationally processable linguistic units. 
➢ Vector Representation 
After tokenization, every token it is converted to a vector of numbers through an embedding function V

, i.e., ( ) d

ii tVv = , with d  being the dimensionality of the embeddings. This conversion enables 

textual items to be embedded into a continuous vector space while maintaining semantic word 
relationships. 
➢ Feature Matrix Construction 
When all tokens have been embedded, they are packed into a structured matrix 

  dnT

nvvvX = ,...,, 21 , which is used as input to the downstream DL model. Each row of this 

matrix is a single word vector, and the entire matrix encodes the semantic composition of the sentence 
in a format trainable for further [16]. This comprehensive transformation of raw text into a numerical 
feature matrix allows the automation framework to process massive-scale unstructured text data 
effectively. 
2.3 Data loading automation 
Here, data loading automation has been utilized as a central operational module that oversees continuous, 
scalable ingestion of semi-structured and unstructured textual data from distributed sources into the 
model pipeline. The aim is to have incoming data acquired efficiently, formatted appropriately, and 
reliably stored for further processing, without needing manual intervention. 
The automation framework is designed employing a Python-based controller coupled with a relational 
backend of PostgreSQL. It utilizes a microservice-driven scheduler that specifies and handles both periodic 
and event-driven data ingestion operations. All ingestion jobs are parameterized according to source 
features, file types, anticipated schema patterns, and time requirements. Data sources are set as endpoint 
connections employing HTTP-based API interfaces, OAuth2.0-authenticated, and coded for direct use 
employing the requests and sqlalchemy Python libraries. Data loading works by utilizing a long-lived 
connection manager that retrieves records in a constant batch size. Each batch is read as JSON with a 
fixed schema definition and is then passed directly through a slim parsing engine that converts key-value 
pairs into a structured table-like format. The converted records are stored briefly in a staging buffer, 
implemented as an in-memory PostgreSQL schema, to enable validation routines before committing to 
final persistence. 
The schema definition is dataset-specific and version-controlled for consistency. For instance, textual 
sentiment datasets are standardized to a schema of the fields: review_id, review_text, label, timestamp, 
and source_id. Each record is validated against this schema using strong data type constraints and length-
checking rules with pydantic and marshmallow libraries. After parsing and validation, the data is serialized 
into the main data warehouse tables via a transactional bulk-insert procedure. Atomic batch commits are 
used to ensure transactional integrity, with failure-handling mechanisms having retry logic, logging, and 
rollbacks based on constraint violation. A concurrent logging service, using Python's logging module and 
PostgreSQL's NOTIFY and LISTEN features, monitors each data packet processed, including timestamps 
and validation status, for auditability. 
To ensure freshness of data and reduce latency between data creation and model availability, the 
automation manager implements a synchronization clock. The clock dynamically changes the rate of data 
pulls according to the identification of new records or upstream API triggers. The system provides for 
parallel data ingestion across multiple sources, employing thread-based isolation using Python's asyncio 
and aiohttp libraries, thus avoiding blocking operations and optimizing the usage of resources. Initial data 
consistency is checked prior to final persistence. Checksum verification, duplicate detection via MD5 
hashes of review_text, and null value scanning are performed. All invalid records are transferred to a 
quarantine table for manual examination or automated reprocessing [17]. 
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2.3.1 Optimization ofData loading automation 
The IRFO employs a multi-objective optimization algorithm in the optimization of the data loading 
process, inspired by the adaptive foraging behavior by Rüppell's fox [18]. It intelligently adjusts the batch 
size, the schedule of refresh intervals, and also responds to changes in the schema to present solutions to 
a multi-objective optimization problem. The objective is to concurrently minimize loading latency T , 
maximize data throughput  , and provide data integrity by efficiency of anomaly detection A . The 
objective function is formulated using eq (1): 

( ) ATxO  +−=min                                                                                                   (1) 

whereT  is the total data loading time (in seconds),   denotes the amount of data processed per cycle (in 
MB/s), A  is the anomaly detection coverage (as a percentage),  ,, are operational priority-dependent 
weight coefficients. 
To adapt best parameters over time, IRFO utilizes a memory-guided search process based oneq (2): 

( ) ( ) +−+=+ 3211 sin rxxrrxx tbesttt                                                                           (2) 

where tx  is the current loading configuration at iteration t , bestx is the best solution up to now,

 1,0,, 321 rrr are randomization parameters, is a small perturbation factor used to escape out of local 

optima. 
A data profiler module is added to the pipeline to examine, standardize, and authenticate the data being 
received. The profiler contains: schema inference and type-checking, detection of null or damaged values, 
range and distribution analysis and detection of outliers using standard statistical eq (3): 



−
=
x

z                                                                                                                     (3) 

where  is the average and  is the standard deviation of the observed attribute. Observations with 

3z  are anomalies and are treated accordingly, either by rejection or transformation. 

After validation, the cleaned and organized data is routed to a hybrid storage layer, achieving the data 
lake's scalability along with the structured query benefits of data warehouses. The two-system is capable 
of both long-term archive storage of raw inputs and rapid retrieval of preprocessed, structured data for 
training or inference.This optimized, and automated data-loading process facilitates robustness, flexibility, 
and reliability and provides the foundation for continuous learning pipelines and intelligent decision-
support systems. 
2.4 Data Pipeline Training Evaluation Using MIRBCGRU 
The training evaluation stage of the suggested automated data pipeline is carried out using a new DL 
framework called MIRBCGRU and it is visually illustrated in Figure 2.  

Input

[CLS] TOK 1 ... TOK M [SEP] [SEP] TOK 1 ... TOK N [SEP]

RoBERTa

CNLI T1 ... TM TSEP TSEP T1 ... TN TSEP

... ...

GRU GRU GRU

GRU GRU GRU

Output

Premise Hypothesis

Embedding Layer

Forward GRU

Backward GRU

Concatenate

Dense Layer

 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 7, 2025 
https://theaspd.com/index.php 

591 
 

Figure 2: Architecture diagram of MIRBCGRU 
The model is specifically crafted to function as a downstream evaluation system, supporting accurate 
quantification of the impact imposed by data loading quality, consistency, and schema integrity on 
sentiment classification task performance. The theoretical basis of this model combines several 
representational paradigms: contextual embeddings, recurrent sequential modeling, local feature 
abstraction, and interactive attention-based fusion. These synergize together to make both the lexical 
semantics and syntactic structure of text data fully available for use in the downstream prediction process. 
The power of MIRBCGRU in such a context rest in its ability to respond sensitively to differences or 
deviation of the input data—be it due to noise, partial loading, or schema disparities introduced during 
the ingestion process—making it a perfect analytical proxy to check for pipeline resilience.More formally, 
let the raw input sentence is represented as a sequence of tokens as in eq (4): 

 nxxxX ,...,, 21=                                                                                                               (4) 

Each token ix  is projected into a high-dimensional contextual vector by the RoBERTa encoder as in eq 

(5): 
( ) dnEXRoBERTaE = ,                                                                                 (5) 

These embeddings E  are then passed to a Bidirectional GRU, where every hidden state th  is calculated 

by gated mechanisms as in eqs (6-8): 
( ) ( )rtrtrtztztzt bhUeWrbhUeWz ++=++= −− 11 ,                                             (6) 

( )( )htththt bhrUeWh ++= −1tanh
~

                                                                               (7) 

( ) ttttt hzhzh
~

1 1 +−= −                                                                                             (8) 

The forward and backward states are concatenated to preserve bidirectional context as in eq (9): 

   nn hhhhH


,...,,..., 11 =


                                                                                              (9) 

Then, the BiGRU output is fed into a one-dimensional convolutional layer for extracting strong local 
features and patterns in the token sequence. Mathematically, this is expressed using eq (10): 

( )ctct bhWLUC += Re                                                                                               (10) 

These representations are fed through several interactive fusion layers where the inter-token dependencies 
are modulated by dynamic attention coefficients ij  as in eqs (11, 12): 

( )( )

( )( )
=

=
n

k

ki

ji

ij

hhscore

hhscore

1

,exp

,exp
 (11) 














= 

ij

jijii hhFf ,                                                                                                     (12) 

whereF  is a fusion function combining both the residual and additive components. 
Lastly, the pooled representation is fed into a softmax classifier as in eq (13): 

( )( )oo bFAggregateWSofty += maxˆ                                                                       (13) 

where  nfffF ,...,, 21=  is the final fused representation sequence. 

Thus, MIRBCGRU[19, 20] facilitates uncovering latent inefficiencies in data preprocessing, absent 
schema mappings, or temporal misalignments introduced upon loading. The incorporation of such a 
model into the evaluation phase guarantees that performance measurement of the data pipeline is not 
only in terms of throughput or latency, but also in how it affects downstream AI reasoning quality. This 
presents a more profound, model-sensitive form of pipeline validation compared to simply depending on 
surface-level data integrity metrics. 
2.5 Interpretability analysis using LIME 
In the suggested framework, the incorporation of LIME [21] for interpretability is adapted to the model 
architecture and working procedure of the MIRBCGRU model. The preprocessed text input is passed 

into the MIRBCGRU model, which converts every input sample dx  into a latent representation of 
features via several interaction layers in the form of attention-enhanced RoBERTa encoders, 
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convolutional layers for local pattern extraction, and bidirectional GRU units for sequential dependency 
modeling. The output prediction ( ) xf  is a sentiment polarity or class probability. 

In order to explain these results through LIME, the system computes perturbed examples  321 ,...,, zzz

within the local neighborhood of the input x  by comprehensively modifying or concealing words that 
remain syntactically correct. The perturbed example iz  is then fed into the MIRBCGRU model to get 

the prediction ( )izf , creating a local instance-output dataset. LIME then fits an interpretable linear 

model ( ) bzzg +=   using weighted least squares, where the proximity weight 

( )
( )














−=

2

2
,

exp


 i
ix

zxD
z  ensures that closer neighbors in input space have more influence on the 

surrogate model. 
The optimization problem solved during this process by eq (14): 
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where ( )g regulates the complexity of g  to ensure interpretability. The ensuing weight vector w  
emphasizes the local contribution of every token or input feature towards the choice of the MIRBCGRU 
model for that particular instance. The weights act as saliency scores, and they identify impactful tokens 
along with contextual dependencies learned by the model. 
Through this local approximation, LIME allows for fine-grained examination of the model's token-level 
sensitivity and boundary behavior, enabling a transparent view of how components of input influence 
sentiment predictions. This capability of interpretability even allows it to diagnose changes in model 
behavior based on changes in data preprocessing or loading logic. In this manner, LIME's incorporation 
into the architecture of MIRBCGRU not only de-mystifies deep neural inference but also offers an 
effective diagnostic methodology for pipeline performance under dynamic operational conditions. 
3. Experimental analysis and evaluation 
Experimental testing of the suggested AutoDL-Pipeline was performed in a Python environment, major 
libraries being PyCaret, scikit-learn, TensorFlow, Keras, NLTK, and Pandas. The pipeline was 
implemented on a machine with an Intel Core i7 processor, 32GB RAM, and an NVIDIA RTX 3090 
GPU, running Ubuntu 22.04 LTS. PyCaret provided end-to-end AutoDL processing such as smart feature 
selection, transformation, and model comparison. The parameters used for the implementation is 
highlighted in Table 2. 
Table 2: Parameter settings 

Parameters Range/ Library Used 
Programming Language Python 3.10 
AutoDL Library PyCaret 
DL Framework TensorFlow 2.14 / Keras 
Optimizer IRFO 
Loss Function Categorical Cross-Entropy 
Learning Rate 0.001 
Batch Size 64 
Number of Epochs 100 
Model Architecture MIRBCGRU 
GPU NVIDIA RTX 3090 (24GB) 
OS Ubuntu 22.04 LTS 
Backend Database MySQL / PostgreSQL 

3.1 Benchmark Datasets Used for Training 
To ascertain the performance and the generalizability of the MIRBCGRU, the system is trained on a 
number of universally accepted sentiment analysis datasets as indicated in Table 3. 
Table 3: Datasets description 

Datasets Description Type Labels 
IMDb Reviews 
[22] 

Contains 50,000 movie reviews 
labeled as positive or negative 

Movie Reviews Binary (Pos/Neg) 
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Yelp Polarity 
[23] 

Contains Yelp business reviews 
with positive or negative sentiments 

Business Reviews Binary (Pos/Neg) 

Amazon 
Reviews [24] 

Product reviews collected from 
Amazon, categorized into 
sentiment classes 

Product Reviews Binary (Pos/Neg) 

Twitter 
Sentiment140 
[25] 

Tweets labeled using emoticons as 
sentiment indicators (positive, 
negative, neutral) 

Social Media Posts 
Ternary 
(Pos/Neg/Neu) 

3.2 Performance evaluation 
The AutoDL-Pipeline's performance is strictly evaluated using standard evaluation metrics like accuracy, 
precision, recall, specificity, F1-score, AUC-ROC, and processing time, thus confirming its effectiveness 
in providing scalable, transparent, and high-performing AI systems. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3: Confusion matrices of (a) IMDb, (b) Sentiment140, (c) Amazon Reviews, (d) Yelp Restaurant 
datasets 
The confusion matrices of the proposed model using 4 datasets are illustrated in Figures 3(a-d). On IMDb, 
accuracy is clearly 91.79%, having strong diagonal dominance and few off-diagonal values, demonstrating 
balanced sensitivity and specificity. Sentiment140 is accurate in the 90–92% range even with massive, 
noisy inputs, and the restricted misclassification rates verify the robustness of the method to colloquial 
language. Amazon Reviews are accurate in the 89–92% range, with more context limiting false positives 
and false negatives to relatively small percentages. Yelp Restaurant ratings attain accuracy within the 91–
93% range, wherein rare off-diagonal counts exhibit the model achieving a balance between signals from 
different dimensions such as taste, service, and atmosphere. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 4: Accuracy and loss curves analysis using (a) IMDb, (b) Sentiment140, (c) Amazon Reviews, (d) 
Yelp Restaurant datasets (X axis---0-100 epochs), (Y axis---0.0-1.0 Accuracy and loss) 
The loss curve and accuracy analysis of the IMDb dataset in Figure 4(a) reveals the training accuracy rising 
from around 0.45–0.50 in the beginning epochs to around 0.95–0.97 at epoch 60, finally settling around 
0.96–0.98 at the 100th epoch. The validation accuracy follows pretty closely, topping off at around 0.96, 
with the loss reducing from ~0.60 initially to ~0.04–0.06 at convergence. This slight gap between training 
and validation performance suggests little overfitting, with the gain credited to the method proposed to 
quickly pick up sentiment-laden n-grams and incrementally increase classification margins without 
fluctuations. On the Sentiment140 data in Figure 4(b), accuracy increases smoothly from around 0.40–
0.45 to 0.91–0.93 and loss decreases from 0.60–0.62 to 0.06–0.08, with the last difference between 
training and validation accuracies maintained at ≤0.02, demonstrating excellent generalization. The 
stability of the optimizer and learning at token level facilitate successful polarity identification in the 
presence of slang and emojis. In the case of Amazon Reviews in Figure 4(c), with longer and more 
contextual sentences, the starting accuracy of 0.43–0.48 rises to 0.95–0.97 towards the end, and the loss 
decreases to ~0.05–0.07; the gradual drift reflects the capacity of the architecture to stabilize gradients 
for extended sequences without overfitting. For Yelp Restaurant in Figure 4(d), accuracy increases from 
0.44–0.50 to 0.94–0.96 and loss reduces from 0.58–0.60 to 0.06–0.08, demonstrating that even with 
multi-aspect sentiment, the approach effectively combines heterogeneous cues, increasing margins 
without sacrificing generalization. 
3.3 Statistical analysis 
To rigorously validate the performance improvements achieved by the proposed model within the 
AutoDL-Pipeline framework, statistical significance testing was performed across multiple datasets and 
evaluation metrics. Non-parametric methods, including Friedman’s test and Nemenyi post-hoc pairwise 
comparisons, were employed to ensure that the observed gains are both consistent and statistically 
reliable. 
Table 4: Friedman Test Results for the MIRBCGRU model 

Metrics χ² Statistic p-value 
Avg. 
Rank  

Kendall’s W 
Significance 
(α=0.05) 

Training Accuracy 11.92 0.0173 1.15 0.74 Significant 

Testing Accuracy 13.10 0.0107 1.20 0.78 Significant 
Training Time 12.48 0.0139 1.10 0.76 Significant 
Testing Time 12.96 0.0113 1.18 0.75 Significant 

The Friedman test in Table 4 was applied to evaluate performance differences between MIRBCGRU and 
baseline optimizers across IMDb, Yelp, Amazon, and Sentiment140 datasets for the four core metrics — 
training accuracy, testing accuracy, training time, and testing time. All p-values were below the 0.05 
threshold, leading to the rejection of the null hypothesis of equal performance. MIRBCGRU consistently 
ranked first in all metrics, with Kendall’s W values between 0.74 and 0.78, indicating strong consistency 
in its superior performance across datasets. The improvements in accuracy metrics confirm the model’s 
predictive strength, while the substantial time reductions validate the optimization’s efficiency. 
 
 
 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 7, 2025 
https://theaspd.com/index.php 

595 
 

3.4 Comparison of optimization algorithms for data loading  
The proposed optimization method is compared with other recent optimization algorithms, namely the 
Rüppell’s Fox Optimizer (RFO) [18], Dung Beetle Optimization Algorithm (DBOA) [26], Lion Fish search 
Optimization Algorithm (LFOA) [27], and Goat Optimization Algorithm (GOA) [28]. 

 
Figure 5: Fitness curve comparison (X axis---0-700 fitness function value), (Y axis---0-1000 iterations) 
The comparison of fitness curves in Figure 5 reveals the suggested optimizer beginning around 100 in 
fitness value, climbing steeply to 300–350 in a span of approximately 400 iterations, and plateauing at 
380–400 between 700–1000 iterations.Competing strategies plateau sooner and at smaller values, often 
300–350, which means less efficient exploration and exploitation. This convergence behavior attests to 
the fact that the search process is able to find high-quality parameter regions early on and refine them 
efficiently, culminating in the superior accuracy, loss, and training time performance reported in the 
previous figures. 
Table 5: Nemenyi Post-hoc Pairwise Comparison (IRFO vs. Baselines) 

Metric 
IRFO vs. RFO 
[18] (p-value) 

IRFO vs. 
DBOA [26] 
(p-value) 

IRFO vs. 
LFOA [27] (p-
value) 

IRFO vs. 
GOA [28] (p-
value) 

Significant 
Pairs (α=0.05) 

Training 
Accuracy 

0.021 0.019 0.018 0.020 All 

Testing 
Accuracy 

0.019 0.018 0.017 0.019 All 

Training Time 0.024 0.021 0.019 0.020 All 
Testing Time 0.022 0.020 0.018 0.019 All 

The Nemenyi post-hoc test in Table 5 was conducted after the Friedman analysis to determine whether 
IRFO’s improvements over each baseline were statistically significant for the four selected metrics. In all 
cases, p-values were below 0.05, indicating that IRFO significantly outperformed every baseline in training 
accuracy, testing accuracy, and both training and testing times. This confirms that IRFO’s advantages are 
consistent, robust, and extend to both predictive performance and computational efficiency. 
3.5 Comparative analysis with state-of-the-art 
The performance of the proposed training model MIRBCGRU is compared with recent existing models 
utilizing that datasets like ConvBiGRU [29], Fuzzy HCN Net [30], TRALSem [31], MPNet-GRUs [32], 
ReLU-GRU [33], DPTN [34], SBAF-CNN [35], Bert-DMF [36], ABSA [37], RoBERTa-BiLSTM [38], DK-
HDNN [38] and RoBERTa-BiGRU [38]. 
Figure 6(a) shows the performance of different models on the IMDb dataset. The Proposed MIRBCGRU 
model has the best accuracy of 99.12%, which is higher than the closest rival, RoBERTa-BiGRU, with 
98.08%. Precision, recall, and F1-score for the proposed model were also the best at 99.18%, 99.10%, 
and 99.15%, respectively. In addition, the proposed model had a training time of 165.4 seconds, much 
less than RoBERTa-BiGRU's 315.8 seconds and MPNet-GRUs' 1193.2 seconds, demonstrating its 
computational efficiency. Figure 6(b) shows the results for the Sentiment140 dataset. In this case, 
proposed (MIRBCGRU) model resulted in 98.25% accuracy, significantly greater than ReLU-GRU's 
96.52% and TRALSem's 91.42%. Precision and recall were optimized to 98.30% and 98.20%, which 
resulted in an F1-score of 98.28%. The proposed model also proved to be efficient with a training time 
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of 310.6 seconds, beating RoBERTa-BiLSTM's 531.8 seconds in terms of speed while providing better 
accuracy. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure: Performance comparison using (a) IMDb, (b) Sentiment140, (c) Amazon Reviews, (d) Yelp 
Restaurant datasets 
Figure 6(c) shows the comparative assessment on the Amazon Reviews dataset. Proposed (MIRBCGRU) 
achieved 99.25% accuracy, beating out RoBERTa-BiGRU's 98.56% and ConvBiGRU's 95.42%. 
Precision (99.30%), recall (99.20%), and F1-score (99.27%) were all higher than all baselines. The training 
time was 170.2 seconds, significantly lower than RoBERTa-BiGRU's 310.5 seconds and SBAF-CNN's 
275.4 seconds, reflecting improved balance between accuracy and efficiency. Figure 6(d) shows 
performance on the Yelp Restaurant dataset. Proposed (MIRBCGRU) made an accuracy of 99.18%, 
beating RoBERTa-BiGRU's 98.35% and ABSA's 97.28%. It also topped precision at 99.22%, recall at 
99.15%, and F1-score at 99.20%. The training time was 180.7 seconds, which is significantly faster than 
RoBERTa-BiGRU's 320.8 seconds and ABSA's 340.6 seconds, once again highlighting computational 
advantages.The advantage of the presented MIRBCGRU model for all datasets lies in its hybrid recurrent-
biGRU design augmented with optimized attention modules. The integration of the two allows for 
improved contextual feature extraction from short and long sequence texts, efficient management of 
domain-specific shifts in sentiment, and reduction of overfitting using optimized parameter adjustments. 
The design of the model also avoids redundant calculations, resulting in faster training times while not 
diminishing classification accuracy.  
Table 6: Performance Analysis of Computational Efficiency and Resource Utilization 

Model 
FLOP
s (G) 

Param
s (M) 

Data 
Size 
(MB
) 

Inferenc
e Time 
(ms) 

Loader 
Latenc
y (ms) 

GPU 
Utilizatio
n (%) 

Memor
y Usage 
(GB) 

Data 
Prefetch 
Efficienc
y (%) 

RoBERTa-
BiGRU 

14.2 110 512 25.4 8.2 84 6.2 88 

ConvBiGRU 12.8 95 512 24.0 7.1 85 6.0 90 
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RoBERTa-
BiLSTM 

14.5 112 512 26.2 8.0 84 6.4 87 

Fuzzy HCN 
Net 

15.0 120 512 28.7 9.3 82 6.8 85 

MIRBCGR
U (Proposed) 

12.4 93 512 22.8 5.6 89 5.8 94 

The proposed MIRBCGRU in Table 6 superior performance by optimizing both computational 
complexity and data handling efficiency. Its architecture is designed to minimize redundant operations, 
leading to a lower FLOPs count (12.4 G) and reduced parameter size without sacrificing representational 
capacity. This balance enables faster inference and reduced loader latency, as the model processes input 
more efficiently while maintaining high GPU utilization. Additionally, the higher data prefetch efficiency 
(94%) ensures that the GPU remains consistently fed with data, reducing idle cycles and improving 
throughput. The combination of these architectural optimizations and streamlined data flow allows 
MIRBCGRU to outperform conventional GRU- and LSTM-based hybrids, making it more suitable for 
real-time and resource-constrained applications. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7: Training time comparison using (a) IMDb, (b) Sentiment140, (c) Amazon Reviews, (d) Yelp 
Restaurant datasets (X axis---methods), (Y axis---training time) 
The comparison of training time evidently displays the proposed method reaching much quicker 
convergence on all datasets while reaching or overtaking the accuracy of current methods. On the smaller 
IMDb dataset in Figure 7(a), the model trains in around 150 seconds, as opposed to 200 seconds for NN, 
250 seconds for RFO, 300 seconds for GOA, and 306 seconds for LFOA, an improvement of 25–50% 
in time. On the Sentiment140 dataset in Figure 7(b), the approach still trains in roughly 200 seconds, 
while the baselines take between 250 seconds (NN) and 350 seconds (LFOA), an improvement of 20–
43%. This speedup is attained by oscillation-free stable gradient updates, learning rate scheduling that 
eliminates redundant parameter updates, and high hardware utilization with decreased computation 
waste on noisy samples. 
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The efficiency benefit remains valid for datasets of longer and more intricate text. For Amazon Reviews, 
training is finished in roughly 180 seconds, taking 230 seconds for NN, 260 seconds for RFO, 300 
seconds for GOA, and 340 seconds for LFOA, showing a 21–47% improvement as illustrated in Figure 
7(c). On Yelp Restaurant reviews in Figure 7(d), the suggested approach takes about 170 seconds to 
complete, which is better than NN (210 seconds), RFO (240 seconds), GOA (290 seconds), and LFOA 
(330 seconds), with a 19–48% speed improvement. In all such instances, the improvement comes due to 
effective management of longer sequences where the model concentrates computational power on 
sentiment-bearing parts and refrains from overfitting on stylistic or redundant materials. All together, 
these results attest that the architecture design and optimization strategy both enhance precision and 
allow for significantly accelerated training of wide-ranging dataset values. 
3.6 Ablation study 
To evaluate the contribution of individual components and hyperparameter settings within the proposed 
MIRBCGRU model, a series of ablation experiments were conducted. The first ablation study investigates 
the impact of removing specific architectural components, while the second examines the effect of varying 
batch sizes and learning rates on training performance. 
Table 7: Component (Layer) Ablation of MIRBCGRU (✓ present, ✗ removed) 

Variant / 
Components 

RoBERTa 
Bi-
Conv 

Bi-
GRU 

Attention 
Training 
Accuracy 
(%) 

Training 
Loss 

Training 
Time (s) 

Full 
MIRBCGRU 
(baseline) 

✓ ✓ ✓ ✓ 99.2 0.041 180 

w/o Interactive 
Fusion ✓ ✓ ✓ ✓ 98.7 0.049 175 

w/o Bi-Conv ✓ ✗ ✓ ✓ 98.8 0.047 170 
w/o Bi-GRU ✓ ✓ ✗ ✓ 98.6 0.050 168 
w/o Attention ✓ ✓ ✓ ✗ 98.5 0.052 172 
w/o RoBERTa 
→ static 
embeddings 

✗ ✓ ✓ ✓ 96.9 0.071 150 

The component ablation in Table 7 shows that every core module contributes meaningfully to the 
MIRBCGRU’s training performance. Removing the Interactive Fusion mechanism increases loss from 
0.041 to 0.049 and reduces accuracy by 0.5%, underscoring its role in aligning semantic features from 
RoBERTa with temporal dependencies. Excluding Bi-Conv or Bi-GRU leads to a similar drop in accuracy 
and an increase in loss, confirming their importance for local pattern extraction and long-range 
dependency modeling respectively. Eliminating Attention raises loss to 0.052, suggesting that the model 
loses its ability to prioritize key tokens. The absence of RoBERTaembeddings causes the largest 
degradation, with training accuracy falling to 96.9% and loss jumping to 0.071, proving the necessity of 
contextual embeddings for effective feature representation. 
Table 8: Hyperparameter Ablation  

Batch Size Learning Rate Training Accuracy (%) Training Loss 
16 0.00001 98.9 0.048 
16 0.00002 99.0 0.045 
16 0.00003 98.8 0.050 
32 0.00001 99.0 0.046 
32 0.00002 99.2 0.041 
32 0.00003 99.0 0.045 
64 0.00001 98.7 0.053 
64 0.00002 98.9 0.049 
64 0.00003 98.6 0.055 

The hyperparameter ablation in Table 8 indicates that the best performance is achieved with a batch size 
of 32 and a learning rate of 0.00002, producing the highest training accuracy (99.2%) and lowest loss 
(0.041). Smaller batch sizes (16) introduce more gradient noise, which can help generalization but slightly 
increases loss. Larger batch sizes (64) tend to smooth the gradients too much, reducing accuracy and 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 7, 2025 
https://theaspd.com/index.php 

599 
 

increasing loss beyond 0.049. Learning rates below 0.00002 slow convergence, while higher values such 
as 0.00003 approach instability, slightly degrading performance. 
 
 
3.7 Explainability visualization 
The LIME explainability output for the four datasets of IMDb, Sentiment140, Amazon Reviews, and Yelp 
Restaurant in Figure 8 emphasizes the exact words or features that played the greatest role in the model's 
prediction for sentiment classification. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
Figure 8: Explainability output using LIME for(a) IMDb, (b) Sentiment140, (c) Amazon Reviews, (d) 
Yelp Restaurant datasets 
In the IMDb dataset, LIME reveals the salient terms of movie reviews that positively or negatively 
contribute to the sentiment being predicted. In the Sentiment140 dataset, it identifies contextually 
relevant words and phrases of tweets that significantly affect the classification result. For Amazon Reviews, 
LIME puts more weight on product-oriented words, qualitative adjectives, and opinionated phrases that 
shape the model's decision. Likewise, in the Yelp Restaurant dataset, it draws attention to quality of food, 
service-oriented words, and dining experience descriptors overall that shape sentiment predictions. Such 
interpretability analysis promotes transparency so that users can comprehend and rely upon the model's 
reasoning across domains. 
 
4. DISCUSSION 
The performance comparison for all four datasets demonstrates that Proposed (MIRBCGRU) 
systematically achieves significant improvements compared to current state-of-the-art models. Against the 
IMDb dataset, the proposed model enhanced accuracy by 1.06% against RoBERTa-BiGRU and 
minimized training time by 47.6% against its 315.8 seconds.Likewise, for the Sentiment140 dataset, the 
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model proposed here provided a 1.73% accuracy improvement compared to ReLU-GRU along with a 
41.6% diminution in training time compared to RoBERTa-BiLSTM. For Amazon Reviews, it provided 
an accuracy improvement of 0.69% over RoBERTa-BiGRU along with a 45.2% reduction in training 
time. On the Yelp Restaurant dataset, the proposed model provided an accuracy improvement of 0.84% 
over RoBERTa-BiGRU along with a 43.7% decrease in training time.Overall, such enhancements testify 
to the fact that the proposed architecture not only increases predictive performance but also is highly 
computationally efficient. The proportionate gains, more so in training time, demonstrate that the model 
converges at a faster pace while maintaining accuracy. The integration of greater accuracy—ranging from 
0.69% to 1.73% improvements—and considerable training time reductions—by 41% to 48%—across 
varied datasets testifies to its strength and flexibility in coping with different sentiment analysis tasks. 
These findings confirm that the MIRBCGRU is both efficient and cost-effective, hence viable to be 
applied in real-world large-scale sentiment classification tasks. 
The proposed AutoDL-Pipeline, integrating the MIRBCGRU model with the IRFO, effectively unifies 
high-accuracy sentiment classification with intelligent, automated data loading to address both predictive 
and operational efficiency challenges. Experimental results across IMDb, Yelp, Amazon, and 
Sentiment140 datasets—validated using the Friedman test and Nemenyi post-hoc analysis—show 
statistically significant improvements in training and testing accuracy, as well as reductions in training 
and inference times, with Kendall’s W values of 0.74–0.78 indicating strong ranking consistency. 
MIRBCGRU’s architecture minimizes redundant operations while maintaining rich contextual 
representation through RoBERTaembeddings, complemented by bidirectional convolutional and 
recurrent layers to capture both local and long-range dependencies. The Interactive Fusion mechanism 
further aligns semantic and temporal features, contributing to performance gains, while IRFO 
dynamically schedules data loading and optimizes batch sizing to achieve high GPU utilization and a 94% 
data prefetch efficiency, ensuring minimal idle time. Ablation studies confirm that each core module 
contributes to the overall effectiveness, with the removal of key components or deviation from optimal 
hyperparameters leading to measurable drops in accuracy and increases in loss. This synergy between 
architecture design and pipeline automation positions the proposed framework as a scalable, real-time-
ready solution for sentiment analysis and potentially other text-based predictive tasks. 
Limitations: 
While the proposed system exhibits strong performance in accuracy, latency, and computational 
efficiency, its current dependency on GPU acceleration and high-bandwidth data access may limit 
immediate applicability in highly resource-constrained environments such as embedded systems, IoT edge 
devices, or low-cost mobile deployments. Additionally, while IRFO effectively manages semi-structured 
and unstructured data, the system has not yet been extensively tested in highly heterogeneous, multi-
source streaming environments with severe data quality issues. 
5. Conclusion and Future work 
This research presented an integrated framework—AutoDL-Pipeline—that combines MIRBCGRU-based 
sentiment classification with an IRFO-powered automated data loading mechanism. Through extensive 
experimentation and statistical validation, the framework demonstrated superior accuracy, faster 
inference times, and enhanced data handling efficiency compared to baseline models. The results 
highlight the value of jointly optimizing model architecture and data loading processes to achieve high-
performance, real-time DL workflows. 
In future work, the proposed methodology can be extended to address its current limitations by 
incorporating model compression techniques such as pruning, quantization, and knowledge distillation 
to enable deployment on low-power, resource-constrained devices. Furthermore, enhancements to IRFO 
can be explored to make it bandwidth-aware and resilient to heterogeneous, multi-source, real-time data 
streams, including those with fluctuating quality and schema variability. Another promising direction is 
to generalize the framework beyond sentiment analysis to multimodal learning scenarios, where textual 
data is combined with audio, video, or sensor inputs, thus broadening the system’s applicability to fields 
such as social media monitoring, customer feedback analytics, and edge-based IoT decision-making. By 
addressing these aspects, the AutoDL-Pipeline can evolve into a truly universal, real-time, and resource-
adaptive DL deployment solution. 
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