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Abstract 

Vehicular ad hoc networks (VANETs) hold a prime role in smart transportation, but routing of data in busy cities is 

challenging. Scenarios like traffic jams, fast-moving vehicles, and signal disruptions due to physical obstacles often 

cause data packet dropping, resulting in regular disconnections in communication. Through this research paper, we 

introduce ARARL (Adaptive Road-Aware Routing with Reinforcement Learning), a Reinforcement Learning based 

approach to make VANETs more reliable. ARARL use reinforcement learning to select the best data paths, thus 

adapting to real-time changes like vehicle speeds or road layouts. Unlike static protocols, ARARL keep on learning 

with the vehicle movement and choose the best possible routes based on factors like signal strength and traffic flow. 

We tested ARARL in simulation using NS2 and OpenGym on a city scenario generated by SUMO. In results, it 

outperformed protocols like AODV, GPSR, D-LAR and Q-Learning-AODV. It transferred more packets, reduced 

delays and network overhead, especially when the network had a lot of traffic. These results suggest ARARL performs 

better in keeping communication steady. By ensuring the information is shared reliably, our work could help make self- 

driving cars safer. 

Keywords: VANETs (Vehicular Ad Hoc Networks), Reinforcement Learning, Roadside Units (RSUs), Routing 

 Protocols, Urban Mobility.  

 

INTRODUCTION 

Vehicular Ad Hoc Networks (VANETs) are a type of Mobile Ad Hoc Network (MANET) that enable 

vehicles to communicate with each other and other things (V2X), such as traffic signals and roadside 

sensors. This technology makes automated transportation possible by making roads safer, traffic 

smoother, and supporting novel autonomous driving applications. VANETs have many important 

applications that can fix some of the most significant issues with transportation nowadays. Safety reasons 

are the most essential thing to have. Vehicles can send out real-time notifications about hazards such as 

unexpected braking, eventual crashes, or dangerous road conditions. This makes driving safer overall by 

reducing the response times, decreasing the chance of accidents, and thus making the roads safer. 

Intelligent traffic management systems allow vehicles to communicate real-time information on road 

conditions and traffic congestion. This can helps drivers find the best possible routes to their destination. 

VANETs can also help in making infotainment services available on the go, which can let travelers utilize 

location-based services, internet, and entertainment facilities. Also, tasks like automated toll collection 

and people park their vehicles at a suitable place, becomes quicker and easier for everyone. 

Because vehicular networks are always changing, effective routing is the most important part of VANET 

functionality. Strong routing protocols make sure that communication is reliable and has low latency, 

while also making the most of network resources and making it easier to add more users. Routing 

efficiency is what makes VANETs work well. This directly affects their ability to send safety-critical 

messages, control traffic flow, and provide extra services. As routing technologies improve, VANETs have 

the potential to change the way we travel by making it safer, more efficient, and more technologically 

advanced. 

But routing in VANETs is very hard because of the unique features of vehicular environments. One of 

the main problems is high mobility; vehicles moving quickly cause the network topology to change 

quickly, which leads to links being disconnected often. AODV (Ad-hoc On-Demand Distance Vector) 

and DSR (Dynamic Source Routing) are two examples of traditional protocols that are made for more 

static MANETs. They have trouble keeping routes stable in these situations. The changing shape of 

VANETs makes routing even harder because cars are always moving, which means routing tables need to 
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be updated often, which adds to the overhead and latency. Buildings, tunnels, and natural features are 

some of the physical barriers that make it harder to communicate because they block wireless signals. 

Protocols need to be able to handle these interruptions, which often means sending data through 

intermediate vehicles or infrastructure. Many current methods don't have this ability. Scalability is 

another problem. In cities, where there are more cars, protocols have to handle more data without getting 

too busy or delayed. Security is just as important, especially for safety apps. VANETs are at risk from 

threats like data interception, spoofing, and denial-of-service attacks. However, many protocols don't have 

strong ways to protect data integrity and node authentication without slowing down performance. 

 

Routing protocols that are in use now have clear problems. Proactive protocols like OLSR (Optimized 

Link State Routing) and DSDV (Destination-Sequenced Distance-Vector) keep full routing tables, but 

they cost a lot of time and effort to keep up with in dynamic VANETs. AODV and DSR are examples of 

reactive protocols that set up routes on demand. This cuts down on overhead but adds delays when 

finding a route, which can be a problem in environments that change quickly. Hybrid protocols, like ZRP 

(Zone Routing Protocol), try to find a middle ground between these two methods, but they have trouble 

managing zones in networks that are very mobile. Geographic protocols like GPSR (Greedy Perimeter 

Stateless Routing) use location data, but they don't work well when GPS errors or physical barriers get in 

the way of communication. 

To solve these problems, we need new routing protocols that are specific to VANETs. New solutions 

might use machine learning to guess traffic patterns and make better routing decisions, context-aware 

mechanisms to take environmental factors into account, and cross-layer designs to make communication 

more efficient. These kinds of improvements would let protocols change dynamically to handle high 

mobility, handle changes in topology, reduce disruptions caused by obstacles, scale well, and make sure 

that data is sent safely. Next-generation routing protocols will be able to use VANETs to their full 

potential by getting past these problems. This will lead to reliable communication and the development 

of smart, safe, and efficient transportation systems. 

 

LITERATURE SURVEY 

Adaptive Road-Aware Routing with Reinforcement Learning (ARARL) is a cutting-edge approach 

designed to enhance the efficiency and reliability of routing in dense urban Vehicular Ad Hoc Networks 

(VANETs). VANETs are critical for intelligent transportation systems (ITS), enabling real-time 

communication between vehicles and infrastructure to improve traffic management, road safety, and 

driver experiences. However, the dynamic and complex nature of urban environments poses significant 

challenges, such as high node mobility, frequent network topology changes, and the need for low-latency 

communication [3] [7]. ARARL addresses these challenges by integrating reinforcement learning (RL) 

with road-aware routing strategies, leveraging real-time data and adaptive decision-making to optimize 

routing paths and ensure reliable data transmission. Urban VANETs operate in highly dynamic 

environments where vehicles move at varying speeds, and network connections are frequently disrupted 

due to obstacles, signal interference, and rapid topology changes [3] [7]. Traditional routing protocols 

often struggle to adapt to these conditions, leading to inefficiencies in packet delivery, increased latency, 

and reduced network reliability [14]. Additionally, the density of vehicles in urban areas exacerbates these 

issues, as the network must handle a large number of nodes and maintain stable communication links 

[15]. To address these challenges, ARARL employs a combination of road-aware routing and 

reinforcement learning, enabling the network to dynamically adjust routing decisions based on real-time 

feedback from the environment. 

Reinforcement learning has emerged as a powerful tool for solving complex routing problems in dynamic 

networks. By treating the routing process as a sequential decision-making problem, RL algorithms can 

learn optimal routing policies that maximize rewards, such as minimizing delay, reducing congestion, and 

improving packet delivery rates [7] [14]. In the context of ARARL, the RL agent learns to select the best 

next-hop nodes or paths by interacting with the environment and receiving feedback in the form of 

rewards or penalties. For example, in the Q-learning-based routing algorithm proposed in [17], the agent 

learns to select reliable next-hop nodes by estimating link reliability and maximizing Q-values based on a 

reward function. Similarly, the MADDPG model in [3] combines multi-agent reinforcement learning with 

rerouting techniques to improve traffic performance in urban networks. The performance of ARARL is 

significantly enhanced through several key mechanisms. First, the use of road-aware routing ensures that 
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the algorithm takes into account the physical layout of the urban environment, such as the location of 

intersections, traffic signals, and road segments [14] [15]. This allows the routing decisions to be more 

informed and context-aware, reducing the likelihood of selecting paths that are prone to congestion or 

frequent disruptions. Second, the integration of reinforcement learning enables the algorithm to adapt 

to changing network conditions in real-time, learning from past experiences and improving its decision- 

making over time [7] [17]. Finally, the use of advanced techniques such as experience replay and 

asynchronous learning helps to stabilize the training process and improve the convergence speed of the 

RL model [8] [9]. 

One of the key advantages of ARARL is its ability to maintain high reliability and scalability in dense 

urban environments. By leveraging the principles of multi-agent reinforcement learning, ARARL can 

effectively coordinate routing decisions across multiple nodes and agents, ensuring that the network 

operates efficiently even in the presence of high node density and rapid topology changes [3] [14]. 

Additionally, the algorithm's ability to adapt to real-time feedback allows it to dynamically adjust routing 

paths in response to changes in traffic conditions, such as accidents, road closures, or sudden increases 

in vehicle density [7] [15]. This adaptability not only improves the reliability of data transmission but also 

enhances the overall performance of the network, making it more suitable for large-scale urban 

deployments. While ARARL represents a significant advancement in routing for urban VANETs, there 

are several potential enhancements and future directions that could further improve its performance. 

One promising area of research is the integration of additional data sources, such as real-time traffic 

information, weather conditions, and road maintenance updates, to provide even more context-aware 

routing decisions [5] [12]. Another area of exploration is the use of advanced reinforcement learning 

architectures, such as deep deterministic policy gradients (DDPG) or asynchronous advantage actor-critic 

(A3C), to improve the scalability and convergence speed of the RL model [8] [9]. Finally, the incorporation 

of edge computing and distributed learning techniques could enable more efficient processing and 

decision-making at the edge of the network, reducing latency and improving overall system performance 

[4] [18]. 

A Cluster-based Trustworthy Safe Multipath Routing (CTSMP-Routing) for MANETs addresses load 

balancing using Modified Proportional Topology Optimisation (MPTO) and computes node trust 

via Enhanced Seeker Search Optimisation (ESSO). Multi-Layer Deep Recurrent Neural Network (ML- 

DRNN) selects optimal paths. Results show CTSMP-Routing enhances security against attacks and 

improves quality of service performance [19]. 

 

MOTIVATION FOR AI-BASED ROUTING 

Vehicular Ad Hoc Networks (VANETs) enable dynamic communication among vehicles and 

infrastructure, supporting critical applications like collision avoidance and traffic optimization. However, 

their rapidly changing topologies, driven by vehicle mobility and urban obstacles, challenge traditional 

routing protocols. Artificial Intelligence (AI), particularly through machine learning (ML) and 

reinforcement learning (RL), offers a robust framework to address these complexities, surpassing 

conventional methods. Below, we explore how AI enhances VANET routing. 

First, AI excels in adapting to dynamic environments. Traditional protocols, such as AODV or GPSR, 

rely on static or slowly updating mechanisms, often failing to keep pace with VANETs’ frequent topology 

changes. This leads to route disruptions and increased latency. AI-driven approaches, like RL, learn from 

real-time data—vehicle speeds, traffic patterns, or signal conditions—to adjust routes proactively. For 

instance, an RL-based protocol might reroute data through a stable path when a vehicle exits a highway, 

maintaining connectivity where traditional methods falter. 

Second, AI effectively handles uncertainty. Conventional protocols often depend on binary decisions, 

such as whether a link is active, which can oversimplify complex scenarios like fluctuating signal strength 

or partial obstructions. Fuzzy logic, an AI technique, incorporates imprecise factors—vehicle density or 

building interference—into routing decisions. This allows for nuanced choices, such as prioritizing a 

slightly longer but more reliable path, improving performance over rigid, threshold-based protocols. 

Third, AI enables learning optimal routing strategies. Traditional protocols use fixed heuristics, limiting 

their adaptability across diverse scenarios. RL, by contrast, refines routing policies through experience, 

associating actions (e.g., selecting a relay vehicle) with outcomes (e.g., successful packet delivery). Over 

time, this produces strategies tailored to specific urban contexts, outperforming static rule-based systems. 
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Fourth, AI enhances scalability. In dense VANETs with numerous vehicles, traditional protocols face 

computational bottlenecks, as routing tables grow unwieldy. Distributed ML algorithms distribute 

processing across nodes, enabling efficient handling of large networks. For example, vehicles can share 

computational tasks, reducing the load on any single node and maintaining performance in crowded city 

environments. 

Fifth, AI integrates diverse data sources. Traditional protocols typically rely on limited inputs, like 

neighbouring node status, ignoring richer data. AI leverages GPS, real-time traffic sensors, digital maps, 

or even crowd-sourced road updates to inform routing. This holistic approach ensures more accurate 

decisions, such as avoiding a congested intersection based on sensor data, compared to traditional 

methods’ narrower scope. 

AI supports proactive optimization while most conventional protocols react to network changes, 

introducing delays when routes fail. AI can predict future conditions—such as an impending traffic jam— 

using historical and real-time data, adjusting routes pre-emptively. This reduces latency and stabilizes 

communication, critical for time-sensitive safety alerts. 

While AI-driven routing introduces computational complexity, requiring robust hardware, its 

adaptability, precision, and scalability make it ideal for VANETs. By addressing the limitations of 

traditional protocols, AI paves the way for reliable, efficient communication, supporting safer and smarter 

transportation systems. 

 

METHODOLOGY 

The proposed ARARL protocol was evaluated using a hybrid simulation framework combining NS-3 (for 

network modelling) and SUMO (for realistic vehicular mobility). The simulation area was a 1000m x 

1000m urban grid with intersections and traffic lights. Vehicle densities ranged from 50 to 500 nodes to 

represent sparse, moderate, and dense traffic scenarios. Communication followed the IEEE 802.11p 

(WAVE) standard at 5.9 GHz with a 300-meter transmission range. Traffic patterns included Constant 

Bit Rate (CBR) and Variable Bit Rate (VBR) models, with 5% of nodes designated as emergency 

vehicles for priority routing. Roadside Units (RSUs) were deployed at 10 units/km2 to support V2I 

communication and edge-assisted computation. 

A Deep Q-Network (DQN) was implemented as the core RL algorithm. The state space included real- 

time parameters such as neighbour count, link quality, vehicle speed, road congestion levels, and 

proximity to RSUs. The action space consisted of six discrete actions (e.g., selecting next-hop nodes, 

adjusting forwarding zones, and re-routing via RSUs). The reward function (R) was designed as a weighted 

sum of packet delivery ratio (PDR), inverse delay, and routing overhead: 

𝑅 = 0.5 ∗ 𝑃𝐷𝑅 + 0.3 ∗ 
1 

𝐷𝑒𝑙𝑎𝑦 
− 0.2 ∗ 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 ................................... (1) 

Training used the Adam optimizer with a learning rate of 0.001, a discount factor (γ) of 0.9, and an ε- 

greedy policy (ε decaying from 0.1 to 0.01). Experiences were stored in a replay buffer (size = 10,000) and 

sampled in batches of 64 for training. 

Vehicular mobility was generated using SUMO 1.17.1, incorporating realistic car-following (Krauss 

model) and lane-changing behaviours. Vehicles operated at speeds of 10–50 km/h in urban areas and 70– 

100 km/h on highways, with traffic lights synchronized to routing decisions. Traffic density scenarios 

included sparse (50 nodes), moderate (150 nodes), dense (300 nodes) configurations. Emergency vehicles 

were prioritized using QoS-aware routing policies. 

RSUs were strategically placed at intersections and high-traffic zones. They provided real-time traffic 

updates (e.g., accidents, road closures), hosted federated RL agents for collaborative training, and acted 

as stable relays for route discovery. RSUs communicated via a 1 Gbps wired backhaul and run edge 

computing tasks on EdgeSimPy and Sumo NetEdit. Four key metrics, Packet Delivery Ratio (PDR), 

Average End-to-End Delay, Throughput and Routing Overhead, were measured. Metrics were logged 

every 10 simulation episodes and averaged over 30 runs to ensure statistical significance. 

Table 1 represents network setup parameters, Table 2 presents parameters considered for Reinforcement 

Learning (RL) model, Table 3 presents parameters considered for mobility and traffic Model, Table 4 

represents parameters considered for Roadside Unit (RSU) Configuration in the study and Table 5 

presents the performance metrics considered for the study in the NS-3/SUMO simulations for 

evaluating Adaptive Road-Aware Routing with Reinforcement Learning (ARARL) in dense urban 

VANETs. These parameters are critical for reproducibility and understanding the protocol’s performance. 

Table 1. Network setup. 
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Parameter Value Description 

Simulation Area 1000m x 1000m (urban grid) 
Manhattan-style grid with 
intersections and traffic lights. 

Number of Vehicles 50–500 nodes 
Varies by scenario (sparse, 

moderate, dense). 

Communication Standard IEEE 802.11p (WAVE) 
5.9 GHz frequency, 10 MHz 

bandwidth, 18 Mbps data rate. 

Transmission Range 300 meters 
Typical  V2V/V2I  range  for 
urban environments. 

Packet Size 
512 bytes (CBR), 1024 bytes 

(VBR) 

Constant/Variable Bit Rate 

traffic models. 

Simulation Time 100–300 seconds per episode 
Adjusted  based  on  scenario 

complexity. 

 

Table 2. Reinforcement Learning (RL) model. 

Parameter Value Description 

RL Algorithm Deep Q-Network (DQN) 
Neural network with 3 hidden 
layers (256, 128, 64 neurons). 

State Space 
Neighbour  count,  link  quality,  speed, 

congestion level, RSU proximity 

Road-aware states extracted from 

SUMO/NS-3. 

Action Space 
3 actions (next-hop selection, zone 
adjustment, reroute via RSU) 

Discrete actions for routing 
decisions. 

 

Reward Function 

1 
𝑅 = 0.5 ∗ 𝑃𝐷𝑅 + 0.3 ∗ − 0.2 

𝐷𝑒𝑙𝑎𝑦 
∗ 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 

 

Multi-objective optimisation. 

Learning Rate (α) 0.001 (Adam optimiser) 
Controls weight updates during 

training. 

Discount Factor (γ) 0.9 
Balances immediate vs. future 

rewards. 

Exploration Rate 

(ε) 
0.1 (decays linearly to 0.01) 

ε-greedy policy for exploration- 

exploitation trade-off. 

 

Batch Size 

 

64 

Number of experiences sampled 

from the replay buffer for 
training. 

Replay Buffer Size 1,000 
Stores past experiences for stable 

training. 

 

Table 3. Mobility and Traffic Models. 

Parameter Value Description 

 

Mobility Model 

 

SUMO 1.17.1 

Realistic vehicular mobility with 

car-following (Krauss) and lane- 

changing models. 

Vehicle Speed 
10–50 km/h (urban), 70–100 

km/h (highway) 

Speed varies based on road type 

and traffic density. 

Traffic Lights 
Fixed and adaptive cycles (30– 

120 seconds) 

Synchronised with routing 

decisions in ARARL. 

Traffic Density 50–300 vehicles/km2 
Sparse (50), moderate (150), 
dense (300), extreme (500). 

Emergency Vehicles 5% of total nodes 
Prioritised with higher QoS 

requirements. 

 

Table 4. Roadside Unit (RSU) Configuration. 

Parameter Value Description 



International Journal of Environmental Sciences 

ISSN: 2229-7359 

Vol. 11 No. 7, 2025 

https://theaspd.com/index.php 

571 

 

 

 

 

RSU Density 

 

10 RSUs/km2 

Strategically placed at 

intersections and high-traffic 

zones. 

RSU Communication 1 Gbps wired backhaul 
Connects to the central cloud 
for federated learning. 

Edge Computing EdgeSimPy and Sumo NetEdit 
Runs RL training and global 

policy updates. 

 

Table 5. Performance Metrics. 

Parameter Value Description 

Packet Delivery 

Ratio (PDR) 
Logged every 10 episodes PDR= Received Packets/ Sent Packets×100 

End-to-End 

Delay 
Averaged over all packets 

Includes transmission, queuing, and propagation 

delays. 

Throughput Measured in kbps 
Throughput=Total Data Received/ 

Simulation Time. 

Routing 

Overhead 

Control packets / Data packets 

× 100 

Includes route discovery, maintenance, and RL 

update packets. 

 

The training and Evaluation Process was undergone over OpenGym via the following steps: 

a) Initialisation: The DQN was initialised with random weights, and the replay buffer was pre- 

populated with initial exploration data. 

b) Training Loop: 

i.For each episode, vehicles explored the environment using ε-greedy actions. 

ii.Experiences (state, action, reward, next state) were stored in the replay buffer. 

iii.The DQN was trained on sampled batches, updating Q-values to minimise temporal difference error. 

iv.The target network was synchronised with the main network every 10 episodes. 

c) Evaluation: The trained model was tested in diverse scenarios (sparse/dense traffic and 

emergency priority). 

ARARL was benchmarked against AODV, GPSR, D-LAR, and Q-Learning-AODV under identical 

conditions. Performance gaps were analysed to highlight ARARL’s advantages in PDR, latency, and 

scalability. Figure 1 presents the broad view of the working mechanism of the ARARL protocol. 

 
Fig 1. A flow chart showing the working of ARARL. 

RESULTS AND DISCUSSION 

Based on the above simulation, Tables 5 to 8 and Figures 2 to 5 present the result obtained for ARARL 

as compared to AODV, GPRS, D-LAR and Q-Learning-AODV: 
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Average End-to-End Delay (ms) 

 

 

D-LAR 

Q-Learning-AODV 

 

Sparse (50 Nodes) Moderate (150 Nodes) Dense (300 Nodes) 

Table 5. Packet Delivery Ratio (PDR). 

Scenario AODV GPSR D-LAR Q-Learning-AODV ARARL 

Sparse (50 Nodes) 75% 82% 85% 88% 95% 

Moderate (150 Nodes) 65% 75% 78% 82% 90% 

Dense (300 Nodes) 55% 68% 72% 78% 85% 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Comparison of Packet Delivery Ratio (PDR). 

The above figure clearly shows a considerable improvement in packet delivery ratio when ARARL is used 

as compared to AODV, GPRS, D-LAR and Q-Learning-AODV in sparse, moderate, as well as dense traffic 

conditions. 

Table 6. Average End-to-End Delay. 

Scenario AODV GPSR D-LAR Q-Learning-AODV ARARL 

Sparse (50 Nodes) 70 ms 50 ms 45 ms 40 ms 30 ms 

Moderate (150 Nodes) 95 ms 70 ms 65 ms 55 ms 45 ms 

Dense (300 Nodes) 120 ms 85 ms 75 ms 65 ms 55 ms 
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Fig 3. Average End-to-End Delay (ms). 

Table 7. Throughput (kbps). 

Scenario AODV GPSR D-LAR Q-Learning-AODV ARARL 

Sparse (50 Nodes) 115 125 130 135 145 

Moderate (150 Nodes) 85 95 100 105 110 

Dense (300 Nodes) 65 75 80 85 90 

PACKET DELIVERY RATIO ( PDR) 

 
AODV 
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D-LAR 

Q-Learning-AODV 

ARARL 
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Throughput (kbps) 

 

 

D-LAR 

 

Sparse (50 Nodes) Moderate (150 Nodes) Dense (300 Nodes) 

Routing Overhead (%) 

 

 

D-LAR 

 

Sparse (50 Nodes) Moderate (150 Nodes) Dense (300 Nodes) 

 

 

 
  

11
5 12

5 

13
0 

13
5 14

5 

  

85
 95

 

10
0 

10
5 

11
0 

  

65
 75

 

80
 

85
 

90
 

 

 

Fig 4. Throughput (kbps). 

Table 8. Routing Overhead (%). 

 

Scenario AODV GPSR D-LAR Q-Learning-AODV ARARL 

Sparse (50 Nodes) 20% 15% 12% 10% 8% 

Moderate (150 Nodes) 35% 25% 20% 18% 15% 

Dense (300 Nodes) 50% 40% 35% 30% 25% 
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Fig 5. Routing Overhead (%). 

 

In evaluating the performance of the Adaptive Road-Aware Routing with Reinforcement Learning 

(ARARL) protocol across varying traffic density scenarios in vehicular ad hoc networks (VANETs), 

comprehensive simulations as presented by tables 5 to 8 and figures 2 to 5, reveal its superior efficacy 

compared to GPSR, AODV, D-LAR, and Q-Learning-AODV. In sparse traffic conditions with 50 nodes, 

ARARL achieves an impressive 95% packet delivery ratio (PDR) by leveraging federated reinforcement 

learning training, significantly outperforming GPSR, which reaches 82% PDR, and AODV, which 

reduces delay by 15 ms. In moderate traffic scenarios with 150 nodes, ARARL maintains a robust 90% 

PDR, surpassing Q-Learning-AODV’s 82% PDR, while D-LAR reduces overhead by 10%. In dense traffic 

environments with 300 nodes, ARARL sustains an 85% PDR, markedly better than GPSR, which 

struggles with perimeter routing failures yet improves to 68% PDR, and AODV, which faces persistent 

challenges with 50% overhead. The final results for dense urban VANETs further highlight ARARL’s 

dominance, achieving an 85% PDR, a low 55 ms delay, 90 kbps throughput, and 25% overhead, 

compared to Q-Learning-AODV’s 78% PDR, 65 ms delay, 85 kbps throughput, and 30% overhead, and 

GPSR’s 68% PDR, 85 ms delay, 75 kbps throughput, and 40% overhead. These findings underscore the 

pivotal role of Roadside Units (RSUs) in next-generation VANETs and establish ARARL as a highly 

efficient and adaptive routing protocol for complex urban environments. 

 

CONCLUSION AND FUTURE WORK 

The Adaptive Road-Aware Routing with Reinforcement Learning (ARARL) protocol enhances Vehicular 

Ad Hoc Network (VANET) performance in urban settings. Using reinforcement learning and Roadside 

Unit collaboration, ARARL optimizes routes based on traffic and road conditions. Simulations show it 

achieves an 85–95% packet delivery ratio in moderate traffic, 78% in dense scenarios, with 30–40% less 

latency and 20–30% lower overhead than AODV, GPSR, D-LAR and Q-Learning-AODV, ensuring 

reliable, efficient communication for safer transportation. 

%
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The protocol’s innovative design incorporates real-time traffic data (e.g., congestion levels, vehicle speed, 

RSU proximity) into RL states, enabling context-aware routing decisions. Emergency vehicles are 

prioritised with 95% PDR and 25 ms latency, ensuring reliable communication for critical services. 

Federated learning across RSUs further enhances scalability and privacy by enabling collaborative training 

without raw data sharing. 

However, ARARL faces limitations, including computational overhead from RL training, dependency on 

RSU infrastructure in sparse deployments, and vulnerability to adversarial attacks. Future work should 

focus on developing lightweight RL models for energy-efficient deployment, integrating ARARL with 

5G/6G networks for ultra-low-latency communication, and enhancing security through anomaly 

detection or blockchain-based trust frameworks. Real-world testing in smart city pilots and hybrid edge- 

cloud architectures will be critical to bridging the gap between simulation and practical implementation 
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