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Abstract 
Precise estimation of the crop yield in the context of changing climatic conditions is the key issue to the food security 
and the agricultural decision-making. This paper presents a hybrid model which uses semiparametric Neural Networks 
(SNN), combined with Adaptive NeuroFuzzy Inference System (ANFIS) to predict crop yields of a set of chosen districts 
in Maharashtra, India. The model uses the past data (2000 2022) which includes data about climate variables 
(rainfall, temperature, solar radiation, and the level of CO2 in the atmosphere) together with local crop yields. The 
first was that the dataset was processed and standardized and a geospatial mapping of the study area was performed 
to contextualize local differences. Trained and tested hybrid SNN ANFIS against machine learning baselines, such as 
SVR, ANN, CNN-RNN, and compared based on RMSE, R2, and MAPE, the hybrid SNN ANFIS had better 
performance. Fuzzy inference is optimized with Gaussian membership functions, and the interpretation of the model 
was improved using feature importance analysis and Partial Dependence Plots (PDP). Generalizability of the model 
was measured by depicting spatial heatmap that shows that the prediction accuracy was similar across different districts 
thereby confirming prediction consistency. The findings indicate that rainfall and temperature have been found to be 
the most statistically significant factors when it comes to determining the yield with the hybrid model attaining %92 
accuracy in the test data. In addition to enhancing the accuracy of the prediction, the suggested framework is suitable 
in real life agri-policy formulation and climate adaptation approaches because it promotes explainability. 
Keywords: Crop Yield Prediction; Climate Change; Semi-Parametric Neural Network (SNN); Adaptive Neuro-Fuzzy 
Inference System (ANFIS); Maharashtra Agriculture; Explainable AI 
 
1. INTRODUCTION 
The impact of unfavorable climate changes is largely becoming a threat to the farming industry, especially 
in some areas such as Maharashtra, India where the agricultural processes are mainly rain-fed and are very 
vulnerable to environmental fluctuations. Increased temperatures, unpredictable rainfall, the fluctuation 
in radiation and the increased levels of CO 2 in the atmosphere have rendered conventional techniques 
of agricultural forecasting invalid and inadequate. The increasing irreliability of the seasonal parameter 
and its influence on crop productivity demand the creation of tailored, local, and dynamic prediction 
models capable of helping to reduce the unpredictability and guarantee food security under such 
conditions (Feng et al., 2023; Dumitru et al., 2023). The use of efficient predictive frameworks has become 
a requirement in the recent years following the growing population pressure, shrinking arable land, and 
the worldwide sustainable agriculture trend. Correct crop yield forecasting is key to farmer, policymaker, 
and supply chain decision making. These forecasts help in optimal distribution of resources, foodstock 
and food transport planning and policy development of climate resilient farming methods. Since there is 
a reason to suppose that such an integration of meteorological science and computational modeling can 
prove to be an effective way of predicting crop performance, particularly in such complex climate regions 
like Maharashtra as Ehteram et al. (2023) stress. 
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Figure 1: Key impacts of global warming on agricultural systems, including exacerbated weather 
extremes, shifting growing seasons, biodiversity loss, and increased pest pressures (Agrivi, year). 
Historically precious but now mostly inadequate, such traditional statistical models are not able to evoke 
non-linear and multifactorial dependence between climatic parameters and crop output. This weakness 
has increased the use of artificial intelligence (AI) and machine learning (ML) methods in agro-research 
and decision support mechanisms (Benos et al., 2021; Odah et al., 2025). Convolutional neural networks 
(CNNs), long short-term memory (LSTM) networks, and artificial neural networks (ANNs) are some of 
these techniques that have been proven fruitful in predicting crop yields in a more accurate manner, 
especially in cases when they are paired up with environmental data and phenological data (Srivastava et 
al., 2022; Jabed & Murad, 2024). Although standalone ML models appear to be effective, there has been 
an emerging demand to hybridise methods combining the strengths of various analyses to predict 
improved models in a manner that is more interpretable. As an example, Baswaraju et al. (2023) suggested 
a hybrid deep learning prediction model consisting of AROA and attested higher food production output 
on the agricultural datasets. On the same note, Khalilzadeh (2024) examined the usage of hybrid deep 
learning-based optimization to improve the productivity of crops using data-driven alternatives. In 
addition, these hybrid models help to overcome the shortcomings associated with individual algorithms 
because they are by far flexible to manage the nonhomogenous nature of input information and 
dynamicity of the environmental features used. 
Models based on Artificial Neural Networks are especially good at learning non-linear, and complex 
relationships in the data, and frequently lack interpretability. On the one hand, ANFIS has strengths that 
consist of the fact that they are based on an adaptive rule learning system and have human-understandable 
logic (Hara et al., 2021). The type of combination of Semi-Parametric Neural Networks (SNN) with ANFIS 
would provide a rare chance of combining accuracy and interpretation in yield prediction. The SNN and 
ANFIS hybrid architecture has the advantage of using the flexibility and non-linear modelling property of 
SNNs to achieve an optimal representation of the training data and avoid overfitting, but can combine it 
with the fuzzy rule-based adaptability of ANFIS to interpret uncertainty and imprecision in the 
informationa situation common in climate data modelling.  Changes in climate in general, and 
climate variability in particular, exposes the farmer in Maharashtra to severe challenges in terms of 
maintaining a consistent crop productivity. There exists immense spatial and temporal rainfall, solar 
radiation, and temperature variation in the region, which plays a very vital role in the directness of crops 
at different stages of their growth period. Though there are many studies which address yield prediction 
with climate variables, majority of them do not have localized, hybrid predictive functions to address the 
climatic and agricultural conditions in Indian states such as Maharashtra (Lucca et al., 2023). It is possible 
to combine historical meteorological data with machine learning models to memorize previous trends as 
well as the appearance of anomalies, which can also serve as a stronger method of prediction (Mehrbakhsh 
& Rabab Ali, 2023; Kaginalkar et al., 2022). 
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In addition to that, big data analytics and predictive modeling are increasingly used in agri-environmental 
studies. The combination of meteorological observation, remote sensing, and AI-based systems has opened 
up the possibility of increased responsive dynamic agriculture planning (Ehteram et al., 2023). The existing 
efforts in data governance systems, including the development of conventions examined by Kaginalkar et 
al. (2022), will also facilitate the introduction of a variety of environmental data onto the ML pipelines. 
All these developments point to the fact that region-specific, hybrid model that can be able to capture the 
effects of climate change on agricultural productivity can be developed in an urgent manner.This study is 
directed towards meeting this demand by creating a hybrid predictive model that will combine Semi-
Parametric Neural Networks (SNN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) in order to 
predict the crop yields in the climate-sensitive state of Maharashtra. This model would aim at being 
predictively accurate and flexible to a variety of climate conditions by using long-term historic points 
including parameters, such as rain, temperature, CO2 concentration and solar radiation. 
The rest of this paper is organized as follows: In section 2 finer literature review is made with special 
reference to ML, hybrid framework and interaction between climate and agriculture. Section 3 describes 
the methodology, data collection, preprocessing, model design and how integration process of the 
SNNANFIS hybrid framework occurs. In Section 4, the results and analysis of the experiments are 
highlighted and their performance in different climate scenarios are reported. Lastly, Section 5 provides 
conclusions and future research directions of interest on the field of climate-resilient agricultural planning. 
 
2. LITERATURE REVIEW 
2.1 Introduction to Machine Learning in Agriculture 
Machine learning (ML) in agriculture current research has shifted beyond using raw data on statistical 
tests to making inferences on well-developed predictive models that can handle non-linear and complex 
relations in the agro-climatic data. In the initial phases, linear regression, time series models, and 
parametric statistical modelings were heavily used in the agricultural forecasting but the results used to fail 
to reveal the complex interactions between environmental conditions and agricultural performance (Jabed 
& Murad, 2024). The growing instability of the climatic parameters (rainfall, temperature and solar 
radiation) has led to the need to switch to adaptable, data-based systems instead of traditional ones. 
Recent advances in ML and artificial intelligence (AI) have given way to powerful tools with the ability to 
handle datasets in an increasingly high-dimensional agricultural setting. Such tools are support vector 
machines (SVM), decision trees (DT), random forests (RF), and artificial neural networks (ANNs) that 
proved to be more efficient in terms of working both with nonlinearities and deriving meaningful 
structures out of large-scale data (Van Klompenburg et al., 2020). Furthermore, the development of 
convolutional neural networks (CNNs) and recurrent neural networks (RNNs) as the variations of deep 
learning (DL) has increased the predictive potential of ML in agriculture since it introduced spatial and 
temporal dynamics to the model. Advances in open-access meteorological data and the availability (due to 
IoT-enabled sensors) of satellite images and other kinds of imagery have led to the creation of precise yield 
forecast systems. Nikhil (2024) has developed a system to be applied to the agrarian complex level and to 
the specific environment of South India, where it is vital to lead the interaction of climate, soil, and crops 
within small distances on the landscape. Comprehensively, this movement of traditional statistical models 
to smart ML structures has given birth to new opportunities in precision agriculture and resilient farming 
systems to climate change. 
 2.2 Yield Prediction and Regional Applications 
Yield prediction models at regional levels are becoming significant especially in climate sensitive zones like 
that of India. Because of the high intra-regional climatic variability, localized models are needed in order 
to embrace the interactions peculiar to the environmental inputs into crop phenology. In that regard, 
incorporating high-resolution spatial clarity and temporal information, including daily temperature, 
precipitation, and CO2 concentration is the essential aspect in order to optimize the precision of the crop 
forecasting systems (De Clercq & Mahdi, 2024).ML models in the Indian context have been tailored to 
the country specific dataset to capture the heterogeneity in Indian agriculture. Nikhil (2024) showed that 
the ML models, such as SVM and RF, are highly effective in prediction of crop yields in different districts 
in South India. Such models are trained on datasets containing agro-climatic and soil moisture data along 
with historical yields as well, the significance of spatial granularity can be seen. 
Khaki, Wang, and Archontoulis (2019) went even further: they tried to use CNN RNN frameworks to 
predict the maize yields in the U.S. Corn Belt, combining not only spatial information but also temporal 
patterns. Their work was towards the U.S., yet it provides additional focus on how it can be applied to 
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adapting the same deep learning structures to the regions in India. Their approach offered an appropriate 
methodology of developing crop stages against time-series weather patterns that will pave the way towards 
developing localized models before applying them to the training of district-level data in Maharashtra. By 
doing this region-centric approach, the ML models will be able to put consideration to localized climatic 
stressors which is very relevant to case of Maharashtra- a state facing very varied rainfall, soils and crop 
patterns. In this way, the region-specific models have a viable roadmap to climate-adaptive yield prediction.
  
2.3 Hybrid and Ensemble Machine Learning Models 
Though single ML models have demonstrated the potential, it has been observed that hybrid and 
ensemble ML models have gained popularity because of high predictive value in the agricultural 
environment. By combining the weaknesses of the individual models, the limitations may be overcome 
provided that the diverse types of models complement each other in their strengths. As an example, neural 
networks can be used to provide neural network learning capabilities and fuzzy systems to provide 
interpretability; hybrid frameworks can in turn incorporate metaheuristic optimization procedures to tune 
model parameters. 
Baswaraju et al. (2023) suggested a hybrid deep learning based on the Adaptive Rain Optimization 
Algorithm (AROA) that enhanced the accuracy in the prediction of food production data by a large 
margin. This model proved that the union between optimization methods and deep learning is able to 
improve the convergence and generalization of predictive systems applied in the agriculture field. On the 
same note, Nosratabadi et al. (2020) also created a hybrid model through artificial neural networks (ANN) 
that was optimized with Grey Wolf Optimizer (GWO). Their method compared favorably with the 
classical ANN models because it minimized overfitting and increased robustness on several contexts. 
Putting evolutionary computation in the framework of yield prediction enables to address the issue of 
uncertainty and dynamically changing climate behavior with greater ease. 
Abdel-Salam, Kumar, and Mahajan (2024) developed this idea further offering a hybrid model that 
implements optimization in support vector regression (SVR) and feature selection methods. The model 
used by them successfully screened redundant inputs and increased the estimation rate hence producing 
a more accurate set of yield predictions. Moreover, the authors of this study suggested the use of a graph 
neural network (GNN) and a recurrent neural network (RNN) ensemble to utilize both spatial and 
temporal dependencies of crops data (Fan et al., 2021). This architecture was particularly powerful in 
repurchasing multi-location yield patterns which is an indication that hybrid models may resolve the 
tradeoff of precision and volume. All these researches show the utility of hybrid modeling, especially in 
circumstances where the data are high-dimensional spatio-temporal agricultural data. 
2.4 Role of Explainability and Model Optimization 
The black-box formula in machine learning models has been one of the recurring issues in the application 
of these systems in agriculture as it restricts interpretability and usability in the real-world context by 
farmers, agronomists, and other stakeholders of such policy. Though deep learning and ensemble models 
have demonstrated high levels of accuracy, their complex machinations in most cases make trust in and 
readability of their work difficult to follow in high-stakes agricultural decision-making (Yenkikar, 2025). 
Such an issue has caused the appearance of Explainable Artificial Intelligence (XAI) methodologies in 
agro-informatics with the goal of exposing the model behavior. 
According to Yenkikar (2025), the adoption of predictive models might be much higher with the inclusion 
of interpretability features, including model-agnostic explanations, attention mechanisms and visual 
interpretation tools. In the same vein, Abdel-Salam, Kumar, and Mahajan (2024) proposed a hybrid model 
of the support vector regression approach and mechanisms of using advanced feature selection. Their 
model did not just enhance the precision of predicted values but also assisted in defining the most 
important environmental and agronomic characteristics which determine the results of the yield. These 
insights are very important to domain experts and enable targeted interventions.  Li (2025) has added 
to this field as well by implementing his idea of a knowledge-guided architecture of ML to see how 
agronomic domain knowledge may be built into model training. Such a human-in-the-loop design is useful 
to close the gap between domain know-how and the data-driven learning. Such mechanisms of 
interpretability, when contextualized with a relatively complex arrangement associated with hybrid 
frameworks such as SNNANFIS due to the co-existence of fuzzy rule-based logic and neural networks, can 
be a decisive factor contributing to the model accuracy and transparency in the crop yield forecasting 
oversight. 
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2.5 Climate and Environmental Data Integration 
Extensive, cross-linked environmental data--historical data, real-time sensor data, etc.--has become central 
to the effectiveness of crop yield predicting models. The right forecasting will entail consideration of both 
the physiological behaviour of the crop and the changeable climatic situation during the growth period. 
Models can learn weather patterns and anomalies over long periods because climate reanalysis datasets 
can be used that combine satellite and meteorological data. 
Severe weather outcomes confront both the rice cultivation industry and governments to make accurate 
estimates in rice production potential. De Clercq and Mahdi (2024) demonstrated the usefulness of 
reanalysis data in Indian rice yield forecasting, with their research findings showing that the potential 
quality of climate data at high resolutions enhances precision of applied models. The temporal granularity 
and climate normalization were also important issues towards model training as highlighted in their study. 
In the meantime, Anbananthen et al. (2021) showed how an intelligent decision support system might be 
created that could combine real-time agro-climatic parameters provided by IoT devices to increase the 
responsiveness of ML algorithms based on current field conditions. 
Talaat (2023) complemented that with the creation of Crop Yield Prediction Algorithm (CYPA) that uses 
precision agriculture tools such as IoT, satellite sensing in order to get data in real-time. It is adopted to 
ensure dynamic updating of the models, which is also applicable in the monsoon dependent states in 
India such as Maharashtra. Overall, the studies justify the benefit of including multi-source environmental 
data with ML pipelines, particularly, with regard to hybrid models such as SNN- ANFIS, which can be 
used to improve the situational specificity and stability of crop production estimations. 
2.6 Research Gaps and Opportunities 
Although there is an increasing literature review regarding machine learning in agricultural applications, 
there are still some research gaps especially in terms of hybrid model implementation in India. In the first 
place, although deep learning, SVM, and ANN approaches have been extensively used in many studies, 
hybrid SNNs and ANFIS frameworks that accommodate the Indian climatic regions are still very scarce. 
This weakness imposes a limitation of the model to solve both non-linearities and interpretability at the 
same time. 
Secondly, the majority of the available literature on this topic, including studies conducted by the likes of 
Nikhil (2024), De Clercq and Mahdi (2024), and Khaki et al. (2019), deal with either areas across a given 
continent or crops in general, without taking into account localized data sets on a region that spans varied 
agro-climatic zones as is the case with Maharashtra. Since there is a high amount of geospatial variability 
in rainfall, temperature, and soil quality across different districts, the modeling trained on multi-district 
or even international data might not provide a proper contextually accurate model in a local sense. In 
addition, though certain researches have started using XAI approaches (Yenkikar, 2025; Li, 2025), most 
of them continue to employ black-box strategies, and it negatively affects stakeholder credence and real-
world applicability. Thus, this paper suggest hybrid SNNANFIS model with specific details about region-
specific climate data and explainability properties to address these essential limitations of current studies. 
In a bid to build on what has been discovered in all of the reviewed studies, Table 1 shows a comparative 
overview of the main methodologies, source of data, discoveries, and limitations. This table facilitates 
visually grabbing the scope, advances, and the limitations of the existing literature and also the support 
area of the necessity to propose a hybrid SNNANFIS framework in the localized prediction of crop yield 
in the Maharashtra region. 
Table 1: Summary of Literature Review 

S.No. 
Author & 
Year 

Model/Method 
Used 

Data Type Key Findings Limitations/Scope 

1 
Jabed & 
Murad (2024) 

ML/DL 
comparative 
review 

Multiple crops, 
global 

Highlights DL 
dominance 

Needs region-
specific insight 

2 
Van 
Klompenburg 
et al. (2020) 

Systematic ML 
review 

Historical yield 
data 

ML improves 
over linear 
models 

Interpretability 
issues 
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3 Nikhil (2024) 
ML comparative 
(India) 

Climate + soil 
SVM and RF 
perform well 

No hybrid models 
used 

4 
Baswaraju et 
al. (2023) 

Hybrid DL 
(AROA-based) 

Food 
production 
stats 

AROA hybrid 
improved 
accuracy 

Focused on food 
not climate 

5 
Anbananthen 
et al. (2021) 

Hybrid ML 
Real-time agri 
data 

Decision 
support via ML 

Not Maharashtra-
specific 

6 
Abdel-Salam 
et al. (2024) 

SVR + Feature 
Selection 

Climate + crop 
Optimized 
yield 
forecasting 

No ensemble 
analysis 

7 
Fan et al. 
(2021) 

GNN–RNN 
Geo-temporal 
data 

Strong spatio-
temporal 
correlation 

Applied only to 
maize 

8 
De Clercq & 
Mahdi (2024) 

ML + reanalysis 
climate data 

Rice yield 
(India) 

High feasibility 
with climate 
inputs 

Crop-specific (rice) 

9 
Yenkikar 
(2025) 

Explainable AI 
hybrid 

Multivariate 
climatic 

Enhances trust 
in predictions 

Few validation 
datasets 

10 Li (2025) 
Knowledge-
Guided ML 

Crop modeling 
Boosts 
interpretability 

Needs field 
deployment 

11 
Nosratabadi 
et al. (2020) 

ANN–GWO 
hybrid 

Simulated agri 
data 

Better 
generalization 

Limited real-time 
testing 

12 
Khaki et al. 
(2019) 

CNN–RNN 
US Corn Belt 
data 

High accuracy 
in yield 

Non-transferable to 
India 

13 Talaat (2023) 
CYPA IoT 
system 

IoT + satellite 
Enhances field-
level accuracy 

Lacks fuzzy logic or 
hybrid 

14 
Abdel-Salam 
et al. (2024) 

SVR hybrid 
model 

Environmental 
data 

High feature 
importance 

Duplicate noted 

15 Li (2025) 
Human-in-the-
loop ML 

Climate + yield 
Efficient expert 
feedback loop 

No Maharashtra 
use case 

  
3. METHODOLOGY 
3.1 Study Area and Dataset Description 
This paper examines chosen portions of Maharashtra State in India that have substantial agro-climatic 
variation and are the example case of comprehending how the concept of climate change can affect the 
crop production. Maharashtra is an agriculturally versatile state; thus crops found in Maharashtra include 
cotton, soybean, sugar cane, wheat, paddy and were cultivated both through a rain fed system and an 
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irrigated system. With large inter-annual variability in the climate (monsoonal patterns), the area fits well 
in terms of adequacy in understanding climate-crop interactions in changing environmental conditions. 
The data sets in this work will be characterized as historical climate data and crop yield data between 2000 
lengthy and 2022. Daily and monthly rainfall, maximum temperature, minimum temperature, solar 
radiation, and atmospheric CO 2 concentration were obtained with the use of Indian Meteorological 
Department (IMD) and NASA POWER database. District-wise production figures of crops could be 
extracted in the form of supplementary data by the Department of Agriculture, Government of 
Maharashtra and also by Indian agricultural universities as well as statistical reports. 
The climate data variables had an option of daily or monthly temporal resolutions whereas the crop yield 
data was measured at annual level in the districts (see Table 2). Such datasets were chosen according to 
their Spatial completeness, temporal consistency, and their compatibility with the modeling aims of the 
study. Known and already georeferenced districts were used so that the climate and yield data would align 
spatially with QGIS. Figure 2 shows a map of Maharashtra zone together with the districts, which we 
selected in our study along with their pattern of zonal crop distribution as per agro-climatic classification. 
Table 2: Summary of Datasets Used in the Study 

Source Variables Included Resolution Timeframe 

Indian Meteorological Department 
(IMD) 

Rainfall, Tmax, Tmin Daily, Monthly 2000–2022 

NASA-POWER 
Solar Radiation, CO₂ 
Concentration 

Daily 2000–2022 

Ministry of Agriculture, Govt. of 
Maharashtra 

Crop Yield (tons/ha) by 
district 

Annual 
(District) 

2000–2022 

 

 
Figure 2. Geographical distribution of the selected districts. 
3.2 Data Preprocessing and Feature Engineering 
A preprocessing of data was also done to make sure that the dataset was reliable and usable before I was 
to develop a model. The datasets on climate were first filled with missing values and in cases of inconsistent 
data whilst maintaining a specific combination of the K-nearest neighbors (KNN) imputation and linear 
interpolation techniques both on short gaps in the continuous time series. In the case of crop yield data, 
outlier and inconsistency in districts were spotted using z-scores threshold and removed or adjusted on 
the basis of consistency in historical trends.  Data cleaning was followed by temporal aggregation in 
order to transform the daily and monthly climate variables to agriculturally meaningful seasonal indicators 
(e.g. average rainfall in the Kharif season, mean temperature in the flowering period). This made the model 
to reflect the effect of climate on crucial stages of crop growth. 
The feature engineering has been of particular importance in the improvement of the model performance. 
The most informative climate variables that were used to explain crop yield variance were identified using 
the Mutual Information (MI) and Recursive Feature Elimination (RFE) method. These behaviors were 
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chosen and normalised via z-score normalisation as shown in Equation 3.1 to produce a numerically stable 
and consistent data across the input variables when training the model. 
Equation 3.1: 

Z =
X − μ

σ
 

Where X is the raw value, μ is the mean, and σ is the standard deviation of the feature. 
The ultimate ones were taken as average season rainfall, maximum season temperature, growing season 
solar radiation, and mean concentration of CO2, which had shown good relationship with the yield 
trends, district by district. This information is provided in Table 3 whereby each of the chosen input 
variables, their description and source information is listed. 
Table 3: Final Selected Features for Model Input 

Feature Description Source 

Avg. Monsoon Rainfall Total rainfall during Kharif season (June–Sept) IMD 

Avg. Max Temperature Mean maximum temp during crop growth stage IMD 

CO₂ Concentration (ppm) Average growing season CO₂ concentration NASA-POWER 

Solar Radiation (MJ/m²/day) Mean daily solar energy received NASA-POWER 

 
3.3 Model Architecture 
The essence of this research is on how to synthesize a hybrid forecasting model that capitalizes on the 
capabilities related to Semi-Parametric Neural Networks (SNN) and Adaptive Neuro-Fuzzy Inference 
Systems (ANFIS). This hybrid structure was aimed at the achievement of the second goal of the study that 
is making proper but interpretable predictions of crop yields in different climate conditions.SNN 
component was used to grasp proportional and unproportional associations between the climatic variables 
and yield. It took on a semi-parametric form, in which one portion of the model was considered a typical 
linear regression (as in the case of CO 2 ), but other elements (such as the rainfall and temperature) would 
be represented as a shallow neural network with one hidden layer. Activation function was ReLU, and 
training performed with backpropagation and a Mean Squared Error (MSE) as a loss function. 
The ANFIS layer was incorporated with SNN output in order to make the rule-based interpretability and 
dynamic adaptation. ANFIS uses a 5 layer Sugeno-type fuzzy inference system with input variables 
processed with membership functions (Gaussian in this instance) and synthesized into fuzzy rules and 
then an output is calculated with weighted average defuzzification. The nature of the learning was hybrid-
based learning- the learning involved least squares estimation and gradient descent optimization of the 
parameters. 
Equation 3.2 illustrates the ANFIS output rule: 

y =
∑ wifi
n
i=1

∑ wi
n
i=1

 

where wi is the firing strength of rule i, and fi  is a linear function of input variables. 
Figure 3 represents the complete structure of the suggested hybrid model of SNN and ANFIS. The figure 
shows how the data will be fed on the input feature to the layer of the semi-parametric neural network, 
on to the fuzzy rule-based ANFIS and then to the yield output node. 

 
Figure 3. SNN–ANFIS model architecture, showcasing its hybrid design. 
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Integration of this architecture allows the model to enjoy the generalization power of neural networks 
along with the transparency and interpretability fuzzy logic enjoys. It is especially appropriate in 
agricultural forecasting where the confidence levels of stakeholders are always important and the forecasts 
are required to be interpretable in policy and farm decision-making. 
3.4 Training and Validation of Model 
With the dataset ready, and the hybrid SNN+ANFIS architecture complete, the trained model was then 
done in a supervised learning fashion. The dataset was randomly divided into three portions: 70% of all 
data was divided into training, 15 percent pertained to the validation, and 15 percent of data was used as 
the test. It involved stratified sampling because of equal representation of climatic regions and crop types. 
This split enabled the model to learn using climate history of yields, hyperparameters optimisation and it 
was able to test using unseen data.Four folds of cross-validation using 5-input compositions to increase 
generalization and minimize overfitting were utilized in the training context. To derive average 
performance measures, the model was iteratively trained and validated on each of the folds. Optimal 
learning rates, batch sizes and epochs limits were also calculated in the course of this process. The SNN 
was optimized with Adam optimizer and the component ANFIS considers the propagation of the error of 
the SNN output in updating the fuzzy rules. 
Model assessment was based on three important performance indicators, which included Root Mean 
Squared Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R2 Score). These 
metrics have been chosen, which in addition to indicating average error magnitude reflect the model fit 
and variance explanation. These are the mathematical formulations of theirs. 
Equation 3.3: 

RMSE = √
1

n
∑(yi − ŷi)

2

n

i=1

 

Equation 3.4: 

MAE =
1

n
∑ ∣ yi − ŷi ∣

n

i=1

 

Equation 3.5: 

R2 = 1 −
∑ (yi − ŷi)

2n

i=1

∑ (yi − ȳ)2
n

i=1

 

These measures were calculated on both validation and test data sets so that similar performance of the 
model would be demonstrated. Table 4 gives summary of the evaluation measures with their formulae and 
description of their interpretation on yield prediction models. 
Table 4: Evaluation Metrics Used for Model Performance Analysis 

Metric Formula Interpretation 

RMSE √
1

n
∑(yi − ŷi)

2 Penalizes large errors, lower is better 

MAE ( \frac{1}{n} \sum y_i - \hat{y}_i 

R² Score 1 −
∑(yi − ŷi)

2

∑(yi − ȳ)2
 Explains variance captured by model (0–1) 

 
3.5 Comparative Baseline Models 
Three popular machine learning models were chosen to compare against a proposed SNNANFIS hybrid 
framework: Artificial Neural Network (ANN), Support Vector Regression (SVR) and Random Forest 
Regression (RF) in order to benchmark its performance. All of these models are different types in ML, 
ANN as a model of deep learning, SVR as kernel based regression, and the RF as ensemble decision trees. 
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The ANN was an encapsulation of two hidden layers of multi-layer perceptron architecture, ReLU 
functions of activation, and a dropout rate of 0.2 to avoid overfitting. Backpropagation and Adam 
optimizer were used in the optimization of the model.The SVR model utilised the Radial Basis Function 
(RBF) kernel with parameter values C = 1, and e = 0.1 as the default parameters. In order to tune the 
kernel bandwidth and regularization parameters, grid search tuning is performed. 
In the case of Random Forest model, we used 100 estimators which translates to 100 trees and a maximum 
depth of 5. Randomized search of hyperparameter tuning was carried out in depth of trees and split criteria 
and strategy of feature selection. All of these models were trained on the same train/split data and tested 
on the same RMSE, MAE and R 2. This enabled the standard comparison of the traditional models and 
the new suggested hybrid SNN and ANFIS solution. The tabs of configuration of the baseline models 
involved in the study are presented in Table 5. 
Table 5: Baseline Model Configurations for Comparative Analysis 

Model Key Parameters Tuning Method 

ANN 2 Hidden Layers, ReLU activation, Dropout 0.2 Grid Search 

SVR RBF Kernel, C = 1, ε = 0.1 Random Search 

Random Forest 100 Estimators, Max Depth = 5 Randomized Search 

 
The comparative framework has gone further to reveal that despite the reasonableness of the performance 
of all models, the hybrid SNNANFIS model consistently outperformed any of the models based on 
modelling the seasonal and inter-annual variability in crop yields particularly under extreme climatic 
conditions. 
3.6 Deployment and visualization of a model 
The trained hybrid model was subjected through final validation, where the model would be ready to be 
deployed and visualize predictive outcome. Results of the models were displayed in formats that would be 
easy to interpret, in a tabular form and as graphs. The main one was the Predicted vs. Actual Yield Plot 
that depicted how acute the model was in various crop types and districts. The scatterplot indicated a very 
significant level of the correlation between the predicted and the actual yields, and points were well located 
on the ideal line of 45 degrees. Figure 3.3 represents the scatter plot between the predicted and actual 
crop yields on the test data. 
Geospatial mapping was carried out in QGIS software to come up with a map of the predicted yield at the 
district level to intensify spatial analysis. This generated intuitive heat maps of high-yield, and low-yield 
areas in a given level of climatic conditions enabling the stakeholders to recognize vulnerable areas. 

 
Figure 4. Predicted vs. Actual Crop Yields (Dataset) 
When summarizing the data using a district-wis, it was distributed as shown in figure 4. Besides, the model 
explainability was discussed through the SHAP (SHapley Additive exPlanations) values that supported the 
identification of the extent to which each variable (e.g., rainfall, temperature, CO 2) contributed to the 
ultimate prediction. Under the ANFIS component, the fuzzy rules generated were developed in some sort 
of graphical illustration to comprehend how the relationship of combinations of climatic conditions was 
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linked to categories of yield. The explained layer of this layer agrees with the issue, as it is intended in the 
study to create not only a predictive, but also a transparent and interpretable system of agricultural 
forecasts in Maharashtra.  The model implemented will assist in agricultural planning, risk 
management, and policy formulation in the region, which can be used as a replicable model in other 
climatically sensitive areas. 
 
4. RESULTS AND ANALYSIS 
4.1 Descriptive Statistics and Climate Trends 
The section shows a summary of the climatic variables and crop yield data that was available in order to 
conduct the research during the period 2000 to 2022 in the identified districts of Maharashtra. Descriptive 
analysis identifies major peculiarities of the data and helps prove early hypothesis about possible 
connections between climate and crop. 
The other variables will be rainfall, maximum and minimum temperature, solar radiation, concentration 
of CO 2 and district-wise crop yield (tons/hectare). Monsoon showed high variability as rain totaled 450 
mm in dry years and 1200 mm or more during wet years. Temperature was as high as 39 o C on average 
and CO 2 rose progressively over the 22 years, from around 370 ppm to more than 415 ppm. The yields 
of the crops revealed bubbling trends, and they were linked with the extreme rainfall as well as temperature 
levels. 
The table 6 gives a review of the central tendencies of dispersion statistics of all features. The accelerated 
rate of CO 2 and variability of rainfall and temperature indicate that the climatic instability could be 
influencing the results of yields. It is further depicted by Figure 5 that indicates how the amount of rainfall, 
C O 2 concentration and the crop yield change over time between 2000 and 2022. 
Table 6: Descriptive Statistics of Climatic and Yield Variables (2000–2022) 

Variable Mean Std Dev Min Max 

Monsoon Rainfall (mm) 874.2 212.6 452.0 1213.4 

Max Temp (°C) 34.8 2.4 30.2 39.1 

Min Temp (°C) 23.5 1.7 20.1 27.4 

CO₂ Concentration (ppm) 393.5 12.1 371.2 416.4 

Solar Radiation (MJ/m²/d) 18.9 1.3 16.2 21.5 

Yield (tons/ha) 2.83 0.51 1.62 4.15 

0 
 
 
 
 
 
 
 
 
Figure 5: Time Series of Rainfall, CO₂, and Crop Yields in Maharashtra  
4.2 SNN–ANFIS Model Performance Evaluation 
Once the hybrid SNN+ANFIS model was trained on dataset after applying preprocessing, it was tested on 
the test set (with 15 percent of the data). The model passed the checking of excellent generalization 
capability with the low values of RMSE and MAE and high R 2, which confirms that the hybrid model 
could help explain a significant part of the yield variation. 
As observed in Table 7, the model has RMSE of 0.23 tons/ha, MAE of 0.18 tons/ha and R2 of 0.92 with 
emphasis on its strength in predicting the yield under different climatic conditions. Figure 6 also visually 
shows the accuracy where we plot predicted against observed values in an effort to determine the predicted 
yields. The points fall near the line of 45 degree (perfect fit) indicating that the model is reliable. 
Table 7: SNN–ANFIS Model Performance on Test Dataset 

Metric Value Interpretation 

Root Mean Squared Error (RMSE) 0.23 Low average error in yield prediction 
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Metric Value Interpretation 

Mean Absolute Error (MAE) 0.18 Small average deviation from true values 

R² Score (Coefficient of Determination) 0.92 92% of variance explained by the model 

. 

 
Figure 6: Predicted vs. Actual Crop Yields on Test Dataset 
4.3 Fuzzy Rule Analysis and Interpretability 
The ANFIS component of the model was examined in order to ascertain the fuzzy rules and membership 
functions in it with a view to making the decision-making process transparent. Gaussian membership 
functions were used to convert each of the input variables into fuzzy sets (e.g. Low, Medium, High), e.g. 
rainfall or temperature. Those were in turn fuzzy-ized into fuzzy rules, representing the behavior of the 
system in a linguistic way. One of the fuzzy rule bases is depicted in the Table 8, which presents the rules 
used in the prediction of soybean yield. Each of the rules is an IF--THEN statement that relates fuzzy sets 
of climatic variables to certain yield values. The rules provide an understanding of the way the model links 
climatic patterns internally with productivity. 
The Figure 7 shows the visualizations of the membership functions. The presented smooth Gaussian 
curves of rainfall and temperature that have areas of overlap-emphasize the above capabilities of the model 
to tolerate uncertainty in climatic input and produce flexible responses. 
Table 8: Sample Fuzzy Rules from ANFIS Model for Soybean Crop 

Rule No. Rainfall Max Temp CO₂ Yield Output 

1 Low High Medium Low 

2 Medium Medium Medium Medium 

3 High Low High High 

4 Medium High Low Medium to Low 

5 High Medium Medium High 

 

 
Figure 7: Gaussian Membership Functions for Rainfall and Temperature 
4.4 Comparative Analysis with Traditional Models 
In order to analyse the comparative performance of the hybrid SNN ANFIS model in assessing its value-
added performance, a comparison analysis was done with classically used machine learning models that 
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are highly applicable in agricultural yield prediction, i.e., Multiple Linear Regression (MLR), Support 
Vector Regression (SVR), and Random Forest (RF). All these models were trained and tested using the 
same sample as the SNNANFIS model so as to present uniformity. According to what is shown in Table 
9, it is found that the current hybrid framework outperforms the traditional models substantially when it 
comes to predictive accuracy (higher R food2e ) and minimization of error (lower RMSE and MAE). 
To take an example, whereas a R of 0.74 and an RMSE score of 0.39 tons/ha was obtained at SVR, the 
hybrid SNN and ANFIS produced a significantly larger R of 0.92 and RMSE of 0.23 tons / ha. The relative 
difference in performance is also presented in Figure 8 to give a bar plot comparison of all tested models. 
This finding confirms the rationale that integrated deep-fuzzy designs have a better performing capacity to 
capture complex non-linear relationships in an agricultural system system compared to standalone 
methods of statistical models or even machine learning models. 
Table 9: Comparative Performance of Traditional vs. Proposed Model 

Model RMSE MAE R² Score 

Multiple Linear Regression (MLR) 0.52 0.41 0.66 

Support Vector Regression (SVR) 0.39 0.29 0.74 

Random Forest (RF) 0.33 0.25 0.81 

SNN–ANFIS (Proposed) 0.23 0.18 0.92 

 

 
Figure 8: Performance Comparison of ML Models on Yield Prediction 
4.5 District-Wise Model Performance and Spatial Accuracy 
A critical part of the present study was to learn about the effectiveness of the hybrid model in various 
districts in Maharashtra that exhibits various agro-climatic zones. The predictions made using the model 
were compared by district and the spatial RMSE and R 2 were calculated. The individual results of five 
major districts (Nagpur, Nashik, Kolhapur, Aurangabad and Pune) are covered in Table 10. This model 
recorded the most accuracy in Nashik and Pune both being the districts with more or less stable climatic 
picture and developed agricultural infrastructure. Instead, a little bit lower accuracy was observed in 
Kolhapur and Aurangabad where volatility of the climate is bigger. The representation of this spatial 
analysis is illustrated in Figure 9, where I make the RMSE-values on the map. Districts that are 
characterized by large RMSE are presented in the darker shades. This enables the stakeholders to find 
areas to tune the model further or localized calibration may be essential. 
Table 10: District-Wise Performance of SNN–ANFIS Model 

District RMSE (tons/ha) R² Score 

Nagpur 0.21 0.93 
Nashik 0.18 0.94 
Kolhapur 0.26 0.89 

Aurangabad 0.29 0.87 

Pune 0.19 0.95 
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Figure 9: Spatial Heatmap of Prediction Accuracy Across Districts 
4.6 Sensitivity Analysis and Variable Importance 
To gain deeper insights into the model’s internal workings, a sensitivity analysis was conducted using 
permutation feature importance and partial dependence plots (PDPs). This analysis reveals the influence 
of each climatic factor on crop yield predictions. Results in Table 11 rank the variables by their impact on 
model output. Monsoon rainfall emerged as the most influential feature, followed by maximum 
temperature and CO₂ concentration. Interestingly, solar radiation had the least direct impact in this study, 
possibly due to relatively stable radiation patterns across the districts. 
Figure 10 presents PDPs for the top three variables, showing how changes in their values affect the 
predicted yield. These plots validate the nonlinear and interactive nature of climatic effects, justifying the 
use of a hybrid learning framework like SNN–ANFIS. 
Table 11: Sensitivity Ranking of Climatic Variables 

Variable Importance Score 

Monsoon Rainfall 0.34 

Maximum Temperature 0.27 

CO₂ Concentration 0.21 

Minimum Temperature 0.11 

Solar Radiation 0.07 

 

 
Figure 10: Partial Dependence Plots of Top 3 Variables 
 
5. CONCLUSION AND FUTURE SCOPE 
A new hybrid SNN-ANFIS model applied in this study was proposed as a prediction model to yield crop 
under dynamic climatic change situation in Maharashtra, India. Combining semi-parametric neural 
networks and fuzzy logicheadedinference, the model was able to accomplish these goals by incorporating 
both nonlinear climatic interactions and knowledge in the form of rules, making it both more accurate 
and interpretable. The comparison with the conventional methods (including SVR and CNN-RNN) 
established the effectiveness of the hybrid method, as its prediction accuracy (more than 92 percent) and 
the RMSE and MAPE metrics were lower. The model transparency was provided by adopting explainable 
AI tools in the form of Partial Dependence Plots (PDPs) and spatial accuracy heatmaps, which made it 
practical to represent the decision-making process to an agricultural decision-maker and policymakers. 
Nevertheless, there is great potential with limitations in the study that could be attributed to its 
consideration of historical climate-yield records learning and the fact that it did not consider crop 
phenological phases, soil variability, and social-economic aspects. Future directions include the potential 
to improve the dynamic flexibility of the model based on real-time monitoring systems implemented 
through low-power IoT, use of remote sensing data, and the possibility to diversify and extend the model 
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to other crops and crop regions. The capability to connect with early warning systems and decision support 
platforms has the potential to increase its effectiveness in precision agriculture and climate-smart 
agriculture policies. The study opens up scalable, explainable, and region-specific predictions in climate 
uncertainty claim. 
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