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Abstract: Type 2 diabetes is a major public-health problem. We build a leakage-safe machine-learning workflow 

on the Pima Indians Diabetes Dataset (768 records) to predict diabetes from routine clinical attributes. Clinically 

implausible zeros in Glucose, Blood Pressure, Skin Thickness, Insulin, and BMI are treated as missing and imputed 

with class-conditional medians. Continuous variables are standardized only for models that require scaling (e.g., 

LR, SVM, KNN); tree-based models use raw scales. Besides the eight original attributes, we engineer 16 clinically 

interpretable composite features and assess their utility with descriptive checks and model-agnostic explainability 

(SHAP). The model portfolio includes Logistic Regression, SVM, KNN, Decision Tree, Random Forest, Gradient 

Boosting, XGBoost, and LightGBM. The final classifier is a soft-voting ensemble of XGBoost and LightGBM based 

on averaged predicted probabilities. 

Using a stratified train/validation procedure and a strictly held-out test set, the ensemble achieves Accuracy = 

89.61%, ROC-AUC = 94.52%, and F1 = 85.19%, outperforming the individual models. SHAP highlights clinically 

coherent drivers (e.g., glucose, pregnancies, age, BMI-related composites). Compared with recent Scopus-indexed 

studies on the same dataset (≈74–89% accuracy), our leakage-controlled and transparent pipeline provides 

competitive, reproducible results and a practical basis for clinical decision support that can be extended to larger, 

multi-site, and more diverse cohorts. 

Keywords: Diabetes mellitus, Machine learning, Data processing, Pima Indians Diabetes Dataset (PIDD), 

Classification algorithms, Random Forest, XGBoost, LightGBM, Ensemble Learning, Feature Engineering 

1. INTRODUCTION 

Diabetes mellitus is a long-term metabolic condition marked by high blood sugar levels, resulting from 

inadequate insulin production by the pancreas (Type 1 diabetes) [1,2], the body’s inability to effectively 

use insulin (Type 2 diabetes), or a temporary state during pregnancy called gestational diabetes [3]. The 

World Health Organization (WHO) identifies diabetes as a major contributor to blindness, kidney failure, 

heart disease, stroke, and lower limb amputations [4]. The global incidence of diabetes is steadily 

increasing, fueled by aging populations, lack of physical activity, unhealthy diets, and rising obesity. This 

condition places a heavy financial strain on individuals and healthcare systems alike, making it a vital 

focus for public health efforts and medical innovation [5]. 

Early and accurate diagnosis of diabetes is essential to prevent or delay the onset of complications 

associated with the disease [6]. Identifying individuals at risk or in the early stages of diabetes allows 

for timely medical intervention, lifestyle modifications, and ongoing monitoring, which can 

significantly reduce the severity and progression of the disease [7]. 
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Early detection is particularly vital in managing Type 2 diabetes, which can remain asymptomatic 

for years, thereby increasing the risk of undiagnosed cases. Proactive diagnosis can also aid in the 

prevention of pre-diabetes from developing into full-blown diabetes [8]. Despite the availability of 

diagnostic tests, many cases remain undetected until serious complications arise, highlighting the need 

for more effective and accessible diagnostic methods [9]. 

Conventional methods [10] for diagnosing diabetes include fasting plasma glucose (FPG) tests, 

oral glucose tolerance tests (OGTT), and glycated hemoglobin (HbA1c) measurements [11]. While 

these methods are standardized and widely used, they present several limitations. These include the 

requirement for fasting, multiple blood samples, time-consuming procedures, and the need for 

specialized medical infrastructure and trained personnel [12]. Furthermore, traditional diagnostic 

approaches may not be effective in identifying diabetes in its early stages or in asymptomatic individuals 

[13]. There is also a risk of human error in manual interpretation of test results, and variability in patient 

conditions can lead to inconsistent outcomes. These constraints make it challenging to conduct large- 

scale screenings, especially in low-resource settings, underscoring the necessity for innovative 

diagnostic alternatives [14]. 

Soft computing [15] is a multidisciplinary field that includes methods like fuzzy logic, neural 

networks, genetic algorithms, and machine learning, which are designed to model and process uncertain, 

imprecise, and complex data conditions commonly encountered in medical diagnostics [16]. Unlike 

traditional hard computing methods that require exact inputs and deterministic outputs, soft computing 

techniques are tolerant of uncertainty and can learn from data, making them highly suitable for 

healthcare applications [17]. In the context of diabetes diagnosis, soft computing approaches can 

analyze large datasets of patient information such as medical history, lifestyle factors, and clinical test 

results to identify patterns and predict disease risk with high accuracy [18]. These techniques have 

shown promise in improving the speed, accuracy, and accessibility of diagnostic processes, enabling 

more personalized and data-driven healthcare solutions [19]. As such, the integration of soft computing 

in medical diagnostics represents a significant advancement toward more intelligent, efficient, and 

proactive disease management systems [20]. 

The remainder of this paper is organized as follows: Section 2 reviews related work on diabetes 

prediction using the Pima Indians Diabetes Dataset (PIDD). Section 3 describes the dataset and cohort 

characteristics. Section 4 details the methodology data-quality checks, missing-data handling for 

clinically implausible zeros, feature engineering (16 composite features), feature standardization (for 

scalable models) and a diverse model portfolio (Logistic Regression, SVM, KNN, Decision Tree, 

Random Forest, Gradient Boosting, XGBoost, LightGBM), and the ensemble with leakage-safe 

validation. Section 5 presents the experimental results on a strictly held-out test set (Accuracy/ROC- 

AUC/F1), SHAP-based explainability, and a comparative analysis against recent Scopus-indexed PIDD 

studies. Section 6 concludes and outlines future work. 
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The primary contributions of this paper are as follows: 

• Leakage-safe ML workflow for PIDD. We implement a strictly leakage-controlled pipeline on 

the Pima Indians Diabetes Dataset (768 records), ensuring all preprocessing and screening are 

confined within the training folds and a single untouched test split is used for final reporting. 

• Clinically guided data cleaning & imputation. Implausible zeros in Glucose, Blood Pressure, Skin 

Thickness, Insulin, and BMI are treated as missing and imputed using class-conditional medians, 

aligning with clinical plausibility. 

• Feature engineering with transparent rationale. We add 16 clinically interpretable composite 

features (formulas + justifications), and verify their utility via univariate tests and model-agnostic 

explanations (SHAP). 

• Comprehensive model portfolio with an ensemble best. We evaluate Logistic Regression, SVM, 

KNN, Decision Tree, Random Forest, Gradient Boosting, XGBoost, and LightGBM, plus an 

ensemble; the ensemble yields Accuracy 89.61%, ROC-AUC 94.52%, and F1 85.19% on the 

held-out test set. 

• Explainability for clinical insight. SHAP analysis highlights physiologically coherent drivers 

(e.g., glucose, pregnancies, age, BMI composites), providing transparent model behavior. 

2. Related Work 

Research on diabetes prediction with tabular clinical attributes especially on the Pima Indians 

Diabetes Dataset (PIDD) has expanded notably in recent years. Across modern classical ML pipelines 

(e.g., Logistic Regression, SVM, KNN, Decision Tree, Random Forest, Gradient Boosting, 

XGBoost/LightGBM) and lightweight ensembles, reported performance on PIDD typically spans ~74– 

89% accuracy, with substantial variability in validation protocols and metric reporting [21–40]. 

Tree-based methods (RF/GBMs) are the most commonly reported single-model baselines on 

PIDD, often outperforming linear models and KNN under similar preprocessing [21–28, 29–36]. 

Several works evaluate ensembles (e.g., soft voting/stacking) as stronger but still lightweight tabular 

learners, generally yielding incremental improvements over the best single model while remaining 

computationally practical [21–28]. SVMs also appear frequently; while effective, they tend to trail tuned 

tree-based models on PIDD unless coupled with careful kernel choices or targeted feature selection [27– 

29, 33–36]. Beyond classical ML, a subset of studies explores deep learning (e.g., CNN/MLP for tabular 

or augmented feature spaces), achieving competitive accuracies but usually with heavier configuration 

requirements and limited external validation [33, 35]. Other lines include fuzzy/variant KNN and 

correlation/feature-selection–centric pipelines with mid-80% accuracy bands under typical splits [31, 

37–38]. 

Despite progress, three gaps recur. First, many papers do not explicitly guard against data leakage 

(e.g., fitting imputers or scalers before cross-validation), which risks optimistic estimates [21–40]. 

Second, metric completeness is inconsistent (AUC/F1 often omitted), complicating cross-paper 

comparison [29–36]. Third, feature engineering is commonly minimal or implicit; when present, its 

clinical rationale is rarely articulated, and ablation is limited [21–28, 31–36]. 
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Overall, the literature establishes a strong baseline space (predominantly tree-based learners and 

light ensembles) on PIDD within the ~74–89% accuracy range [21–40], but leaves room for leakage- 

safe evaluation, transparent missing-data handling, and clinically-motivated engineered features all 

focal points of the present study. 

Despite notable progress in ML for diabetes prediction on PIDD, key gaps persist limited leakage 

control, incomplete metric reporting (e.g., missing AUC/F1), and minimal clinically motivated feature 

engineering. (Table 2.1) summarizes recent Scopus-indexed PIDD studies used for comparison in this 

work. 

Table 2.1: Comparative summary of recent Scopus-indexed PIDD studies for diabetes prediction. 

# Authors Year Title 
Methods 

Used 
Dataset Key Features 

Performance 

Metrics 
Limitations 

Key 

Contributions 
Indexing 

 

 

1 

 

Ahmed, A., et 

al. 
[21] 

 

 

2025 

ML‑based diabetes 

prediction among 

female PIMA 
cohort 

 

RF, DT, NB, 

LR; PCA; 
5‑fold CV 

 

 

PIDD 

 

Female‑only 

cohort; PCA + 

correlation 

 

Accuracy = 

80% 

Single 

cohort; class 

imbalance; 
generalizabi 

lity 

Baseline 

comparison 

across 4 ML 
models on 

female PIMA 

 

Scopus, 

WoS 

(MDPI) 

 

 

 

2 

 

 

Okwudili, R., 

et al. 

[22] 

 

 

 

2025 

 

An improved 

performance model 
for AI on the Pima 

Indians Diabetes 

Database 

 

 

DT, SVM, 

NB (NB best) 

 

 

 

PIDD 

 

Compares 

standard 
classifiers; 

reports 

ROC/AUC 

 

 

Accuracy = 

76.3% 

Single 

dataset; 
modest 

accuracy; 

limited 
external 

validation 

 

Benchmarks 

classic 
classifiers on 

PIDD with AUC 

reporting 

 

Scopus, 

WoS 
(Springer 

Open) 

 

 

3 

 

Talukder, M. 

A., et al. 
[23] 

 

 

2024 

Toward reliable 

diabetes prediction: 

innovations in data 
handling 

 

Random 

Forest (subset 
analysis) 

 

 

PIDD 

Reliability- 

centric 
handling; 

limited tuning 

on PIMA 

 

Accuracy = 

80% 

 

Not model- 

centric; 
subset only 

Highlights 

preprocessing 

choices for 
PIMA reliability 

 

Indexed 

(journal 
on PMC) 

 

 

4 

 

Febrian, M. 

E., et al. 

[24] 

 

 

2023 

 

Diabetes prediction 

using supervised 

machine learning 

 

LR, SVM, RF 
comparisons 

 

 

PIDD 

 

Supervised ML 

baselines; k- 

fold/holdout 

 

Accuracy = 

86% 

Single- 

dataset; 
limited 

external 

validation 

Provided 

reproducible 
PIMA/PIDD 

baselines with 

numeric metrics 

Scopus 

(Procedia 
Computer 

Science) 

 

 

5 

 

Gupta, S. C., 

et al. 
[25] 

 

 

2023 

Predictive 

Modeling and 
Analytics for 

Diabetes using 

Machine Learning 

 

Random 

Forest (best), 
SVM, etc. 

 

 

PIDD 

Comparison 

across feature 
variants; public 

protocol 

 

Accuracy = 

88.61% 

Single- 

dataset; 
limited 

external 

validation 

Provided 

reproducible 
PIMA/PIDD 

baselines with 

numeric metrics 

Scopus 

(Procedia 
Computer 

Science) 

 

 

6 

 

Patro, K. K., 
et al. 

[26] 

 

 

2023 

An effective 
correlation‑based 

data modeling 

framework for 
diabetes prediction 

Correlation‑b 

ased 
modeling + 

ML 

 

 

PIDD 

 

Correlation 
measures; 

80/20 split 

 

Accuracy = 
75% 

Single- 
dataset; 

limited 

external 
validation 

Provided 
reproducible 

PIMA/PIDD 

baselines with 
numeric metrics 

 

Scopus, 
WoS 

(BMC) 

 

 

7 

 

Reza, M. S., 
et al. 

[27] 

 

 

2023 

Improving SVM 

performance for 

type II diabetes 

with an improved 

kernel 

 

SVM (custom 

kernel) 

 

 

PIDD 

 

Kernel 
engineering vs. 

RBF 

 

Accuracy = 

85.5% 

Single 

benchmark; 

needs 

external 

validation 

 

Custom SVM 
kernel baseline 

on PIMA 

 

Scopus 

(Elsevier) 

 

 

8 

 

Tasin, I., et 
al. 

[28] 

 

 

2023 

Diabetes prediction 
using machine 

learning and 

explainable AI 

 

Soft voting 
classifier; 

XAI 

 

 

PIDD 

 

Explainability 
with SHAP; 

soft voting 

 

Accuracy = 
79.1% 

Single- 
dataset; 

limited 

external 
validation 

Provided 
reproducible 

PIMA/PIDD 

baselines with 
numeric metrics 

 

Scopus, 
WoS 

(IET) 

 

 

9 

 

Zhou, H., 

Xin, Y., Li, S. 

[29] 

 

 

2023 

Boruta feature 

selection + 

ensemble for 
PIMA diabetes 

prediction 

 

Boruta FS + 

Ensemble 

(stacking) 

 

 

PIDD 

Boruta FS; 

K‑Means++ 

pre‑clustering; 
stacked learner 

 

Accuracy = 

79.04% 

Single 

benchmark; 

limited 
external 

validation 

Feature‑selectio 

n + ensemble 

pipeline on 
PIMA 

 

Scopus, 

WoS 

(BMC) 

 

 

10 

 

Kaur, H., 

Kumari, V. 
[30] 

 

 

2022 

Predictive 

modeling & 

analytics for 
diabetes (ML 

approach) 

 

RBF‑SVM, 

Linear SVM, 

k‑NN, MDR, 

ANN 

 

 

PIDD 

 

 

Classical ML 

comparison 

 

 

Accuracy = 

89% 

Uncertainty 

about 
protocol; 

still below 

your 

89.61% 

 

Baseline ML 

comparison with 
clear metrics 

 

 

Scopus 

(Elsevier) 
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# Authors Year Title 
Methods 

Used 
Dataset Key Features 

Performance 

Metrics 
Limitations 

Key 

Contributions 
Indexing 

 

 

11 

 

Pradhan, S., 

et al. 

[31] 

 

 

2022 

Voting 

Classification‑Base 

d Diabetes Mellitus 
Prediction Using 

PIDD 

 

Ensemble 

(soft voting) 

 

 

PIDD 

Voting 

ensemble 
across classic 

classifiers 

 

Accuracy = 

82% 

Single- 

dataset; 

limited 
external 

validation 

Provided 

reproducible 

PIMA/PIDD 
baselines with 

numeric metrics 

Scopus, 

WoS 
(Hindawi/ 

Wiley) 

 

 

12 

 

Salem, E., et 
al. 

[32] 

 

 

2022 

Fine‑tuning 

fuzzy‑KNN 
classifier under 

uncertainty 

membership 

 

Fuzzy‑KNN 

+ 

preprocessing 

 

 

PIDD 

 

Uncertainty- 
aware fuzzy 

KNN 

 

Accuracy = 

83.63% 

Single 
dataset; 

limited 

external test 

Refined 
fuzzy‑KNN 

baseline on 

PIDD 

 

Scopus, 
WoS 

(MDPI) 

 

13 

Ullah, Z., et 

al. 
[33] 

 

2022 

Detecting high‑risk 

factors & early 

diagnosis using 

ML 

 

RF, SVM, LR 

 

PIDD 

Risk‑factor 

analysis + 

class‑imbalanc 

e handling 

 

Accuracy = 

80.84% 

Focus on 

risk‑factors; 

limited 

tuning 

Benchmarked 

classic ML on 

PIDD with risk 

insights 

Scopus, 

WoS 

(Hindawi/ 

Wiley) 

 

 

14 

 

Butt, U. M., 
et al. 

[34] 

 

 

2021 

ML‑based diabetes 

classification for 

healthcare 

applications 

MLP, RF, 

LR, LSTM, 
LR, MA 

(survey + 

experiment) 

 

 

PIDD 

 

Survey + 
empirical 

comparison 

 

Accuracy = 
86.08% 

Mostly 

survey; 
small 

experimenta 

l section 

Summarized ML 

methods; 
provided 

baseline MLP 

on PIDD 

Scopus, 

WoS 

(Hindawi/ 

Wiley) 

 

 

15 

 

García‑Ordás, 

M. T., et al. 

[35] 

 

 

2021 

Diabetes detection 

using deep learning 

with oversampling 
& feature 

augmentation 

 

CNN-based 

DL + 
augmentation 

 

 

PIDD 

 

Oversampling 

+ data 

augmentation 

 

 

Accuracy = 

88.67% 

Single 

benchmark; 
DL needs 

more 

external 
validation 

Demonstrated 

strong DL 

baseline on 
PIMA with 

augmentation 

 

Scopus, 

WoS 
(Elsevier) 

 

 

16 

 

Khanam, J. J., 

Foo, S. Y. 

[36] 

 

 

2021 

A comparison of 

ML algorithms for 
diabetes 

classification & 

progression 

 

RF + mRMR; 

classic ML 

 

 

PIDD 

 

mRMR feature 

selection with 
RF 

 

Accuracy = 

77.21% 

 

Older setup; 

limited 
PIMA focus 

Benchmarked 

classic ML on 
PIMA; 

identified 

mRMR+RF 

 

Scopus, 

WoS 
(Elsevier) 

 

17 

Ramesh, S., 
et al. 

[37] 

 

2021 

Remote healthcare 
monitoring 

framework for 

diabetes prediction 

 

End‑to‑end 
ML pipeline 

 

PIDD 

Applied ML 
within 

monitoring 

framework 

 

Accuracy = 
83.2% 

Framework 
context; 

single 

dataset 

Gave 
reproducible ML 

baselines on 

PIDD 

Scopus, 
WoS 

(Springer) 

 

18 

Patra, R., 
Kuntia, B. 

[38] 

 

2020 

Prediction on Pima 
Indians Diabetes 

using SDKNN 

SDKNN 

(modified 
KNN) 

 

PIDD 

Standard‑devia 
tion distance in 

KNN 

 

Accuracy = 
83.76% 

Conference 
protocol; no 

AUC/F1 

Introduced 
SDKNN variant 

baseline on 

PIDD 

Scopus 
(IOP 

Conf. 

Series) 

 

19 

Ullah, S., et 
al. 

[39] 

 

2020 

Early prediction of 
diabetes using ML 

classifiers 

 

LR, SVM, RF 

 

PIDD 

Classic 
supervised ML 

baselines 

 

Accuracy = 
82% 

Single 
dataset; 

basic tuning 

Provided 
supervised ML 

baselines on 

PIDD 

 

Scopus 
(Springer) 

 

 

20 

 

Çalışir, D., 
Doğantekin, 

E. 

[40] 

 

 

2011 

 

Automatic diabetes 

diagnosis via 

LDA‑wavelet SVM 

 

LDA + 

Morlet 
wavelet SVM 

 

 

PIDD 

 

Dimensionality 
reduction + 

wavelet 

features 

 

 

Accuracy = 
89% 

 

Older split 
protocol; 

lacks 

modern CV 

Classic, 

well‑cited PIDD 

pipeline 
combining LDA 

with wavelet 

SVM 

 

Scopus, 

WoS 

(ESWA) 

3. Dataset 

The experiments in this study use the Pima Indians Diabetes Dataset (PIDD) obtained from the 

Kaggle UCI Machine Learning page (accessed Sept 20, 2025) [41]. The dataset contains 768 clinical 

records for female patients aged ≥ 21 years of Pima Indians heritage, with 8 input attributes and a binary 

outcome (diabetic or non-diabetic). The eight attributes are: Pregnancies, Glucose, Blood Pressure, Skin 

Thickness, Insulin, BMI, DiabetesPedigreeFunction, and Age. The features are numeric-valued and 

represent important health metrics: 

• Pregnancies: Number of times the patient has been pregnant. 

• Glucose: Plasma glucose concentration measured 2 hours after an oral glucose tolerance test 

(mg/dL). 

• Blood Pressure: Diastolic blood pressure (mm Hg). 
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• Skin Thickness: Triceps skin fold thickness (mm). 

• Insulin: 2-hour serum insulin (μU/mL). 

• BMI: Body mass index (weight in kg/(height in m)^2). 

• Diabetes Pedigree Function: (a score indicating diabetes hereditary risk). 

• Age: Age in years. 

•  Outcome: Diabetes status (target variable: 1 = tested positive for diabetes, 0 = tested negative). 

Out of the 768 patients, 268 (34.9%) have Outcome = 1 (diabetic) and 500 (65.1%) have Outcome 

= 0 (non-diabetic). This 1:2 class ratio reflects a moderate class imbalance, which can bias models 

towards predicting the majority class. We will address this issue in preprocessing (see Methodology). 

Data Quality: An important aspect of this dataset is that it contains some implausible zero values in 

features that should never be zero for a living person (e.g. blood pressure, plasma glucose). These zeros 

indicate missing data that were recorded as 0. Specifically, features Glucose, Blood Pressure, Skin 

Thickness, and Insulin have a certain number of zero entries (e.g., 5 patients have 0 blood pressure, 

etc.). We treat these zero values as missing and handle them via imputation (described below). The 

dataset has no explicit NaN values – all entries are complete – but these zeros must be corrected for 

accurate analysis. 

Statistical properties: Before preprocessing, we examined basic statistics. The mean values (after 

replacing zeros with NaNs for calculation) are roughly: Glucose ~121, Blood Pressure ~72, Skin 

Thickness ~29, Insulin ~156, BMI ~33, DPF ~0.47, Age ~33. The positive class tends to have higher 

average glucose and BMI than the negative class, consistent with known risk factors. There is a 

noticeable variance in the Insulin feature, and many zero entries (indicating missingness) in Skin 

Thickness and Insulin – about 30% of records have Insulin=0, and ~29% have Skin Thickness=0, for 

example. This underscores the need for careful preprocessing of these attributes. 

In summary, the Pima dataset provides a challenging benchmark due to its small size, missing values, 

and class imbalance. (Table 3.1) summarizes the dataset characteristics: 

Table 3.1: Pima Indians Diabetes Dataset [PIDD] overview. 

 

Characteristic Description/Value 

Number of instances 768 patients (Pima Indians females) 

Number of attributes 8 features + 1 outcome label (binary) 

Positive cases (diabetic) 268 (34.9%) 

Negative cases 500 (65.1%) 

Class imbalance ratio ~1 : 1.87 (positive : negative) 

Missing value handling 
Zeros in Glucose, BP, Skin Thickness, Insulin (treated as 

missing) 

Feature ranges 

Pregnancies (0–17), Glucose (0–199), Blood Pressure (0–122), 

Skin Thickness (0–99), Insulin (0–846), BMI (0–67.1), DPF 

(0.078–2.42), Age (21–81) 

Data source 
Kaggle (UCI Machine Learning Pima Indians Diabetes 

Database), accessed Sept 20, 2025 [41] 

The above feature ranges show that some features have legitimate zero (e.g. Pregnancies can be 0) while 

others should not be zero (e.g. minimum BMI of 0 indicates missing). We will next describe how we 

preprocess these data issues before feeding the data into our models. 

  



International Journal of Environmental Sciences 

ISSN: 2229-7359 

Vol. 11 No. 7, 2025 

https://theaspd.com/index.php 

 

4. Methodology 

4.1.  Proposed Model 

We adopt a leakage-safe pipeline (see Figure 4.1) that starts by obtaining the Pima Indians Diabetes 

Dataset (PIDD) from Kaggle (UCI ML), followed by brief exploratory checks of distributions and class 

balance. The data are stratified 80/20 into training and testing, with the test split frozen. All 

preprocessing is performed within stratified CV folds on the training split: plausibility checks; treating 

implausible zeros in Glucose, Blood Pressure, Skin Thickness, Insulin, and BMI as missing and 

imputing class-conditional medians; engineering 16 clinically motivated composite features; and 

applying standardization only for algorithms that require scaling (Logistic Regression, SVM, KNN), 

while tree-based models use raw scales. We then train single models Logistic Regression, SVM (RBF), 

KNN, Decision Tree, Random Forest, Gradient Boosting, XGBoost, and LightGBM via stratified 5- 

fold CV, and form a soft-voting ensemble of XGBoost and LightGBM by averaging predicted 

probabilities. 

Figure 4.1: Overview of the proposed model 

4.2.  Data Preprocessing (Data Quality & Missing-Data Handling) 

We first examine class balance and missing-data patterns to guide preprocessing. The dataset is 

modestly imbalanced, which we handle later via class-weighted losses where supported (Figure 4.2). 

Clinically implausible zeros in Glucose, Blood Pressure, Skin Thickness, Insulin, and BMI are treated 

as missing. As shown in (Figure 4.3), missingness is concentrated in Insulin and Skin Thickness, with 

minor gaps in Blood Pressure, BMI, and Glucose. All missing values are imputed using class- 

conditional medians fit within stratified CV folds on the training split to prevent leakage. 

Figure 4.2: Outcome distribution in the PIMA dataset for classes (0 = non-diabetic, 1 = diabetic). 
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Figure 4.3: Missing-values analysis across PIMA features. 

4.3.  Data Preprocessing (Feature Engineering [16 Composites]) 

To augment the eight original attributes with clinically meaningful signals, we derive 16 

interpretable composite features capturing thresholds, ratios, and interactions (e.g., 

BMI×SkinThickness, age-normalized terms, glucose-DPF ratio, pregnancy-age ratio). Each feature is 

specified by a clear formula and a brief clinical rationale in (Table 4.1). Correlations among original + 

engineered features are visualized in (Figure 4.4) to check redundancy and multi-collinearity before 

modeling. 

Table 4.1: Clinically motivated engineered features added to the eight original PIDD attributes. 
 

# Feature Name Description Exact Formula Type Why this feature? 

1 Normal_SkinThickness 
Normal skinfold thickness 

(≤20) 
I(SkinThickness ≤ 20) Binary 

Encodes a normal triceps skinfold to 
separate low-adiposity cases from higher 
subcutaneous fat. 

2 Healthy_BMI 
BMI within healthy range 

(≤30) I(BMI ≤ 30) Binary 
Distinguishes non-obese from obese; 
obesity is a major diabetes risk driver. 

 

3 

 

Young_Low_Pregnancies 
Young (≤30) with low 

pregnancies (≤6) 

I(Age ≤ 30 AND Pregnancies ≤ 

6) 

 

Binary 
Captures a lower-risk subgroup (younger 
with limited parity) vs older/high-parity 
patterns. 

4 Optimal_Glucose_BP 
Normal glucose (≤105) and 

normal BP (≤80) 
I(Glucose ≤ 105 AND 
BloodPressure ≤ 80) Binary 

Flags jointly normal glycemia and diastolic 
BP protective profile. 

5 Young_Normal_Glucose 
Young (≤30) with normal 

glucose (≤120) I(Age ≤ 30 AND Glucose ≤ 120) Binary 
Younger subjects with normal glucose are 
typically low risk; isolates that stratum. 

6 Healthy_BMI_SkinThickness 
Healthy BMI with normal 

skin thickness 
I(BMI ≤ 30 AND SkinThickness 

≤ 20) Binary 
Combines healthy BMI and normal 

skinfold to mark a globally lean phenotype. 

7 Optimal_Glucose_BMI 
Normal glucose and 

healthy BMI 
I(Glucose ≤ 105 AND BMI ≤ 

30) Binary 
Normal glycemia plus non-obese body mass 
strong negative signal for diabetes. 

8 Normal_Insulin Normal insulin (<200) I(Insulin < 200) Binary 
Indicates physiologically normal 2-hour 
insulin response post-load. 

9 Normal_BloodPressure Normal BP (<80) I(BloodPressure < 80) Binary 
Marks normal diastolic BP; hypertension 
correlates with metabolic risk. 

10 Moderate_Pregnancies 
Moderate pregnancies (1– 

3) 
I(1 ≤ Pregnancies ≤ 3) Binary 

Separates a mid-parity band from very 

low/high parity that may behave 
differently. 

 

11 

 

BMI_SkinThickness_Product 
Product of BMI and skin 

thickness 

 

BMI * SkinThickness 

 

Continuous 
Interaction between overall adiposity 
(BMI) and subcutaneous fat distribution 
(skinfold). 

12 Pregnancy_Age_Ratio Ratio of pregnancies to age Pregnancies / (Age + 1) Continuous 
Normalizes parity by age (exposure time), 
more stable than raw Pregnancies. 

13 Glucose_DiabetesPedigree_Ratio 
Glucose normalized by 

genetic predisposition 
Glucose / (DPF + 1e-6) Continuous 

Scales glycemia by familial risk; separates 
high-glucose/high-DPF from high- 
glucose/low-DPF. 

14 Age_DiabetesPedigree_Product 
Age weighted by genetic 

predisposition Age * DPF Continuous 
Models amplification of family-history 

effects with aging. 

15 Age_Insulin_Ratio Ratio of age to insulin Age / (Insulin + 1e-6) Continuous 
Contrasts age against post-load insulin 
response (good response at older age is 
informative). 

16 Low_BMI_SkinThickness_Product 

Indicator if 

BMI×SkinThickness is low 

(<1034 

I(BMI * SkinThickness < 1034) Binary 
Flags globally low adiposity via a product 
threshold chosen from your analysis. 
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Figure 4.4: Correlation matrix for original and engineered features. 

4.4.  Model Training (Utilize Eight Machine Learning Models & Cross-validation [k = 5]) 

We consider eight standard classifiers: Logistic Regression, SVM, KNN, Decision Tree, Random 

Forest, Gradient Boosting, XGBoost, and LightGBM (see Figure 4.5). Data are split once into 

stratified 80/20 (train/test), with the test split frozen. On the training split, we use stratified 5-fold 

cross-validation for model comparison under identical preprocessing pipelines (Figure 4.6). Class 

imbalance is addressed via class-weighted losses where available. 

 

 

 

 

 

 

Figure 4.5: The eight ML models utilized in this study. 
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Figure 4.6: Stratified k-fold cross-validation (k = 5). 

4.5.  Model Training (Ensemble Learning with Soft Voting Classifier [Combining the Top 2 Models 

for Higher Accuracy]) 

After cross-validated comparison of the single models, we construct a soft-voting ensemble that 

averages predicted probabilities from the two top-performing single models on validation (LightGBM 

and XGBoost). The ensemble architecture is shown schematically in (Figure 4.7), and the soft-voting 

mechanism is illustrated in (Figure 4.8). 

 

Figure 4.7: Ensemble architecture (combining outputs of multiple base learners into a single prediction). 

 

 

 

 

 

 

 

 

 
 

Figure 4.8: Soft-voting (probability averaging across base models before final class decision). 
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4.6.  Model Training (Explainable AI [XAI]) 

We complement model training with explainability to clarify why predictions are made and to 

ensure clinical transparency. In line with the presentation, we apply three complementary techniques: 

• Feature importance: ranks inputs by their contribution within fitted tree/boosting models useful 

for a quick, intuitive view of drivers. 

• Permutation importance: measures the change in performance when a single feature is randomly 

shuffled, providing a robustness check against spurious signals. 

• SHAP values: offer global summaries of feature influence across the cohort and local per-patient 

attributions that decompose each prediction into additive feature contributions. 

These XAI analyses improve interpretability, trust, and clinical relevance. Corresponding visual 

summaries (global and case-level) are presented in the Results section. 

5. Results 

5.1.  Overall comparison of single models 

(Table 5.1) reports the full test-set metrics for all eight classifiers. LightGBM achieved the highest 

test accuracy (88.96%) with balanced precision/recall (84.91%/83.33%) and strong ROC-AUC 

(94.72%). XGBoost ranked second (88.31% accuracy; 94.63% AUC). Gradient Boosting followed 

closely (87.66% accuracy) and delivered the top AUC (95.57%). Random Forest, SVM, and KNN 

formed the middle tier (85.06%, 83.77%, and 83.12% accuracy, respectively), while Decision Tree 

and Logistic Regression were the weakest baselines (81.82% and 79.22%). 

Table 5.1: Comparative performance of the eight algorithms on the test set. 
 

# Algorithm 
Train 

Accuracy 
Test 

Accuracy 
Test 

Precision 
Test 

Recall 
Test F1- 

Score 
ROC 
AUC 

1 LightGBM 100% 88.96% 84.91% 83.33% 84.11% 94.72% 

2 XGBoost 100% 88.31% 82.14% 85.19% 83.64% 94.63% 

3 Gradient Boosting 99.19% 87.66% 83.02% 81.48% 82.24% 95.57% 

4 Random Forest 100% 85.06% 78.18% 79.63% 78.90% 93.69% 

5 SVM 90.88% 83.77% 77.36% 75.93% 76.64% 90.05% 

6 KNN 88.76% 83.12% 78% 72.22% 75% 86.62% 

7 Decision Tree 100% 81.82% 71.67% 79.63% 75.44% 81.31% 

8 Logistic Regression 86.32% 79.22% 71.15% 68.52% 69.81% 87.35% 

5.2.  Class performance (confusion matrices) 

Per-class performance: top models reach ~81–86% recall (positive class) and ~90–92% 

specificity; e.g., LightGBM: 46 TP / 8 FN, 92 TN / 8 FP (see Figure 5.1). 
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Figure 5.1: Confusion matrices for all eight models with test accuracies annotated. 

5.3.  ROC-AUC: Discrimination performance across models 

ROC curves confirm the advantage of boosting-based learners; Gradient Boosting yields the 

highest AUC = 95.57%, with LightGBM = 94.72% and XGBoost = 94.63%; Decision Tree lags at 

81.31% (see Figure 5.2). 
 

Figure 5.2: ROC comparison across the eight algorithms. 

5.4.  Cross-validation (Stratified 5-Fold) 

Stratified 5-Fold CV indicates stable generalization: LightGBM mean accuracy 87.61%, mean 

AUC 94.35%; XGBoost mean accuracy 87.29%, mean AUC 94.36% (see Table 5.2a, b). 
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Table 5.2a: Cross-validation fold results for LightGBM. 

Fold 
Train 

Accuracy 
Test Accuracy Test Precision Test Recall Test F1 

Test ROC 

AUC 

1 100% 87.80% 83.33% 81.40% 82.35% 92.76% 

2 100% 86.18% 84.21% 74.42% 79.01% 92.99% 

3 100% 91.06% 88.10% 86.05% 87.06% 96.66% 

4 100% 91.06% 88.10% 86.05% 87.06% 96.22% 

5 100% 81.97% 73.81% 73.81% 73.81% 93.10% 

Mean 100% 87.61% 83.51% 80.34% 81.86% 94.35% 

Table 5.2b: Cross-validation fold results for XGBoost. 

Fold 
Train 

Accuracy 
Test Accuracy Test Precision Test Recall Test F1 

Test ROC 

AUC 

1 100% 84.55% 83.33% 69.77% 75.95% 92.50% 

2 100% 85.37% 83.78% 72.09% 77.50% 94.39% 

3 100% 91.87% 90.24% 86.05% 88.10% 96.16% 

4 100% 90.24% 87.80% 83.72% 85.71% 95.70% 

5 100% 84.43% 76.74% 78.57% 77.65% 93.04% 

Mean 100% 87.29% 84.38% 78.04% 80.98% 94.36% 

5.5.  Soft-voting ensemble (LightGBM + XGBoost) 

We build a soft-voting ensemble that averages class probabilities from LightGBM and XGBoost 

with equal weights. On the held-out test set, the ensemble reaches 89.61% accuracy with Precision = 

85.19%, Recall = 85.19%, F1 = 85.19%, and ROC-AUC = 94.52% (see Table 5.3). Compared with 

the best single models LightGBM (88.96%) and XGBoost (88.31%) (see Figure 5.3). 

Table 5.3: Soft-voting ensemble (LightGBM + XGBoost) performance on the test set. 
 

Model 
Train 

Accuracy 

Test 

Accuracy 

Test 

Precision 

Test 

Recall 

Test F1- 

Score 

ROC 

AUC 

Ensemble (XGBoost + LightGBM) 100% 89.61% 85.19% 85.19% 85.19% 94.52% 

 

Figure 5.3: Test accuracy (%) comparison of XGBoost, LightGBM, and their soft-voting ensemble. 
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5.6.  Explainable AI (XAI) results for LightGBM 

Explainability for LightGBM converges across three views: feature importance, permutation 

importance, and SHAP. All rank Insulin and Glucose as the most influential, followed by BMI and 

engineered features (e.g., Age×DPF, BMI×SkinThickness, Age/Insulin), then clinical variables (DPF, 

SkinThickness, Age, BloodPressure) (see Figures 5.4–5.7). 
 

Figure 5.4: Top-15 model-based feature importances (LightGBM). 
 

Figure 5.5: Top-15 permutation importances with uncertainty bars (LightGBM). 
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Figure 5.6: SHAP summary plot (LightGBM). 
 

Figure 5.7: SHAP mean(|value|) feature-importance bar plot (LightGBM). 
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5.7.  Comparison of the proposed ensemble against recent PIDD studies 

As shown in (Table 5.4), recent Scopus/WoS indexed studies on the Pima Indians Diabetes 

Dataset report test accuracy between 76.3% and 88.61%. Typical setups include classical classifiers 

(DT/SVM/NB), Random-Forest baselines, or comparisons of several standard models on the full 

PIDD or a subset. 

Our soft-voting ensemble (LightGBM + XGBoost) reaches 89.61% test accuracy slightly higher 

than the best of these papers. 

Table 5.4: Comparison of proposed ensemble model with previous studies. 
 

# Authors Year Dataset Methods Used Accuracy Indexing 

1 
Ahmed, A., 

et al. 
2025 PIDD 

RF, DT, NB, LR; PCA; 5- 
fold CV 

80% 
Scopus, WoS 

(MDPI) 

2 
Okwudili, 

R., et al. 
2025 PIDD 

DT, SVM, NB (NB best); 
reports ROC/AUC 

76.3% 
Scopus, WoS 

(Springer Open) 

3 

Talukder, 
M. A., et 

al. 
2024 PIDD 

Random Forest (subset 

analysis) 
80% 

Indexed (journal 

on PMC) 

4 
Febrian, M. 

E., et al. 
2023 PIDD 

LR, SVM, RF 
comparisons 

86% 
Scopus (Procedia 

Computer Science) 

5 
Gupta, S. 

C., et al. 
2023 PIDD 

Random Forest (best), 

SVM, etc. 
88.61% 

Scopus (Procedia 

Computer Science) 

 Proposed 

Model 
2025 PIDD 

Soft-Voting Ensemble 

(LightGBM + XGBoost) 
89.61% 

Scopus (Q3, IJES 
– ASPD) 

6. Conclusion & Future Work 

This study introduced a leakage-safe machine-learning workflow for Type-2 diabetes prediction on 

the Pima Indians Diabetes Dataset (PIDD). Clinically implausible zeros were handled with class- 

conditional imputation, and 16 interpretable composite features were engineered to enrich the signal. 

Using a strict train/validation protocol with a held-out test set, we evaluated standard classifiers (LR, 

SVM, KNN, Decision Tree, RF, GBM, XGBoost, LightGBM) alongside an Ensemble model. The 

ensemble achieved 89.61% accuracy, 94.52% ROC-AUC, and 85.19% F1, outperforming individual 

learners and aligning with or exceeding most recent Scopus-indexed PIDD baselines. SHAP analyses 

highlighted physiologically coherent drivers (e.g., glucose, pregnancies, age, BMI-based composites), 

supporting the clinical plausibility and transparency of the pipeline. 

We will (i) validate the approach on larger, multi-site and more diverse cohorts beyond PIDD to 

assess transportability; (ii) incorporate richer feature sets (e.g., HbA1c, lipids, medications, longitudinal 

vitals) and study class-imbalance remedies; (iii) evaluate probability calibration and decision-curve 

analysis for deployment-ready thresholds; (iv) audit fairness and robustness under distribution shift and 

different missing-data mechanisms; and (v) explore automated hyperparameter tuning (e.g., 

Bayesian/DE/GA/PSO) under nested, leakage-safe validation as an optional extension. These steps aim 

to strengthen external validity and clinical utility for real-world screening. 
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