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Abstract: Reliable and complete precipitation data are essential for hydrological modeling and water resource 
management. However, gaps in records due to sensor failures, human error, or limited station coverage can compromise 
analysis quality. This study evaluates the performance of four interpolation techniques: artificial neural networks, mul-
tiple linear regression, ordinary kriging, and cubic splines for estimating missing daily precipitation values in the Cedar 
River basin, a mountainous region in Washington State, USA. Prior to interpolation, data quality control was applied 
using double mass curve analysis and Pettitt’s test. Performance was assessed using RMSE, MAE, Pearson correlation, 
and Nash–Sutcliffe efficiency. Results indicate that artificial neural net-works provided the most accurate estimates 
(RMSE = 2.64 mm; Correlation coefficient: = 0.98 and Nash–Sutcliffe efficiency= 0.96), followed by cubic splines, 
kriging, and multiple regression. Neural networks effectively captured nonlinear patterns in precipitation but required 
specialized knowledge and more computational resources. Kriging offered a robust and simpler alternative when spatial 
structure was well-defined, while regression worked well when station correlations were high. Cubic splines performed 
poorly under high temporal variability. The findings suggest that neural networks are best suited for complex conditions, 
but traditional methods re-main valid in operational settings with limited resources. 
Keywords: Precipitation, Interpolation, Artificial Neural Networks, Kriging, Multiple Regression, Cubic Splines, Data 
Quality Control 
  
1. INTRODUCTION 
Precipitation plays a fundamental role in water resource management, climate modeling, and natural 
disaster mitigation. Accurate measurement of this variable is essential for forecasting extreme events such 
as droughts and floods, optimizing water allocation, and improving the calibration and performance of 
hydrological models) [1], [2]. However, gaps in precipitation time series remain a recurrent issue in climate 
research, often caused by sensor failures, extreme weather conditions, or human error during data 
collection [3]. 
These discontinuities impair the reliability of predictive models, hinder long-term climatic analyses, and 
introduce uncertainty into water management strategies. Moreover, data acquisition is frequently limited 
by the uneven spatial distribution of weather stations and by socioeconomic and technological constraints, 
such as high installation and maintenance costs or the lack of infrastructure in remote areas [3]. 
To address these limitations, a wide range of interpolation techniques have been developed to estimate 
missing data and ensure the temporal continuity of precipitation records [4]. These methods have proven 
critical for enhancing the spatial and temporal resolution of climate datasets in regions with sparse 
observational networks. Their effectiveness, however, depends on several factors, including the spatial 
variability of precipitation, the number and distribution of stations, and the temporal granularity of 
available data [5], [6]. 
A broad spectrum of techniques has been employed in the literature. Geostatistical methods such as 
regression kriging have shown good spatial performance in mountainous regions with sparse networks [7]. 
Statistical regression and machine learning models have also been used to reconstruct incomplete records, 
demonstrating flexibility in complex or data poor environments [8]. More recently, high-resolution global 
precipitation models have been developed using non-stationary SPDE structures and latent Gaussian 
processes, which effectively represent fine-scale spatial patterns [9]. 
In parallel, deep learning methods have emerged as promising tools for precipitation estimation. For 
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instance, Temporal Frame Interpolation (TFI) has shown superior performance in recovering extreme 
events from meteorological imagery [10], while generative models based on radar data have improved 
short-term rainfall nowcasting [11]. Other architectures, such as U-Net convolutional neural networks, 
have been applied to enhance precipitation prediction from radar imagery [12]. 
In the context of gap filling, [4] reported that kriging performed best when auxiliary variables were 
available, while [13], [14] confirmed its superior accuracy over deterministic approaches in both daily and 
monthly applications. In addition, Papacharalampous and collaborators in 2023 demonstrated the utility 
of machine learning algorithms, such as Light GBM and Random Forest, in capturing the spatial 
complexity of precipitation using satellite data [3]. 
The Cedar River basin, located in Washington State, USA, is a critical water supply source for the Seattle 
metropolitan area and plays a key role in maintaining ecological processes such as surface runoff, aquifer 
recharge, and forest soil moisture retention. Given its hydrological significance and ecological sensitivity, 
particularly in the context of climate change, accurate characterization of precipitation dynamics in this 
region is of high practical relevance [15], [16]. 
This study aims to evaluate and compare the performance of four interpolation methods: ordinary kriging, 
polynomial regression, cubic splines, and artificial neural networks for reconstructing missing daily 
precipitation data in the Cedar River basin. The objective is to determine the most accurate and 
operationally viable method under conditions of low station density and high climatic variability. 
 
2. METHODS 
2.1 Study Area and Climatic Characteristics 
This study was conducted in the Cedar River Basin, located in the state of Washington, in the 
northwestern United States, near the city of Seattle. The region combines mountains, rivers, and 
temperate forests. Its topographic diversity generates broad variability in the local climate, which is relevant 
for analyzing precipitation pattern [15]. As shown in Figure 1, the analysis focuses on six meteorological 
stations located within the Cedar River watershed: Cougar Mountain (CM), Olallie Meadows (OM), 
Meadows Pass (MP), Mount Gardner (MG), Tinkham Creek (TC), and Rex River (RR). The precipitation 
information was obtained from the databases of the National Oceanic and Atmospheric Administration 
(NOAA), which is a free global repository of climatological data [17]. For this research, data will be used 
from January 1, 1996, to December 31, 2023 (a total of 27 years) 

 
Figure 1. Location of meteorological stations in the study area 
This basin belongs to the Cedar River system and is part of the greater Puget Sound watershed, supplying 
drinking water to a significant portion of the Seattle metropolitan area [15]. The mountainous terrain and 
dense forests that characterize this area create favorable conditions for the study of hydrological processes. 
Additionally, the basin exhibits steep altitudinal gradients and microclimatic variations that directly 
influence the spatial distribution of precipitation, making this region ideal for analyzing estimation and 
prediction methods [16] 
The selection of this region is motivated by its climatic complexity and strategic importance. The Cascade 
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Range acts as a natural barrier, creating diverse microclimates within a single region. For instance, while 
some areas may receive more than 6000 mm of annual precipitation, others show considerably drier 
conditions [16]. This variation enables the evaluation of the behavior of different precipitation estimation 
techniques under contrasting climatic contexts, as illustrated in Figure 2. 

 
Figure 2. Map of mean annual precipitation in the state of Washington, based on a 30-year reference 
period 
Furthermore, this region has been identified as vulnerable to the effects of climate change, as the state of 
Washington has experienced sustained warming in recent decades, along with a decrease in snow 
accumulation during winter and shifts in seasonal precipitation patterns. These changes include reduced 
summer rainfall and increased winter precipitation, which directly impact the region's hydrological regime 
and pose challenges for sustainable water management [16]. These changes have direct consequences on 
the water cycle. Snowmelt now occurs earlier, base flows in rivers decrease during the dry season, and the 
frequency of extreme events such as droughts or intense rainfall has increased. 
2.2 Overview of the Interpolation Models 
2.2.1 Artificial Neural Networks 
In machine learning, Artificial Neural Networks (ANNs) are used to approximate nonlinear functions 
through hierarchical structures composed of interconnected layers of neurons [4]. As shown in Figure 3, 
these layers are divided into three fundamental types: the input layer, where initial data from the problem 
are received (e.g., precipitation series); the hidden layer, where the data are processed through activation 
functions that allow the detection of complex patterns; and the output layer, where the final result of the 
prediction or estimation is obtained [18]. 

 
Figure 3. Schematic representation of an artificial neural network with an input layer, a hidden layer, and 
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an output layer. 
Each neuron may take a linear combination of the inputs and pass it through a nonlinearity, enabling the 
model to learn representations of complex relationships such as precipitation, which may be nonlinear 
and dependent on multiple terms [12]. This is illustrated in Table 1. 
Table 1. Components of a multilayer neural network 
Component Description 

Input layer 
A set of nodes that receive the input variables (e.g., climate or 
meteorological data). Each node represents a measured feature or value. 

Weights 
Parameters that multiply each input before being processed by a neuron; 
they determine the influence of that value on the output. 

Bias 
A value added to the weighted sum that allows shifting the activation 
function, enabling a more accurate output fit. 

Activation 
function 

Nonlinear functions applied in hidden and output neurons to generate 
outputs adapted to complex patterns. 

Hidden layer 
Intermediate nodes that process signals from the input layer by applying the 
activation function. These allow modeling nonlinear relationships. 

Output layer 
Final neurons that deliver the estimated result (e.g., interpolated daily 
precipitation), after processing the signal through the previous layers. 

Prediction 
error 

The difference between the network's estimated value and the actual value. 
It is used to feed back the model during training. 

A basic multilayer perceptron (MLP) is expressed as: 
 

y =  f ( ∑ wj

nh

j=1

× g( ∑ wji

nx

i=1

× xi +  bj) +  b ) 

 
Where: xiare the inputs, wji are the weights between the input and the hidden neuron j, bjare the bias 
terms for the hidden neuron j, g is the activation function, wj  are the weights from hidden neuron j to 
the output neuron, b is the bias of the output neuron, f is the output layer activation function, nx is the 
number of input variables, and nh is the number of neurons in the hidden layer. 
Neural networks are trained using algorithms such as error backpropagation and gradient descent 
optimization, enabling the model to learn the connections between meteorological stations and to predict 
available values. They work particularly well under conditions characterized by a large volume of data and 
when high-degree nonlinearity is present [11] 
2.2.2 Multiple Linear Regression 
Multiple linear regression is a statistical method that models the linear relation-ship between a dependent 
variable and two or more independent variables. Its application assumes that the explanatory variables are 
independent and that the residuals of the model are normally distributed [6]. The prediction is based on 
a linear combination of the variables considered and follows the general form: 

Y =  β0 +  ∑ βixi

n

i=1

+  ϵ 

 
Where Y is the predicted value of the dependent variable (e.g., precipitation), β0   is the intercept, βi are 
the coefficients corresponding to each independent variable, Xi represent the values of the independent 
variables and ϵ is the random error term or residual. 
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This method is useful when the available meteorological stations are close to each other, and their 
precipitation series exhibit a strong linear correlation. Its ease of implementation and interpretation makes 
it an attractive tool for hydrological applications in operational contexts [8]. 
 
2.2.3 Cubic Splines 
Cubic splines are piecewise polynomial functions used to smoothly interpolate data. They ensure 
continuity of the function and its first and second derivatives at the knot (joining) points [19]. For each 
interval [xi,xi+1], a cubic polynomial is defined as: 

Si(x) =  ai +  bi(x − xi) +  ci(x − xi)
2 +  di(x − xi)

3  
With the interpolation conditions that each spline must pass through the points in the table Si(xi) = yi y 
Si(xi+1) = yi+1, the first derivative must be continuous at interior nodes S′i(xi+1) =  S′i+1(xi+1) and 
the second derivative must also be continuous at interior nodes S′′i(xi+1) =  S′′i+1(xi+1) [19] This 
method provides a continuous and smooth way to interpolate values in time series where abrupt 
fluctuations or overshooting are to be avoided. It is particularly useful when there are missing data within 
well-defined intervals [13]. 
 
2.2.4 Kriging 
Kriging is a geostatistical interpolation method based on stochastic process theory and semivariance 
analysis. It assumes that the distance between points affects the similarity of their values, allowing the 
construction of spatial dependence models[20]. The estimation at a point x0 is a linear combination of 
observed values: 
 
Ẑ(x0) =  ∑ λi

n
i=1 Z(xi)      (4) 

Subject to the constraint: 
 
∑ λi

n
i=1 = 1         (5) 

 
Where  λiare the weights assigned to each observation Z(xi). These weights are determined from the 
variogram, which describes semivariance as a function of the distance hhh, where N(h) is the number of 
point pairs separated by distance h, and γ(h) is the empirical semivariance for that distance [20]): 
 

𝛄(𝐡) =  
𝟏

𝟐𝐍(𝐡)
∑ [𝐙(𝐱𝐢) − 𝐙(𝐱𝐢 + 𝐡)]𝟐𝐍(𝐡)

𝐢=𝟏   (6) 

 
Ordinary kriging adjusts the weights based on the spatial dependence structure described by the 
semivariogram, which allows minimizing the mean squared error of estimation and calculating the 
associated uncertainty [20]. This approach is particularly effective in environments with high spatial 
correlation, such as precipitation series in mountainous regions, where even elevation can introduce 
variability in values. However, properly modeling the variogram and performing cross-validation entails a 
considerable computational cost [21]. 
2.3 Data Quality Control 
 
A homogeneity test was conducted to detect changes in the historical data series caused by station 
relocations. A double mass curve was used to identify shifts in the reference station relative to the others 
[22]. When a slope change was detected, the Pettitt test was applied to confirm whether a significant shift 
existed in the median at a change point for non-parametric data[23] The procedure consists of assigning 
ranks to the ordered data and calculating the Uk statistic for each possible change point k, where Ri is the 
rank of the i -th data point in the series and n is the total number of observations: 
 
 
Uk = 2 ∑ Ri − k(n + 1)k

i=1    (7) 
 
The test statistic is defined as K, where the point that maximizes |Uk| is considered the most probable 
moment of change, evaluated with a given level of significance:  
  



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 7, 2025 
https://theaspd.com/index.php 

510 
 

K = max
1≤k≤n

| Uk|   (8) 

 
Deterministic methods were used to fill in missing daily precipitation data. Correlation between stations 
was first established, followed by the fitting of a polynomial trend line to the data. Missing values were 
imputed based on the highest correlation with the nearest stations. Outliers in daily maximum 
precipitation time series were identified using the univariate method proposed by the American Water 
Resources Association (AWRA)[24]. This approach assumes a log-normal distribution of the data and 
defines thresholds for detecting outliers based on the logarithmic transformation of observations. Given 
a data set {y1, y2,,…, yn,} the following transformation was applied: 
 
xi = log10(yi)  (9) 
 
From the transformed series, the mean and standard deviation were calculated. Subsequently, the 
detection thresholds were defined as follows: 
 
xH = x + kN × Sx (10)       xL = x − kN × Sx

 (11) 
 
where kN is an empirical coefficient that depends on the sample size NNN and is computed as: 
 
kN = 3.2201 − 6.6246N−0.25 + 2.47832N−0.25 − 0.491436N−0.75 + 0.037911N−1  (12) 
 
The original values yiare considered outliers if log10(yi) > xH for a high outlier, or log10(yi) < xL  for 
a low outlier. The decision to evaluate high, low, or both types of outliers was based on the kurtosis of the 
transformed series. If the kurtosis exceeded +0.4, only high outliers were evaluated; if it was less than –
0.4, only low outliers were considered; and if it was within the threshold range, both extremes were 
assessed. 
 
2.3.1 Model Configuration 
The use of cross-validation in the development of machine learning models is common. This methodology 
consists of dividing the data into three different groups called training, validation, and testing. The first 
group is used to train the neural network under different configurations. The second group validates the 
neural network’s performance during training. Finally, the test group is used to evaluate the model with 
new information that the model has not previously processed. 
 
The groups were divided into 80% for training (8115 days), 10% for validation (1114 days), and 10% for 
testing the models (1114 days as well). Since the goal was to assess the model’s ability to fill in missing 
data, 20% of the data in the test set were randomly removed. A total of 204 values were left for imputation. 
 
In this study, an input–output neural network available in the neural net time series library of ®MATLAB 
was used[25]. The inputs were normalized within a range of (−1, 1) to prevent certain inputs from having 
disproportionate weight. A tangential sigmoid transfer function was used to capture the normalization 
range of the data. The output equation was set as linear to allow the interpretation of high precipitation 
values that were not included during training. The Levenberg–Marquardt training algorithm was used due 
to its short training time and satisfactory results [26]. An iterative script was implemented to determine 
the best neural network architecture, training models with 10 to 50 nodes in a single hidden layer. The 
best-performing model in the validation stage was selected. 
 
For the multiple linear regression, the method was applied using as independent variables the 
precipitation records from five nearby stations (Cougar Mountain, Olallie Meadows, Meadows Pass, 
Mount Gardner, Tinkham Creek), aiming to predict the values at a target station which is Rex River. For 
the Kriging method, the geographic coordinates of the meteorological stations were used to estimate 
missing values at the target station based on an exponential covariance function derived from the inter-
station distance. Lastly, cubic spline interpolation was applied exclusively to the time series of the test 
segment of the target station, filling missing values based on their temporal continuity. 
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2.4 Model Performance Metrics 
To evaluate the performance of the implemented models, three main metrics were used: Mean Absolute 
Error (MAE), Mean Squared Error (MSE), and the Pearson Correlation Coefficient (CC). MAE provides 
a measure of the average magnitude of the prediction error, regardless of its direction. MSE penalizes large 
errors more severely, as it squares the differences, making it useful for detecting significant deviations 
between observed and predicted values. Finally, the Pearson Correlation Coefficient measures the strength 
and direction of the linear relationship between actual values and the values estimated by the model. Its 
value ranges from -1 to 1, where values close to 1 indicate a strong positive correlation, and values near 0 
indicate little or no correlation. Additionally, the Taylor diagram was used as a multi-objective evaluation 
tool, as it allows for a graphical representation of the relationship between observed and modeled series 
using three key statistical metrics: the Pearson correlation coefficient, the Root Mean Square Error 
(RMSE), and the standard deviation[27]. 
 
3. RESULTS AND DISCUSSION 
3.1 Results of Data Pre-processing 
The precipitation records showed no signs of changes in the slope of the double mass curve, assuming 
homogeneity of the reference station (Rex River). No outliers were detected at any station based on the 
AWRA analysis. Nevertheless, the dispersion values of the rain gauge stations indicated high intermonthly 
and interannual variability in precipitation, with maximum values exceeding 250 mm/day in some cases, 
as shown in figure 4. Based on these results, it can be inferred that the region exhibits high climatic 
variability, possibly caused by the area's rugged geography or the vegetation in the study area. 

 
Figure 4. Boxplot of daily precipitation data 
A high correlation was observed among most stations, with a maximum value of 0.93 between stations 
Meadows Pass and Rex River, and a minimum value of 0.72 between stations Ollalie Meadows and 
Tikham Creed. This pattern of high correlation supports the use of these series as cross-predictor variables 
in the imputation models, as information from neighboring stations can enhance the estimation of 
missing data in stations with incomplete records. 
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Figure 5. Precipitation heatmap of stations. Symbology: Cougar Mountain (CM), Olallie Meadows (OM), 
Meadows Pass (MP), Mount Gardner (MG), Tinkham Creek (TC), and Rex River (RR). 
3.2 Model Results 
Table 2 presents the final results of the neural network, Kriging, multiple linear regression, and cubic 
spline models along with their performance metrics. Likewise, the final results can be seen in Figure 6 
 

Model MAE MSE CC NS 

Neural Networks 1.55 8.46 0.983 0.966 

Multiple Linear 
regression 

1.77 11.11 0.978 0.955 

Kriging 2.0136 19.8994 0.9665 0.9192 

Cubic Splines 9.59 279.98 0.441 -0.137 

Simbology: MAE= Mean Average Error, MSE= mean square error, CC= Correlation coeffitient, N=: 
Nash–Sutcliffe efficiency 
In general, the neural network model achieved the best performance among the evaluated methods, 
presenting a MAE of 1.55, an MSE of 3.32, a correlation coefficient of 0.95, and an NSE of 0.90. These 
results demonstrate high predictive capability and low error dispersion, indicating that this model fits the 
actual data well. This behavior is consistent with the findings of [28], who developed a model based on 
automated neural architecture search (AdaNAS), obtaining a MAE of 0.98 mm/day and an RMSE of 2.04 
mm/day in precipitation estimation, significantly outperforming traditional methods. These findings 
support the use of neural networks as effective tools for hydrometeorological data reconstruction and 
prediction. 
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Figure 6. Line plot of data imputation. 
The multiple linear regression model achieved a MAE of 1.77, an MSE of 11.11, and a Nash–Sutcliffe 
Efficiency (NSE) coefficient of 0.955, indicating a good agreement with the observed data. Statistically, all 
estimated coefficients were significant (p < 0.001), highlighting the relevance of the variables included in 
the prediction. The multiple linear regression equation is shown below, where y represents the 
precipitation at Rex River, x1is the precipitation at Cougar Mountain, x2at Meadows, x3 at Mount 
Gardner, x4at Ollaine Meadows, and x5 at Tikham Creed. 
 
y=0.1322+0.2500x1+0.4037x2+0.2579x3+0.0800x4+0.0567x5  (13) 
 
The Meadows and Mount Gardner stations showed the highest coefficients (0.4037 and 0.2579, 
respectively), followed by the other stations. This result suggests a greater contribution from the former to 
the variation in the estimated value. The Root Mean Square Error (RMSE) was 4.48, reinforcing the 
model's accuracy within an acceptable margin for daily precipitation series. However, studies such as [8] 
have shown that while multiple linear regression can be suitable for data imputation, it tends to exhibit 
greater variability in error compared to machine learning–based methods, especially in contexts of high 
climatic variability [8]. Despite its good results, the model was outperformed by the neural network in all 
metrics, suggesting that although the linear model captures relevant relationships, it may not be sufficient 
for complex or nonlinear patterns present in the time series. 
 
The Kriging method showed solid performance in estimating missing values, with a MAE of 2.01, an MSE 
of 19.90, and a Nash–Sutcliffe Efficiency (NSE) coefficient of 0.9192. Although its metrics were slightly 
lower than those of the neural network and polynomial models, Kriging stands out for its interpolation 
capability based on the spatial and statistical structure of the data, without requiring a supervised training 
process. This feature gives it a significant advantage in contexts where large volumes of training or cross-
validation data are unavailable, or when an immediate solution based on geostatistical principles is 
required. Teegavarapu (2009) supports this approach, emphasizing that Kriging is particularly suitable for 
spatial estimation of missing precipitation data, with acceptable error metrics and good correlation even 
in sparse networks. The strong observed correlation (0.9665) suggests that the model successfully captures 
inter-station dependencies, leveraging semivariance to produce robust estimates[29]. 
 
The results obtained with Kriging are consistent with previous studies that have highlighted the method’s 
effectiveness for imputing environmental and meteorological data, particularly when spatial structure is 
relevant [30].The findings show that Kriging emerged as the most accurate method among several 
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interpolation options, validated through cross-validation. Although it may be outperformed by deep 
learning models in absolute terms of precision, its operational simplicity and statistical foundations make 
it a reliable and efficient option for imputation tasks in hydrology. 
 
The cubic spline method showed the poorest performance among the evaluated models, with a MAE of 
9.59, an MSE of 279.98, and a negative Nash–Sutcliffe Efficiency (NSE) coefficient of –0.137. This 
negative NSE value indicates that the model’s estimates were even less accurate than a simple prediction 
based on the mean of the observed data, demonstrating an inadequate capacity to represent the actual 
behavior of the precipitation series. This poor performance may be attributed to the highly oscillatory 
nature of the cubic spline method when applied to time series with high variability or a lack of continuity. 
When attempting to fit smooth curves between scattered points or abrupt changes, splines may produce 
local overfitting or underestimation in key segments of the series, significantly degrading their 
generalization capability. 
The Taylor diagram with the results of all the models is presented, where point A represents the actual 
data series, B corresponds to the neural network, C to Kriging, D to the Multiple Linear regression, and 
E to cubic splines, as shown in Figure 6. The results show that the neural network model exhibited the 
best overall fit, with a standard deviation very close to the observed data, high correlation, and a low RMSE 
of 2.91. It was followed by the polynomial and Kriging models, which also showed high correlations and 
moderate errors. In contrast, the cubic spline–based model, despite replicating the series variability with 
a standard deviation of 15.95, exhibited low correlation and a significantly higher RMSE of 16.73, 
indicating a poor fit. These results reinforce the suitability of neural network and polynomial regression 
approaches for estimating missing data in daily precipitation series 

 
Figure 7. Taylor diagram of the results. Symbology: A= real observations, B= Neural Networks, D= Kriging, 
C= Multiple Linear regression, E= Cubic Splines 
 
3. CONCLUSIONS 
The results obtained allow us to conclude that, although neural networks showed the best quantitative 
performance in estimating missing data (NSE of 0.966), their implementation in operational 
environments requires a higher level of technical expertise, as well as a sufficiently large volume of data to 
enable effective partitioning into training, validation, and testing sets. Therefore, their use is mainly 
recommended in institutional or academic contexts where computational capabilities and specialized 
knowledge in machine learning are available. 
On the other hand, the multiple linear regression model also produced acceptable results (NSE of 0.955), 
with the advantage of being easily interpretable and reproducible using standard statistical tools. Its 
application is suitable when nearby stations with high correlation are available, and technical staff possess 
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basic statistical knowledge. 
The Kriging method, although it yielded a slightly lower NSE (0.9192), represents an excellent alternative 
for operational contexts due to its ease of implementation, robustness in the presence of well-defined 
spatial structures, and the advantage of not requiring a complex training process. Its use is particularly 
useful in hydroclimatic institutions that possess georeferenced data but lack advanced computational 
infrastructure. 
Finally, the cubic spline method demonstrated poor performance (NSE = –0.137), discouraging its direct 
use in daily precipitation series without proper oscillation control or prior data segmentation. Although 
easy to implement, it can yield erroneous estimates if the structure of the original data is not properly 
considered. 
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