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Abstract 

Purpose: Myocardial infarction is a highly fatal cardiac disease caused by reduced blood flow to parts of or the whole 
cardiac muscle. Early detection and immediate intervention can greatly reduce the severity of damage to the heart muscle. 
This work presents a framework to detect MI in echocardiogram videos to increase the swiftness of MI diagnosis. 

Methods: The framework functions in three key stages. In the first stage, a LadderNet CNN segments the left ventricle 
wall out of the echocardiogram’s frames. In the next Stage, the segmented left ventricle in each frame is divided into six 
sections whose displacements are tracked across the consecutive frames. In the final stage, a machine learning model 
classifies the presence of MI by analyzing the displacements of the wall’s sections. Five classic algorithms were assessed and 
compared for the classification task. The HMC-QU benchmark dataset was used for the training and testing of the 
framework.  

Results: The segmentation model demonstrated excellent performance with an Intersection over Union of 97.32%, an 
F1 score of 97.40%, an accuracy of 99.78%, a precision of 97.50%, a sensitivity of 97.31%, and a specificity of 99.89%. 
For MI classification, the optimal model (Random Forest) achieved 85.71% accuracy, 86.67% precision, 92.86% 
sensitivity, 71.43% specificity, and 89.66% F1 score. 

Conclusion: The promising results of this work suggest that the proposed framework has the potential to contribute to 
the detection of myocardial infarction. 

Keywords: Echocardiogram, Myocardial infarction, Deep learning, Convolution neural network, Machine learning. 

1. INTRODUCTION 

Myocardial infarction (MI) is a common critical health challenge with a relatively high mortality rate. It is 
defined as the irreversible injury to cardiac muscle due to prolonged inadequate blood flow [1]. The most 
prevalent cause of MI is coronary artery disease (CAD). The build-up of atherosclerotic plaques within the 
coronary arteries results in occlusions that reduce blood flow to the heart muscle, thus depriving it partially 
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or fully of oxygen which can lead to death of the cardiac muscle’s cells [2]. Early identification and quick 
action are essential in improving MI patient outcomes; timely intervention can significantly reduce 
myocardial damage as well as mortality rate [3, 4]. 

Echocardiograms, also known as Heart Sonograms, are popular, non-invasive cardio-vascular disease 
diagnostic tools used by medical practitioners as a reliable and accurate means of detecting MI [5]. There are 
many types of echocardiograms, the most common of which is a two-dimensional sonogram video of the 
movement of the heart’s four chambers. A cardiologist aiming to identify possible myocardial dysfunction 
would analyze and evaluate the motion of the heart’s walls in the echocardiogram, particularly the left 
ventricle (LV) wall, as all MIs affect the LV. MI is used interchangeably with “left ventricular infarction” since 
almost all MIs occur in the LV, and even in the rare cases of right ventricular infraction, the LV is also 
affected. If a section of the LV wall moves abnormally or displays attenuated (weakened) motion, that 
indicates it is suffering from reduced blood flow and is diagnosed with MI [6]. 

This paper was crafted with the aim of creating a framework that uses computer vision and AI techniques to 
analyze echocardiogram videos and diagnose the presence of MI by tracking the LV wall movement 
throughout the 2D video and detecting wall motion abnormalities. The proposed framework is composed of 
3 main phases. It starts off by extracting and preprocessing each frame of the input video (echocardiogram to 
be diagnosed) and then passing the frames to the first phase of the framework, Segmentation, in which the 
LV wall of each frame is segmented using an encoder-decoder CNN. After that, the framework moves on to 
the next phase, Feature Engineering, where each segmented LV wall is divided into sections, the motion of 
each of which is tracked by observing its displacement throughout the consecutive frames to create a motion 
feature vector. In the next and final phase, MI Classification, a machine learning (ML) classifier is used to 
diagnose MI or lack thereof based on the echocardiogram’s feature vector. 

The organization of this paper is as follows: Section 2 is a review of published literature concerning MI, 
echocardiograms, and the use of AI and other technologies in echocardiography. Section 3 goes over the 
dataset used, Section 4 introduces and details the 3-phase proposed model including the architecture of the 
encoder-decoder segmentation CNN, how feature engineering was carried out, and a comparison of multiple 
traditional ML classifiers for MI detection. Section 5 presents the performance results of the segmentation 
CNN and the tested ML classifiers. Finally, Section 6 concludes the main findings of this research. 

2. RELATED WORK 

Echocardiography is a popular non-invasive imaging tool for cardiac assessment where sound waves are used 
to generate detailed images of the heart, allowing for the evaluation of its structure and function. Wall motion 
abnormalities, cardiac chamber sizes, and overall systolic and diastolic function can all be clearly assessed 
from the images of an echocardiogram [7]. Not only has it proven itself as an invaluable tool for healthcare 
providers in the diagnostic assessment of MI [8], it has also demonstrated a prognostic value in risk assessment 
of patients that have previously suffered from MI [9]. An expert review by [10] found that echocardiograms 
had an essential prognostic role in early risk stratification of patients after MI by predicting long-term adverse 
outcomes. 

The development of AI-based frameworks for echocardiography to detect MI and for other purposes has 
garnered significant interest in recent years [11, 12]. Traditionally, MI detection using echocardiography relies 
on visual assessment by clinicians, which can be subjective and operator-dependent [7, 13]. Therefore, 
computer-assisted techniques, specifically artificial intelligence models, have been looked into as a way to 
overcome these limitations by providing objective and reproducible analysis [14, 15]. AI applications in this 
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domain are not limited to diagnostic tasks but also extend to automating the measurement of various cardiac 
parameters, potentially increasing efficiency and consistency in patient evaluations [16]. 

Accurately identifying regions of the heart from echocardiogram videos is the most critical baseline task in 
any echocardiogram-based diagnostic model [16], especially since publicly-available echocardiography datasets 
with cardiologist-approved ground truth masks are scarce. Multiple papers have explored and proposed 
different methods of segmenting the heart’s walls and chambers from apical-4-chamber-view echocardiogram 
videos. Initially, earlier studies relied on contour-based models for LV segmentation [17-21]. As artificial 
intelligence gained more prominence in biomedical image segmentation, the most popular approach to 
echocardiogram segmentation became supervised learning using convolution neural networks (CNNs) 
trained on echocardiogram videos’ frames along with their respective masks that highlight the region of 
interest the researchers want to segment [22-27]. A comparative analysis by [28] examined the performance 
of both CNNs and active contours in rapid LV segmentation and found no significant difference between 
the performance metrics of the two techniques. 

Almost all CNN-based echocardiographic image segmentation approaches employ an encoder-decoder 
architecture, which is expected as it is the architecture used in most classic image semantic segmentation 
algorithms. DeepLab, UNet, and FCN are all examples of encoder-decoder CNNs used for image 
segmentation [29]. This is because the encoder path (subsampling network) is used to learn multilevel 
semantic features that the decoder path (oversampling network) then maps to the pixel space of the original 
resolution for pixel-level classification [30]. 

Another common approach to echocardiogram segmentation is using unsupervised techniques to separate 
the heart’s regions. A common unsupervised learning technique for echocardiography and medical imaging 
is Unsupervised Domain Adaptation (UDA). GraphEcho, an unsupervised Graph-Driven Domain 
Adaptation approach proposed by [31] was able to achieve better echocardiography segmentation results than 
most traditional UDA and supervised methods. [32] proposed neural network collaborative filtering as an 
unsupervised, automated method for accurately segmenting the mitral valve from 2D echocardiogram frames. 

Straying from traditional techniques, [33] designed a novel semi-supervised proxy- and kernel-based 
echocardiography video segmentation approach that managed to achieve a better trade-off of performance 
and efficiency than other state-of-the-art approaches. Furthermore, [34] presented a new extension of active 
appearance models for the use of echocardiogram segmentation that was able to outperform 2D traditional 
active appearance models. 

Choosing the best technique to detect wall motion irregularities after segmenting the LV wall is the next 
critical step in echocardiogram-based diagnostic models. Some proposed frameworks opted for deep learning 
(DL) technique for MI classification like for echocardiogram image segmentation and achieved great results 
[24, 25], other proposed frameworks either opted for a singular ML technique [23] or an ensemble of ML 
techniques [22] with results on par with the DL models. Some papers explicitly did not favor the DL 
techniques due to the inconsistency of their outcomes and their dependency on the quality of the training 
data as well as the difficulty in determining the optimal hyperparameters for them [22]. ML models were also 
seen as more appropriate for such small, imbalanced datasets [22, 23]. 

3. UTILIZED HMC-QU DATASET 

The proposed framework was trained and tested using the HMC-QU benchmark dataset [23, 35] as it is the 
first and only publicly available dataset serving MI detection in echocardiograms. It consists of 162 
echocardiography apical-4-chamber-view (A4C) recordings and 160 echocardiography apical-2-chamber-view 
(A2C) recordings that were obtained by a collaboration between Hamad Medical Corporation, Tampere 
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University, and Qatar University. The recordings are of temporal resolution 25 fps (frames per second) and 
varied spatial resolution of 422x636 to 768x1024 pixels. The echocardiograms were captured using Phillips 
and GE Vivid ultrasound machines. The dataset is accompanied by 109 224x224 LV ground-truth masks for 
109 of the 162 aforementioned A4C view videos, but no masks for the A2C view. Furthermore, the dataset 
comes with two Excel files, one for A4C and one for A2C, that detail whether or not each of the six segments 
of the LV wall displays MI for each video in the dataset (the LV wall is typically divided into seven sections, 
but the Apical Cap was ignored in the dataset as it does not exhibit inward motion). Additionally, the Excel 
files list the start and end reference frames for 1 full cardiac cycle for each video. These reference frames also 
indicate the subset of frames for each A4C video that have ground-truth segmentation masks. Finally, the 
A4C Excel file has a column indicating whether each video has ground-truth segmentation masks or not. 
Figure 1 shows a snippet of the A4C Excel file. 

 

Figure 1:  HMC-QU A4C File Snippet 

For the purposes of this project, the focus will be placed only on the A4C echocardiograms, as medical-
specialist-approved ground-truth segmentation masks for A2C echocardiograms are not available. 
Furthermore, only the subset of 109 videos with the ground truth masks show the entire LV wall in a4C view 
and since a medical professional would typically need to access the entire wall to make a diagnosis, the 
remaining 53 echocardiograms that do not display the full LV wall will also be excluded. 

4. PROPOSED FRAMEWORK 

The echocardiography framework should be able to accurately segment the region of interest (LV wall) out of 
each frame of an input 2D A4C echocardiogram and track the motion of different segments of the LV to 
detect the presence of MI, or lack thereof. The full proposed framework, inspired by the paper published by 
Nguyen et al. [22], consists of three main stages. First, the framework takes a 2D A4C echocardiography video 
as input extracts its frames, and processes (re-shapes) them. Then starts the first phase, LV Wall Segmentation, 
where the processed frames are passed through an encoder-decoder CNN to segment the LV wall out of each 
frame. In the second phase, Feature Engineering, each of the segmented LV walls is divided into six sections 
which are analyzed to obtain an overall motion feature vector for the input echocardiogram. Each motion 
feature vector contains six elements, each element represents the greatest displacement achieved by each of 
the six segments throughout the frames of the input video. Finally, in the last phase, MI Classification, an 
ML model is utilized to classify the motion feature vector as “MI” or “non-MI”. Figure 2 illustrates the overall 
architecture of the proposed framework. 
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Figure 2: The Framework Pipeline 

4.1. Segmentation model 

The most critical task of the proposed framework is LV wall segmentation as it forms the basis upon which 
the other phases of the framework are built. The efficacy or lack thereof of the LV segmentation will affect 
the next phase’s ability to track the LV wall sections’ displacements and ultimately, the final phase’s ability to 
reliably identify MI. Figure 3 shows an example of the desired segmentation task. 

 

Figure 3: Example of the desired segmentation model output 

Unlike the segmentation model proposed by Nguyen et al. [22] which used an ensemble of multiple different 
segmentation CNNs working together, the proposed framework implemented LV wall segmentation using a 
single LadderNet [36] which is a CNN architecture based on the design of U-Net [37]. U-Net is an encoder-
decoder CNN that was created specifically for biomedical image segmentation and has been revolutionary in 
its performance compared to previous networks used for biomedical image segmentation. LadderNet, as 
shown in figure 4, is a modified version of U-Net that consists of multiple pairs of encoder-decoder branches 
instead of just one pair. Furthermore, there are skip connections in between all adjacent decoder-pairs, which 
provides more paths for information flow. Laddernet functions as a series of multiple U-Nets combined 
together. 
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Figure 4: Laddernet Architecture 

To train the LadderNet, the relevant frames of the single cardiac cycles that have segmentation ground-truth 
segmentation masks were extracted using the reference frame numbers provided in the A4C excel file from 
the 109 videos that have ground-truth segmentation masks for some of their frames. Each video’s frames was 
stored in a distinct directory. These frames were then processed into the shape (224, 224, 3) and used to train 
the LadderNet along with their respective ground-truth segmentation masks. 20% of the data was put aside 
for testing and a further 20% were used for validation. The optimizer used was the Adaptive Moment 
Estimation (Adam) algorithm, the loss function chosen was Sparse Categorical Cross-Entropy. The model 
was trained with batch size 8 for 50 epochs. Figure 5 displays the training and validation accuracy-across-
epoch chart and figure 6 shows the training and validation loss-across-epoch chart. 

 

Figure 5: Training-Validation Accuracy Chart 
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Figure 6:  Training-Validation Loss Chart 

4.2. Feature engineering 

The LV wall is typically divided into seven sections: the Basal Inferoseptum, the Mid Inferoseptum, the Apical 
Septum, the Apical Cap, the Apical Lateral, the Mid Anterolateral, and the Basal Anterolateral. However, for 
the proposed framework, only six of those sections will be assessed. The Apical Cap is disregarded as it does 
not exhibit inward motion according to analysis by done by multiple researchers designing A4C 
echocardiogram MI detection models [22, 23]. The excel files accompanying the HMC-QU video dataset also 
disregard the Apical Cap and list MI classification data for the other six sections only. 

After the LV wall is segmented in phase I, the inner border (bottom border) is extracted from the set of output 
predicted LV wall masks for the frames of each particular video. The extracted border is then divided into 6 
sections, 3 on the left-side of the wall and 3 on the right-side. To do this, the apex point of the entire LV wall, 
the bottom-most point on the right-side of the border, and the bottom-most point on the left-side of then 
border need to be first located. Figure 7 shows an example of inner border extraction along with the apex 
point, left bottom-most point, and right bottom-most point, highlighted in red, blue, and green respectively. 
After locating the three reference points, R is measured as the height (y-value) difference between the bottom-
most point on the right-side of the border and the apex; L is measured as the height (y-value) difference 
between the bottom-most point on the left-side of the border and the apex. 

 

Figure 7:  Example of extracting the inner boundary 
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After calculating L and R, the left side of border is divided into 3 sections, each of height 
2L

7
 and the right 

side of the border is similarly divided into 3 sections, each of height 
2R

7
. Figure 8 shows an example of a 

sectioned border. The apex point as well as the left and right bottom-most points are shown in red; the 
division points between the sections are shown in blue. 

 

Figure 8: Example of sectioning the extracted border 

Now that the inner boundary of the LV wall is sectioned, the model can track the displacement (compared 
to the first frame) for each section in each subsequent frame of the video. To accomplish that, for each section 
in each frame, N equally-spaced reference pixels are obtained by dividing each section into N −  1 equally-
spaced intervals. For the proposed framework, several values for N were tested and it was found that the 
different values for N did not have a significant effect on MI classification in the next phase as long as there 
weren’t too few of them (N >  5). In the final framework, N =  10 was chosen for the feature engineering 
phase as it appeared to give an adequate number of reference pixels without being too taxing. In figure 10, 
an N =  5 pixel selection is displayed to make it easier to see. The three orange points in figure 9 represent 
the apex and the two bottom-most points; each section’s N =  5 points are shown in a distinct color. 

 

Figure 9: Selecting N equally spaced pixels from each section 

Now that the N pixels for each section in each frame are selected, the displacement between each selected 
pixel in the first frame and its corresponding selected pixel in every other frame of the video is calculated to 
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track how much each section has moved from its position in the first frame. The displacement is calculated 
using the Manhattan distance as shown in equation 1. 

displacement =  |x1 − x2| + |y1 − y2| (1) 

Then, for each segment in each frame, we take an average displacement of all the displacements of its N pixels 
as shown in equation 2. 

displacementaverage =
1

N
∑ displacementn

N

n=1

 (2) 

If the average/mean displacement for each section across all the frames of a video were plotted, a line graph 
that looks something like figure 10 would be obtained. 

 

Figure 10: Average displacement of each section across the frames of a video 

The final step of feature engineering is to get the motion feature vector for each video. The motion feature 
vector consists of six elements, one for each section’s maximum average displacement (the peak of each 
section’s line plot on the graph). To train the classification ML models in the next phase, 104 motion feature 
vectors were obtained by applying all the previous feature engineering steps to each of the HMC-QU dataset’s 
109 videos after extracting each video’s frames and passing them through the segmentation LadderNet to get 
their predicted LV wall masks. For 5 of the 109 echocardiograms, one or more of their frames’ predicted LV 
wall masks had missing sections that made the framework unable to divide the LV wall into the full 6 
segments. We chose to disregard those 5 echocardiograms instead of just excluding the defect frame or frames 
because the diagnosis of MI requires analysis of a full cardiac cycle and removing some frames might lead to 
incorrect predictions. The defect frames were not a result of the LadderNet’s lack of segmentation ability as 
the ground truth masks of those frames also had missing sections and were not able to be divided them into 
the required full segments. The cause behind the flaws appears to be the poor quality of the frames they were 
extracted from. Figure 11 shows examples of the defect ground truth masks from 3 different echocardiograms. 
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Figure 11: Examples of defect ground truth masks 

4.3. MI classification model 

Five classic ML classification algorithms: support vector machines (SVM), decision trees (DT), random forest 
(RF), k-nearest neighbors (KNN), and logistic regression (LR) were trained and tested on the motion featured 
vectors obtained from tracking the displacements of the LadderNet’s predicted masks. Their performances 
were compared to each other in terms of accuracy, precision, sensitivity, specificity, and F1 score. These 
algorithms were favored over a DL model during the design of the framework because the HMC-QU dataset 
is small and imbalanced with much higher non-MI class instances than MI. This is inline with other studies 
that also favored an ML approach for the imbalanced data [22, 23]. Like in the segmentation model, a 20% 
random test data split was employed. A grid search was performed on each algorithm to determine its optimal 
hyperparameter settings for the task at hand. The following subsections will cover each algorithm individually 
as well as list its grid search results in a table. 

4.3.1. Decision tree 

DT is a supervised ML classification algorithm that operates by systematically dividing the dataset into subsets 
according to the characteristics of the data, ultimately forming a tree-like structure of decisions. DT utilizes 
several important hyperparameters, including: 

• criterion: Defines the function that evaluates the quality of each split, guiding how effectively the 
data is partitioned. 

• splitter: Specifies the strategy utilized to determine how the split is conducted at each node within 
the tree. 

• max_depth: Restricts the greatest allowable depth of the DT, which can prevent overfitting. 
• min_samples_split: Specifies the smallest sample count of an internal node at which a split can 

occur. at an internal node. 
• min_samples_leaf: Specifies the smallest sample count allowed at an end (leaf) node, ensuring that 

each leaf node has sufficient data. 
• max_features: Restricts the greatest allowable amount of features that can be taken into account 

when searching for the best split, which can enhance the model’s performance and efficiency. 
• max_leaf_nodes: Restricts the greatest number of leaf nodes that the decision tree can have, allowing 

for better control over the model’s complexity. 

Table 1 lists the options we tested for each hyperparameter in DT’s grid search. The best hyperparameter 
option is emphasized in bold and italics. 
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Table 1: Optimal hyper-parameters for DT 

DT Hyper-parameter Tested Options 

criterion gini, entropy 

splitter best, random 

max_depth None, 10, 20, 30, 40, 50 

min_samples_split 2, 5, 10 

min_samples_leaf 1, 2, 4 

max_features None, sqrt, log2 

max_leaf_nodes None, 10, 20, 30, 40, 50 

4.3.2. K-nearest neighbors 

KNN is a supervised ML classification algorithm whose underlying principle is that similar instances tend to 
be situated in close proximity to one another. This algorithm identifies the ’k’ nearest data points to a specific 
input data point and classifies any input data according to the classes of the existing data points closest in 
proximity to the new input nearest neighbors). KNN utilizes several important hyperparameters, including: 

• n_neighbors: Specifies the ’k’ value, how many of the closest data points will be used for making the 
classification decision. 

• weights: Specifies the function that determines how much influence each identified neighbor has in 
the prediction process, allowing for weighted voting among neighbors. 

• metric: Specifies the function used to measure the distance between two points. 

Table 2 lists the options we tested for each hyperparameter in KNN’s grid search. The best hyperparameter 
option is emphasized in bold and italics. 

Table 2: Optimal hyper-parameters for KNN 

KNN Hyper-parameter Tested Options 

n_neighbors 3, 5, 7, 9, 11, 13, 15 

weights uniform, distance 

metric euclidean, manhattan, minkowski 

4.3.3. Logistic regression 

LR is both a statistical and ML algorithm primarily employed for binary classification tasks. It estimates the 
probability that a given input belongs to a specific class. Although it carries the name “regression,” LR 
functions as a linear model similar to linear regression, but it is specifically designed for classification purposes 
rather than regression. LR utilizes several important hyperparameters, including: 

• C: The regularization hyperparameter which helps to prevent overfitting by controlling the trade-off 
between fitting the training data and maintaining model simplicity. 

• penalty: Defines the norm utilized for penalization, which influences how the model handles 
complexity and regularization. 

• solver: Specifies the optimization algorithm used to find the best-fitting model parameters. 
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Table 3 lists the options we tested for each hyperparameter in LR’s grid search. The best hyperparameter 
option is emphasized in bold and italics. 

Table 3: Optimal hyper-parameters for LR 

LR Hyper-parameter Tested Options 

C 0.1, 1, 10, 100, 1000 

penalty l1, l2, elasticnet, none 

solver newton-cg, lbfgs, liblinear, sag, saga 

 

4.3.4. Support vector machine 

SVM is a supervised classification algorithm whose fundamental concept is to identify a hyperplane that 
optimally separates different classes of data while maximizing the margin between them. This approach helps 
in achieving better generalization on unseen data. SVM utilizes several important hyperparameters, including: 

• C: This regularization hyperparameter which controls the trade-off between maximizing the margin 
between the classes and minimizing classification errors. 

• gamma: The kernel coefficient, which specifies the amount of influence each training example 
extends and can significantly impact the decision boundary. 

• kernel: Specifies the type of kernel function to be employed, which determines the feature space 
transformation and influences the model’s performance and flexibility. 

Table 4 lists the options we tested for each hyperparameter in SVM’s grid search. The best hyper-parameter 
option is emphasized in bold and italics. 

Table 4: Optimal hyper-parameters for SVM 

SVM Hyper-parameter Tested Options 

C 0.1, 1, 10, 100, 1000 

gamma scale, auto, 0.001, 0.01, 0.1, 1 

kernel linear, poly, rbf, sigmoid 

 

4.3.5. Random forest 

RF is a supervised ensemble learning classification algorithm which constructs multiple decision trees during 
the training process and determines the final output by either taking the mode of the classes (in the case of 
classification) or calculating the mean prediction (for regression) from the individual trees. RF utilizes several 
important hyperparameters, including: 

• n_estimators: Specifies the total number of DTs to be generated, which can influence the model’s 
accuracy and robustness. 

• max_depth: Restricts the greatest allowable depth of each DT. 
• min_samples_split: Specifies the smallest sample count of an internal node at which a split can 

occur. 
• min_samples_leaf: Specifies the smallest sample count allowed at an end node. 
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• max_features: Restricts the greatest allowable number of features that can be taken into account 
when searching for the best split. 

• bootstrap: Specifies whether bootstrap samples are utilized during the generation of trees, 
influencing how the training data is sampled and impacting model variability. 

Table 5 lists the options we tested for each hyperparameter in RF’s grid search. The best hyperparameter 
option is emphasized in bold and italics. 

Table 5: Optimal hyper-parameters for RF 

RF Hyper-parameter Tested Options 

n_estimators 50, 100, 200 

max_depth None, 10, 20, 30, 40, 50 

min_samples_split 2, 5, 10 

min_samples_leaf 1, 2, 4 

max_features auto, sqrt, log2 

bootstrap True, False 

 
5. RESULTS 

The efficacy of the framework was assessed for both phase one (segmentation) and phase three (classification) 
using the standard performance metrics of accuracy, precision, sensitivity (recall), specificity, and F1 score. 
These metrics were computed using confusion matrix elements: true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN). 

For segmentation, the definitions of these terms are as follows: TP represents the count of LV wall pixels that 
were correctly identified as LV wall pixels; TN refers to the count of background (non-LV wall) pixels 
accurately identified as not belonging to the LV wall; FP denotes the background pixels mistakenly classified 
as LV wall pixels; and FN represents the LV wall pixels incorrectly categorized as background pixels. 

For classification, MI is treated as the positive class, while non-MI is designated as the negative class. 
Accordingly, TP reflects the count MI-positive echocardiograms correctly diagnosed as having MI; TN signifies 
the count of MI-negative echocardiograms correctly recognized as non-MI; FP represents the non-MI 
echocardiograms that were incorrectly classified as MI; and FN indicates the MI echocardiograms that were 
misclassified as non-MI. 

Accuracy was computed as the ratio of correct predictions to total predictions as shown in equation 3. 
Precision was computed as the ratio of correct positive predictions to total positive prediction as shown in 
equation 4. Sensitivity was computed as the ratio of correct positive predictions to actual positive instances 
as shown in equation 5. Specificity was computed as the ratio of correct negative predictions to actual negative 
instances as shown in equation 6. F1-Score was computed as is the weighted average of precision and 
sensitivity as shown in equation 7. 

Accuracy =  
TP + TN

TP + TN + FP + FN
 (3) 

Precision =  
TP

TP + FP
 (4) 
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Sensitivity =  
TP

TP + FN
 (5) 

Specificity =  
TN

TN + FP
 (6) 

F1 Score =  
2TP

2TP + FP + FN
 (7) 

Furthermore, an additional performance metric was evaluated for the segmentation task: Intersection over 
Union (IoU). IoU was computed as the ratio of the intersection of the predicted LV wall and ground truth 
LV wall’s bounding boxes’ areas to their union as shown in equation 8. This metric is particularly valuable in 
the evaluation of object detection, as it provides a measure of localization accuracy. 

IoU =  
target ⋂ prediction

target ⋃ prediction
 (8) 

 

5.1. Segmentation model results 

To evaluate the segmentation LadderNet’s performance on the test data, the mean for each of aforementioned 
performance metrics on the predicted masks in comparison with their ground-truth masks was computed. 

Metric Performance result 

IoU 97.31815% 

Accuracy 99.78382% 

Precision 97.49897% 

Sensitivity 97.30910% 

Specificity 99.89144% 

F1 Score 97.40394% 

 

The performance metric results for the LadderNet segmentation model demonstrate impressive results across 
all tested evaluation criteria as shown in table 6. The IoU score of 97.32% indicates a substantial overlap 
between the average predicted mask and its ground truth. This high score suggests that the model is effectively 
and accurately identifying the target LV wall region, demonstrating strong performance in the segmentation 
task. This in addition to the near-perfect accuracy of 99.78% show that almost all pixel predictions are correct. 
The precision of 97.50% reflects that the model makes few false positive pixel errors. The sensitivity of 
97.31% indicates that the model is highly effective at capturing the majority of LV wall pixels within the 
frames. The specificity of 99.89% demonstrates the model’s ability to accurately identify most background 
(non-LV wall) pixels. Moreover, the high F1 score of 97.40% reflects a strong balance between precision and 
sensitivity. Collectively, these results showcase the robustness of the proposed LadderNet in the task of LV 
wall segmentation. 

5.2. Classification models results 

After training each of the classifiers with its optimal hyper-parameters and running it on the test data, the 
training and testing confusion matrices for each of the models was plotted then the training and testing 
performance metrics of each model were computed. In the following section each classifier will be analyzed 



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 8s, 2025 
https://www.theaspd.com/ijes.php 

182 
 

by looking at its confusion matrices to compare its performance during training with its performance during 
testing. In the section after that, all classifiers’ training and testing evaluation metrics will be compared to 
identify the optimal algorithm to pick for the echocardiogram framework. 

5.2.1. Analysis of models’ performance confusion matrices 

To get a comprehensive view of the classification models’ capabilities during training and during testing, the 
respective confusion matrices were evaluated. They provide a detailed review of each model’s classifications, 
showing how many instances were correctly and incorrectly classified. Training confusion matrices provide 
an insight into how well each algorithm performed on the data it was trained on and testing confusion 
matrices illustrates each model’s ability to generalize to new data. Comparing both matrices is essential for 
detecting overfitting (if the training confusion matrix has much better results than the testing confusion 
matrix) and underfitting (if both matrices show subpar results). Overfitting occurs when a model learns its 
training data too thoroughly, including its noise and outliers. This hinders the model’s ability to generalize 
to new data. Conversely, underfitting indicates that the model was unable to learn from its training data well 
and failed to identify the underlying patterns in it. 

Figure 12 shows the confusion matrices for the DT model on the motion features obtained from the predicted 
masks. DT demonstrates strong performance during training as evidenced by its very few false positives (1) 
and negatives (2). As expected, it’s performance during testing drops. While the number of false positives (2) 
and negatives (2) may still be low, they form a higher ratio of overall classifications since the size of the testing 
data is much small than that of the training data. However, the drop is not severe and the overall performance 
is still good. 

 

 

Figure 12: DT Training and Testing Confusion Matrices 

Figure 13 shows the confusion matrices for the KNN model on the motion features obtained from the 
predicted masks. During training, KNN did not classify any false negatives meaning it has perfect sensitivity; 
however, it classified several false positives (9) meaning it has relatively low specificity. During testing, there 
was a significant rise in the ratio of false positives and negatives especially when considering the smaller test 
data size. Overall, KNN seemed to be much more adept at identifying true negatives (non-MI) than true 
positives (MI) and therefore, had more false classifications than DT. 
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Figure 13: KNN Training and Testing Confusion Matrices 

Figure 14 shows the confusion matrices for the LR model on the motion features obtained from the predicted 
masks. LR performed slightly poorer than KNN during training with an equal number of false positives but 
with marginally higher false negatives (2 instead of KNN’s 0). Surprisingly, LR performed much better than 
KNN and DT on the test data with a lower ratio of false negatives and a much lower ratio of false positives. 
The reduction in LR’s ratio of false negatives on testing in comparison to training is unusual and probably 
not reflective of LR’s actual capability due to test data’s small size. 

 

Figure 14: LR Training and Testing Confusion Matrices 

Figure 15 shows the confusion matrices for the SVM model on the motion features obtained from the 
predicted masks. During training, SVM showed a middle-of-the-road performance with 2 less false negatives 
than KNN and LR but 5 more and 3 more false negatives than KNN and LR respectively. SVM had the 
greatest number of overall false classifications during training out of all the models. On the other hand, SVM 
performed very well during testing with an identical testing confusion matrix to that of LR. As 
aforementioned in the LR subsection, this is unusual and probably not reflective of SVM’s actual capability. 

 

 

Figure 15: SVM Training and Testing Confusion Matrices 
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Figure 16 shows the confusion matrices for the RF model on the motion features obtained from the predicted 
masks. RF had a great performance during training, with only 1 false positive and 1 false negative, 
outperforming DT. Furthermore, during training, RF had less of a performance drop than DT, with 1 less 
false negative. RF’s testing confusion matrix is has 1 higher false positive and 1 lower false negative than LR 
and SVM, meaning an overall equal number of false classifications (3) as them; however, unlike LR and SVM, 
RF’s testing results are probably much more reflective of RF’s capability considering its unmatched training 
results. 

 

 

Figure 16: RF Training and Testing Confusion Matrices 

5.2.2. Models’ performance evaluation metrics 

The performance evaluation metric results for each of the classification models are listed in Table 7 for the 
training results and Table 8 for the testing results. The top performance result for each category (column) is 
emphasized in bold and italics. 

Table 6: MI classification training performance metric results 

Classifier Accuracy Precision Sensitivity Specificity F1 Score 
DT 96.39% 98.18% 96.43% 96.30% 97.30% 
KNN 89.16% 86.15% 100.00% 66.67% 92.56% 
LR 86.75% 85.71% 96.43% 66.67% 90.76% 
SVM 85.54% 87.93% 91.07% 74.07% 89.47% 
RF 97.59% 98.21% 98.21% 96.30% 98.21% 

 

Table 7: MI classification testing performance metric results 

Classifier Accuracy Precision Sensitivity Specificity F1 Score 
DT 80.95% 85.71% 85.71% 71.43% 85.71% 
KNN 71.43% 78.57% 78.57% 57.14% 78.57% 
LR 85.71% 92.31% 85.71% 85.71% 88.89% 
SVM 85.71% 92.31% 85.71% 85.71% 88.89% 
RF 85.71% 86.67% 92.86% 71.43% 89.66% 
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As per the training results shown in table 7, RF achieved the highest results in all metrics except sensitivity 
where it placed second, slightly behind KNN. DT also performed very well, second in overall performance 
only to RF. DT matched RF in specificity and scored just slightly less than it in other categories. KNN had a 
good performance that was better than LR and SVM but not as good as RF and DT; however, KNN’s perfect 
sensitivity score outdid all over models’ sensitivity results. LR and SVM both performed the worst; however, 
their metrics were still satisfactory. All in all, each of the five models achieved over 85% accuracy and precision 
as well as over 91% sensitivity and over 89% F1 score. It appears that specificity is the metric where all models 
had their lowest performance especially KNN and LR whose specificity of 66.67% is much lower than their 
other metrics, indicating that they had a high false positive rate which means they were classifying many non-
MI cases as MI. RF and DT’s worse performing metric was also specificity at 96.30%; however, it is only very 
slightly lower than their other metrics. As per the testing results shown in table 8, RF had the least overall 
drop in performance and achieved the best testing accuracy, sensitivity, and F1 score, demonstrating its 
reliability in generalizing well to new data. On the other hand, KNN appears to have the biggest drop in 
performance and achieved the lowest metric results in all categories. DT had solid results, matching RF again 
in its specificity score; and even though it had a higher drop in performance than RF, it still had good metrics 
overall. LR and SVM had identical results across all categories which was unsurprising given their 
aforementioned identical testing confusion matrices. They tied with RF in terms of accuracy and 
outperformed it in precision and specificity. However, the reliability of LR and SVM’s results is uncertain 
and could be skewed by the small size of the test data considering their testing precision and specificity are 
significantly higher than their training counterparts. We chose the Random Forest model for MI classification 
as it provided top and consistent results while in training and testing. It demonstrated its effectiveness in 
avoiding both false positives and especially false negatives. Its testing sensitivity of 92.86% ensures that it 
effectively identifies MI-positive cases, which is crucial in medical diagnosis scenarios. That combined with 
its consistent high performance across the other metrics and its robust generalization capabilities make 
Random Forest the most reliable model for this task. 

6. CONCLUSION 

To conclude, this work explored the use of a LadderNet CNN for segmenting the LV wall out of 
echocardiogram frames as well as various ML algorithms for diagnosing MI from the motion of the LV wall’s 
sections. After comprehensive investigation and experimentation, the efficacy and reliability of LadderNet’s 
performance in accurately segmentation the LV wall out of low-quality echocardiograms were established. 
RF’s ability to classify MI to a high degree of accuracy, precision, sensitivity, and specificity from the motion 
of the LV wall’s sections was also demonstrated after comparing its performance with various other ML 
models. However, the limitations of these investigations and experiments need to be acknowledged. The 
LadderNet was both trained and tested on only one dataset; its performance results have not been explored 
on echocardiograms obtained from other sources. Furthermore, while the RF model provided a very high 
sensitivity score of 92.86%, its specificity score was lower at 71.43%. More work needs to be done to raise the 
specificity score to ensure that the ratio of correct MI-negative classification is as high as the ratio of correct 
MI-positive classifications. This could possibly be done by extracting more features in the feature engineering 
stage in addition to the maximum displacement for each section, e.g., the overlap of section areas across the 
frames. In summary, this paper has actualized its intended purpose of contributing to the advancement of 
early MI diagnoses by using the help artificial intelligence. It purposed a full framework that could detect 
motion abnormalities, and hence MI, in the LV by analyzing A4C echocardiograms. Its findings validate the 
results of previous, similar studies and hopefully offer a valuable insight for future similar work. 
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