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Abstract 
In Internet of Things (IoT) enabled environmental monitoring sector, fault detection and recovery systems are crucial 
for guaranteeing continuous, accurate, and reliable service delivery. IoT devices often function in resource-constrained 
environments, making the implementation of complex fault-detection algorithms difficult. In this paper, Automatic 
Fault Detection and Recovery (AFDR) framework based on Artificial Neural Network Fuzzy Inference System 
(ANFIS) is proposed. In this framework, the device faults along a path are determined based on the ANFIS model. 
Fuzzy rules are provided based on the packet loss rate (PLR), Signal to Interference Noise Ratio (SINR) and round 
trip delay (RTD) metrics. In the fault recovery phase, the recovery agent at the primary path establishes an alternate 
fault-free route by excluding the faulty nodes. The evaluation metrics packet delivery ratio (PDR), number of packets 
dropped, average residual energy computational cost and end-to-end delay are measured by varying the number of fog 
nodes.Experimental results show that the proposed AFDR-ANFIS model attains higher fault detection accuracy with 
reduced packet drops and computational overhead. The proposed Machine Learning (ML) based technique plays a 
vital role in fault detection and recovery systems in IoT-based healthcare. 
Keywords: Internet of Things (IoT), Health-care applications, Fault detection, Recovery, Machine Learning, 
Artificial Neural Network Fuzzy Inference System (ANFIS),  
 
1. INTRODUCTION 
The Internet of Things (IoT) is a network of interconnected physical objects, which are embedded with 
software, sensors, and communication technologies that enable them to gather and exchange data over 
the internet. These smart objects interrelate with other systems in real time, rendering them vital for 
modern applications such as cyber-physical systems (CPSIoT plays a major role in recognizing faults, 
monitoring machine performance, and ensuring timely communication of resource failures [1].  
IoT environmental sensors are devices that use the Internet of Things (IoT) to monitor and measure 
various environmental conditions like temperature, humidity, air quality, and light levels [2]. In the IoT-
enabled environment monitoring sector, fault detection and recovery systems are crucial for guaranteeing 
continuous, accurate, and reliable service delivery. These systems help recognize problems like 
communication failures, sensor degradation, and software errors. [3].  
Fault detection ensures anomalies are rapidly identified, whereas recovery mechanisms ensure continuity 
of operations via redundancy or self-healing protocols. Intelligent systems using machine learning (ML) 
or AI can now forecast failures based on behavioural patterns of devices, improving response time. Since 
the number of IoT nodes and data volume grows, a robust fault detection and recovery infrastructure 
safeguards operational integrity and reinforces the trustworthiness of digital healthcare. It contributes to 
lower costs, reduced downtime, and higher-quality patient care [4]. 
1.1 Motivation and Objectives 
In spite of their importance, fault detection and recovery systems in IoT environmental monitoring 
encounters several significant challenges. IoT devices often function in resource-constrained 
environments with restricted processing power, battery life, and memory, making the implementation of 
complex fault-detection algorithms difficult. Moreover, data imbalance is common in which failure events 

mailto:rmkmanikandan1111@gmail.com


International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 23s, 2025 
https://www.theaspd.com/ijes.php 
 

2243 
 

are rare when compared to normal operation, which hinders the training of ML models [5]. Additionally, 
IoT systems must deal with data packet losses, intermittent connectivity, and synchronization problems 
that may either mask or falsely signal faults. Since IoT healthcare systems become more complex and 
interconnected, developing fault detection and recovery systems that are both accurate and effective—
without compromising data privacy or patient safety—remains a critical but evolving challenge [6]. 
Existing data collection approaches in IoT-WSN networks, did not ensure the reliability of devices and 
consistency of sensed data. 
Machine Learning (ML) technique plays a vital role in fault detection and recovery systems in IoT-based 
healthcare. ML facilitates the continuous monitoring of medical devices and patient data for identifying 
abnormal patterns, detecting faults, and triggering alerts before failures occur. . ML models support 
recovery systems by recommending corrective actions or automatically adjusting device configurations [7]. 
Additionally, ML allows predictive maintenance of connected devices by analysing historical and real-time 
data, prediction when a device may fail, and preventing disruptions in healthcare services [8][9]. 
The main objective of this research work is to develop an automatic fault detection and recovery system 
using ML techniques for IoT environmental monitoring applications. 
 
2. RELATED WORKS 
A proactive methodology [10] is proposed to improve sensor fault prediction and classification within IoT 
systems. This two-stage solution starts with the training of a hybrid Convolutional Neural Network (CNN) 
and Long Short-Term Memory (LSTM) model, which is designed to forecast future sensor measurements 
using historical data. In the following stage, the predicted data are input into a hybrid CNN and Multi-
Layer Perceptron (MLP) model, which is trained specifically for detecting and classifying various sensor 
faults. The system can accurately find fault types such as normal, bias, drift, random, and poly-drift, 
enabling faults to be anticipated before they actually occur, by utilizing the forecasted sensor values as 
inputs for classification. This approach improves the reliability and operational efficiency in IoT systems 
by facilitating preventive maintenance before system faults escalate. 
In [11], a new technique for fault detection and classification in electrical systems is proposed through 
analysis of voltage and current behaviour across the transmission line phases. Multiple ML models are 
tested, using a rich dataset of varied fault scenarios. A combined ensemble model—RF-LSTM Tuned 
KNN—is proposed that yields exceptional performance. RF and KNN showed slightly lower performance 
levels when compared independently. The results offer significant advancements in the domain of grid 
fault detection, contributing to improved reliability and resilience of power infrastructure. 
Fault detection and control is proposed in [12] within the manufacturing sector using a ML-based 
framework. Data is collected through IoT modules that observed historical manufacturing faults. Before 
analysis, the data experiences preprocessing steps including noise removal, normalization, and smoothing. 
Feature extraction is performed through Kernel Principal Vector Component Analysis. The control 
mechanism of these features is accomplished using a Gaussian Quadratic Kernelized Generative 
Adversarial Network. Performance indicators like Mean Average Precision (MAP), RMSE, Area Under 
Curve (AUC), recall, F1-score, accuracy, and precision are used for experimental validation. The Auto-
Encoder Neural Network developed as the most effective model for identifying production line faults, 
whereas One-Class SVM was noted for delivering highly accurate results. 
A new reliability assessment framework is proposed in [13] using Colored Resource-Oriented Petri Nets 
(CROPNs) integrated with IoT technology to support accurate analysis, prognosis, and self-repair 
mechanisms in complex CPSs. CROPNs are constructed for establishing the essential conditions for 
maintaining system liveness in the occurrence of resource failures and deadlocks. This method integrates 
IoT into the Petri Net structure, ensuring system reliability. Simulation and analysis are conducted 
through the GPenSIM tool. The results proved that the model is simpler in structure yet more effective 
in managing deadlock scenarios and modelling reliability in automated manufacturing systems when 
compared to prior literature. 
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The study in [14] focuses on improving power electronics reliability, mainly in hybrid Multi-Level Inverter 
(MLI) topologies. This configuration depends on a conventional two-level inverter structure to reduce the 
device count while generating a nine-level output voltage. A critical problem addressed is capacitor voltage 
imbalance, resolved through an optimized switching strategy. However, timely detection is essential since 
semiconductor switches are highly vulnerable to open-circuit faults. A method is proposed to detect these 
faults using load voltage waveform analysis. Feature extraction is accomplished using wavelet 
transformation, which is followed by fault classification using an Artificial Neural Network.  
A method termed XAI-LCS is proposed in [15] for tackling some of the limitations of current AI-based 
fault detection systems, such as lack of interpretability and computational complexity. This approach uses 
the XGBoost algorithm for detecting early sensor faults in IoT environments. The model can identify a 
variety of fault types including drift, bias, complete failures, and precision degradation, while addressing 
data imbalance for avoiding skewed predictions. Achieving a validation accuracy of 98%, the solution 
also integrates explainable AI (XAI) components to improve user trust and model transparency. This 
method makes a significant contribution to consistent fault diagnosis in IoT systems by ensuring 
actionable intuitions and interpretability. 
2.1 Research Gaps 
In spite of the advancements in fault detection systems in IoT and CPS environments, several research 
gaps remain, especially in environmental monitoring applications in which system reliability and real-time 
responsiveness are critical. Existing studies have successfully applied ML and deep learning techniques 
for fault detection in industrial contexts including CNC machines and motor monitoring, often 
combining cyberattack resilience and MQTT protocols. Though, healthcare-focused IoT environments 
present unique challenges like unpredictable patient data patterns, heterogeneous sensor networks, 
privacy concerns, and the requirement for ultra-low-latency fault responses that are not adequately 
addressed in the existing literature. Most existing studies focus on industrial or mechanical tool condition 
monitoring and energy-efficient protocols, with limited generalizability to dynamic, patient-centric 
healthcare systems.  
Furthermore, even though Colored Petri Nets (CPNs) and their variants such as CROPNs provide robust 
modelling capabilities, their incorporation with adaptive ML algorithms for real-time healthcare fault 
prediction and recovery remains underexplored. Additionally, sensor fusion methods have not been fully 
utilized for improved fault localization and prediction accuracy under noisy, complex clinical conditions. 
Therefore, there is a critical requirement for a fault detection and recovery framework that integrates 
secure IoT infrastructure, intelligent ML-driven decision-making, and dynamic reconfiguration 
mechanisms tailored particularly to the sensitive, life-critical domain of IoT-enabled healthcare 
applications. 
 
3. PROPOSED METHODOLOGY 
3.1 Overview 
In this paper, an Artificial Neural Network Fuzzy Inference System (ANFIS) based automatic fault 
detection and recovery framework is proposed. In this framework, for estimating the node faults along a 
path, the ML based ANFIS is applied. The Fuzzy rules are provided based on the packet loss rate (PLR), 
Signal to Interference Noise Ratio (SINR) and round trip delay (RTD) metrics. In the fault recovery phase, 
the recovery agent at the primary path will establish an alternate fault-free route by excluding the faulty 
nodes. 
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Figure 1 Block diagram of AFDR-ANFIS framework 
3.2 Node fault detection Phase 
3.2.1 ANFIS model  
The fuzzy model of the modified network model is utilized by the machine learning model. Figure 2 
illustrates the two fuzzy rules and two input parameters of the ANFIS model.There are five layers in the 
ANFIS and the working process of each layer is explained below: 
 

 
Figure 2 Structure of ANFIS 
First layer: The fuzzification layer is the first layer, where each membership function's membership degrees 
are calculated. SC (subtractive clustering) provides the number of fuzzy rules in ANFIS, and the fuzzy C 
means (FCM) technique is utilized to determine the initial centres. The ANFIS's training phase, which 
optimizes regression elements and membership functions and lowers error, begins after the fuzzy rules are 
created as indicated in Table 1. Moving further, the regression components of fuzzy rules are optimized 
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using the LSM (least square model). The membership function-related variables are optimized in reverse 
using the gradient descent methodology. 
Second layer: The following expression is used to calculate the clustered value of the antecedent segment 
of each fuzzy rule after the membership degrees have been determined: 
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Fourth layer: The sequential value of each rule is calculated for input variables using the regression 
elements of all the rules. It is then stated as follows: 
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Fifth layer: The ANFIS model’s output for the input variables is computed as the weighting consequence 
values of every rule. It is given as: 
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where jy and kz are thj fuzzy rule's input variable and output parameter. l

jB and lb0  are the antecedent 

segment and bias regression elements 
3.2.2 Fuzzy Rules 
Based on the PLR, SINR and RTD, Fuzzy rules are generated to derive the fault tolerant index (FTI).    
The  packet loss rate at the receiver end is given by . 














−








−

−

+=

−=










)1(1
1

1 pp
i

n
b

ini

b

n

ti

PLR

k

Lp

    (5)

 

Where pb is the bit error rate and Lp is the payload's packet size in a single transmission, the receiver's 
packet loss rate is determined by  
The following formula is used to estimate the SINR from the RSSI.  

SINR = 
nB

RSSI
          (6)   

where Bn is the background noise.  
The Round Trip Delay (RTD) is calculated using the following equation for each path. 
 

𝑅𝑇𝐷𝑒𝑠𝑡 = 𝑛 𝑇         (7) 
Where n is the number of nodes and T is the total time interval. 
Then the generated Fuzzy rules table is given in Table 1 

S.No PLR 
 

SINR 
 

RTD RI 
 

1 High Low High Low 
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S.No PLR 
 

SINR 
 

RTD RI 
 

2 Medium Low High Low 
3 Low Low High Medium 
4 High Medium High Low 
5 High High High Low 
6 Medium Medium High Medium 
7 Medium High High Medium 
8 High Low Medium Low 
9 High Low Low Medium 
10 High Medium Medium Medium 
11 High Medium Low Medium 
12 High High Low Medium 
13 Low Medium Medium Medium 
14 Low Medium Low High 
15 Low High High Medium 
16 Low High Low High 
17 Low Low Low High 
18 Medium High Low High 

Table 1 Fuzzy Rules 
3.3 Fault Recovery Phase 
The network recovers from the problematic nodes and safeguards the remaining functional nodes once 
the faulty node has been verified. 
The following lists the steps that are part of the fault recovery module: 

1. The RA at the PC broadcasts the Fault Recovery Request message (FR_REQ) to SCs, which 
contains the PC ID, faulty node ID, and detection time, if the PC receives the CONFIRM 
message from the initiators. 
2. Every SC will look for the problematic node ID in its routing table after getting FR_REQ. The 
fault recovery response message FR_RES, which contains the PC ID, SC ID, and its path 
information towards the sink, is returned if it is present. 
3. The PC will attempt to create a new route, excluding the problematic node, to replace the 
damaged route after receiving the FR_REP message from every SC.  
4. The PC will send a MOBILITY information packet to the relevant SCs in order to create a 
new path towards the sink if no such route can be created. 
5. On receiving the MOBILITY information packet, the corresponding SC move towards the 
position as specified by the PC. 
6. PC will then resend the stored packets to the sink via the newly established route.  
 

4. EXPERIMENTAL RESULTS 
4.1 Simulation Setup 
The proposed AFDR-ANFIS technique has been simulated in NS3. The simulation results demonstrated 
the effectiveness and originality of the used model. Here, the evaluation metrics packet delivery ratio 
(PDR), number of packets dropped, average residual energy computational cost and end-to-end delay are 
measured by varying the number of fog nodes. Besides, the performance of the proposed technique is 
compared with the ML based Fault Detection and Diagnostics (ML-FDD) [7] technique and CNN-LSTM-
MLP based prediction of IoT sensor faults [10]. 
 

Number of nodes 20 to 100 
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Number of Faulty 
nodes 

10% of the total nodes 

Topology size 500m X 500m 
MAC Protocol IEEE 802.15.4 
Traffic type Constant Bit Rate 
Traffic rate 50Kbps 
Propagation model Two Ray Ground 
Antenna model Omni Antenna 
Initial Energy 12 Joules 
Transmission Power 0.660 watts 
Receiving Power 0.395 watts 

 Table 2 Simulation parameters 
4.2 Results & Discussion 
The performances of the techniques are evaluated by varying the number of devices from 20 to 100. 

Number 
of devices 

AFDR-
ANFIS  

CNN-
LSTM-
MLP 

ML-
AFDD 

20 0.9582 0.9350 0.9220 
40 0.9436 0.9261 0.9111 
60 0.9402 0.9174 0.9071 
80 0.9375 0.9040 0.8892 
100 0.9289 0.8911 0.8705 

Table 3 Results of PDR 

 
Figure 4 PDR for varying the devices 
Table 3 and Figure 4 show the results of PDR for varying the devices from 20 to 100. As it can 

be seen from the figure, the AFDR-ANFIS attains 2.8% higher PDR than CNN-LSTM-MLP and 4.4% 
higher PDR than ML-AFDD. 

Number 
of devices 

AFDR-
ANFIS  

CNN-
LSTM-
MLP 

ML-
AFDD 

20 2503 4007 4507 
40 2851 4434 4834 
60 3036 4889 5219 
80 3511 5030 5230 
100 3911 5302 5705 
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Table 4 Results of Packets drop 

 
Figure 5 Packets dropped for varying the devices 
Table 4 and Figure 5 show the results of packet dropped for varying the devices from 20 to 100. 

As it can be seen from the figure, the AFDR-ANFIS attains 33% lesser packet drops than CNN-LSTM-
MLP and 38% lesser packet drops than ML-AFDD. 

Number 
of devices 

AFDR-
ANFIS 
(Joules)  

CNN-
LSTM-
MLP 
(Joules) 

ML-
AFDD 
(Joules) 

20 7.65 4.98 5.68 
40 7.44 4.76 5.76 
60 8.19 5.19 6.36 
80 8.70 5.49 6.46 
100 8.72 5.71 6.73 

Table 5 Results of Residual energy 

 
Figure 6 Residual Energy for varying the devices 
Table 5 and Figure 6 show the results of average residual energy for varying the devices from 20 

to 100. As it can be seen from the figure, the AFDR-ANFIS attains 35% higher residual energy than 
CNN-LSTM-MLP and 24% higher residual energy than ML-AFDD. 
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Number 
of devices 

AFDR-
ANFIS 
(Kb)  

CNN-
LSTM-
MLP 
(Kb) 

ML-
AFDD 
(Kb) 

20 228.37 501.85 341.85 
40 246.54 547.91 377.91 
60 264.7 552.05 422.05 
80 270.94 565.26 445.26 
100 273.32 595.32 475.32 

Table 6 Results of Computational cost 

 
Figure 7 Computational cost for varying the devices 
Table 6 and Figure 7 show the results of computational cost for varying the devices from 20 to 

100. As it can be seen from the figure, the AFDR-ANFIS attains 53% lesser cost than CNN-LSTM-MLP 
and 37% lesser cost than ML-AFDD. 

Number 
of devices 

AFDR-
ANFIS 
(%)  

CNN-
LSTM-
MLP (%) 

ML-
AFDD 
(%) 

20 98.37 95.5 94.85 
40 96.54 94.71 94.12 
60 95.71 93.45 92.15 
80 95.14 92.66 91.58 
100 95.03 91.72 90.52 

Table 7 Results of detection accuracy 
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Figure 8 Fault detection accuracy for varying the devices 
Table 7 and Figure 8 show the results of fault detection accuracy for varying the devices from 20 

to 100. As it can be seen from the figure, the AFDR-ANFIS attains 2.6% higher accuracy than CNN-
LSTM-MLP and 3.6% higher accuracy than ML-AFDD. 

 
5. CONCLUSION 
In this paper, AFDR-ANFIS framework is proposed for IoT environmental monitoring applications. In 
this framework, the device faults along a path are determined based on the ANFIS model. Fuzzy rules are 
provided based on the PLR, SINR and RTD metrics. In the fault recovery phase, the recovery agent at 
the primary path establishes an alternate fault-free route by excluding the faulty nodes. The performance 
of the proposed framework is compared with the ML-FDD) and CNN-LSTM-MLP techniques. 
Experimental results show that the proposed AFDR-ANFIS model attains higher packet delivery ratio, 
fault detection accuracy with reduced packet drops and computational overhead.  
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