International Journal of Environmental Sciences ISSN: 2229-7359 Vol. 11 No. 22s, 2025 https://theaspd.com/index.php

Predicted Value and Interpretation of Impulse Oscillometry Lung Function Test Among Different Types of Population Model

Thangamani V¹, Nalinijayanthi .J², Pugazhendhi .S³, Nagarjun⁴, Karniha⁵

¹Lecturer, Department of Respiratory Medicine, SRM medical College hospital and Research centre. Kattankulathur, Chengalpattu.

²Professor &HOD, Department of Respiratory Medicine, SRM medical College hospital and Research centre. Kattankulathur, Chengalpattu.

³Assistant professor, Department of Respiratory Medicine, SRM medical College hospital and Research centre. Kattankulathur, Chengalpattu.

⁴Assistant professor, Department of Respiratory Medicine, SRM medical College hospital and Research centre. Kattankulathur, Chengalpattu.

⁵Assistant professor - Department Of Respiratory Medicine, SRM medical College hospital and Research centre. Kattankulathur, Chengalpattu.

ABSTRACT

Background: Impulse oscillometry (IOS) is an increasingly adopted method for evaluating pulmonary function due to its minimal effort requirements and sensitivity to small airway changes. While IOS offers advantages over conventional spirometry, there is substantial variability in reference values across populations, raising concerns about its diagnostic consistency.

Objective: This systematic review aims to evaluate and synthesize existing literature on IOS reference values in healthy populations, with a focus on identifying demographic, methodological, and regional factors influencing these standards.

Methods: A comprehensive search was conducted in PubMed, Scopus, and Web of Science for studies published between January 2018 and January 2025. The review adhered to PRISMA guidelines. Inclusion criteria consisted of peer-reviewed studies reporting IOS reference values in healthy, non-smoking individuals. Data on study design, sample characteristics, measurement devices, and reported IOS parameters (e.g., R5, R20, X5, AX) were extracted and analyzed. Study quality was assessed using an adapted version of the Newcastle-Ottawa Scale.

Results: A total of 12 studies met the inclusion criteria, encompassing over 6,000 participants from diverse geographic regions, including Europe, Asia, Africa, and the Americas. The review found consistent associations between IOS parameters and anthropometric factors, particularly height and age. However, substantial differences were noted across populations, partly due to variations in ethnicity, testing equipment, and prediction equations. Many reference values were derived from predominantly Caucasian cohorts, limiting their generalizability. Some studies proposed locally developed equations, highlighting the need for context-specific standards.

Conclusion: This review demonstrates that IOS reference values are not universally applicable and are influenced by a range of demographic and methodological variables. The lack of standardized global reference equations limits the clinical utility of IOS, especially in non-Western populations. Future research should focus on developing harmonized, population-specific norms and standardizing testing protocols to enhance the clinical relevance of IOS worldwide.

Keywords: Impulse Oscillometry (IOS), (R_5) Respiratory Resistance at 5Hz, (R_{20}) Respiratory Resistance at 20Hz, (R_{20}) Respiratory Resistance at R_{20}

INTRODUCTION:

Pulmonary function tests (PFTs) are essential for evaluating, diagnosing, and monitoring respiratory disorders [1–2]. Among newer, complementary methods to traditional PFTs is the forced oscillation technique (FOT), particularly impulse oscillometry (IOS) [3,4]. FOT evaluates respiratory impedance, encompassing both resistance (real part) and reactance (imaginary part), across varying frequencies [5]. First introduced in 1956 [6], oscillometry offers a passive, non-invasive alternative that requires no forced expiratory effort. This makes it suitable for patients who cannot perform spirometry, including young children, the elderly, or those on ventilators. The technique applies pressure or flow oscillations via the mouth, measuring the mechanical response of the respiratory system. The ratio of oscillatory pressure to flow yields impedance, a comprehensive indicator of lung mechanics [7].

International Journal of Environmental Sciences ISSN: 2229-7359

Vol. 11 No. 22s, 2025 https://theaspd.com/index.php

Assessing lung function is a cornerstone of respiratory medicine [8], particularly in the context of obstructive airway diseases (OADs), which contribute significantly to global morbidity and mortality [9]. In India, where nearly one-fifth of the global population resides, the burden of chronic respiratory diseases is rising [9]. A key advantage of IOS is its ability to detect small airway abnormalities during normal tidal breathing [10], which is particularly beneficial for pediatric and geriatric populations [9]. Liu et al. demonstrated the effectiveness of IOS in diagnosing and staging chronic obstructive pulmonary disease (COPD) in the elderly. [11]

Though introduced six decades ago [6], the forced oscillation technique remains relevant due to its ease of use and minimal patient cooperation. IOS, a variant of FOT, delivers pressure oscillations—often generated by a loudspeaker—superimposed on spontaneous breathing [12]. It is especially sensitive to peripheral airway dysfunction [13], which is often overlooked by traditional spirometry. Resistance measured at 5 Hz (R5) reflects total airway resistance, while 20 Hz (R20) indicates central airway resistance. Additional parameters such as reactance at 5 Hz (X5), the area under the reactance curve (AX), and resonant frequency (fres) provide insights into tissue elasticity and peripheral airway function [14]. Clinical correlations between spirometry and patient symptoms are often weak [13]. In diseases like COPD, spirometric findings may not reflect the severity of symptoms [2]. IOS, however, has shown stronger associations with symptom burden and patient-reported quality of life, and has a moderate correlation with spirometry [15]. For asthma, IOS is particularly valuable in detecting early airway obstruction, monitoring disease progression, and predicting loss of control more effectively than spirometry [16]. While some small-scale studies support its use in COPD assessment, IOS adds limited diagnostic value in established cases and shows uncertain utility in cystic fibrosis [14]. Notably, abnormal IOS results may appear even when spirometry is normal, suggesting early pathological changes. Emerging evidence also links IOS findings to symptoms in individuals with occupational exposures or systemic sclerosis, though these studies often have limited sample sizes [14,17].

Technically, IOS employs rectangular pressure pulses overlaid onto tidal breathing. Using Fourier transformation, it calculates impedance metrics—such as resistance, reactance, and inertance—across frequencies (5–35 Hz), offering a detailed view of lung mechanics. Its non-invasive, repeatable nature and minimal cooperation requirement make it suitable for patients as young as three years old [18].

However, reference values are critical to interpreting any lung function test. Many earlier studies included smokers or individuals with undiagnosed conditions, and often relied on small sample sizes [19]. Among First Nations Australians, spirometry values are 20–30% lower than in the general Australian population [20], leading to possible misclassification of disease. One study of 930 healthy individuals from rural Queensland found spirometry values were 7–8% below GLI-2012 Caucasian predictions, though the "other/mixed" GLI-2012 equations were more accurate [20, 21]. Since more First Nations individuals live in rural or remote areas, socio-environmental differences must be considered [22]. Still, data comparing urban and remote First Nations populations are sparse.

The accuracy of PFT interpretation hinges on validated reference equations [1, 2]. While spirometry standards are globally established, oscillometry lacks unified reference values and often relies on regional datasets [23]. The widely used adult equations by Oostveen et al. [24] were developed from Caucasian populations and applied globally, despite minimal validation in other ethnic groups. This raises the risk of misclassification. Moreover, their dataset was compiled using five devices with differing signal processing features. Participants were from four countries, and inter-individual differences in body composition were not fully accounted for. Other population-specific oscillometry equations also suffer from small cohorts [23, 24], sampling biases (e.g., inclusion of smokers), or mathematical complexity that limits clinical use [25].

Lung function is influenced by numerous anthropometric, genetic, and environmental factors. Recent studies have expanded to include Mexican, Thai, Emirati, Korean, Taiwanese, Turkish, and Indian children aged 3–17 [26]. Though Caucasian-based equations may suit white South Africans, census data show South Africa's population is predominantly Black African (80.7%), with mixed ancestry (8.8%) and Indian/Asian backgrounds (2.6%) [27]. Yet, no African-specific oscillometry reference values exist despite the continent's high respiratory disease burden. Normative data for intra-breath oscillometry, particularly beyond infancy, also remain scarce [26]. Recognizing this gap, the European Respiratory Society (ERS) has recently underscored the urgent need for population-specific pediatric references, especially in underrepresented groups [28]. This systematic review aims to evaluate the predicted values and clinical interpretation of impulse oscillometry across various population models, with particular attention to how

International Journal of Environmental Sciences ISSN: 2229-7359 Vol. 11 No. 22s, 2025 https://theaspd.com/index.php

existing reference equations perform across different demographic and ethnic groups, including their applicability and potential limitations.

METHODS:

Study Design

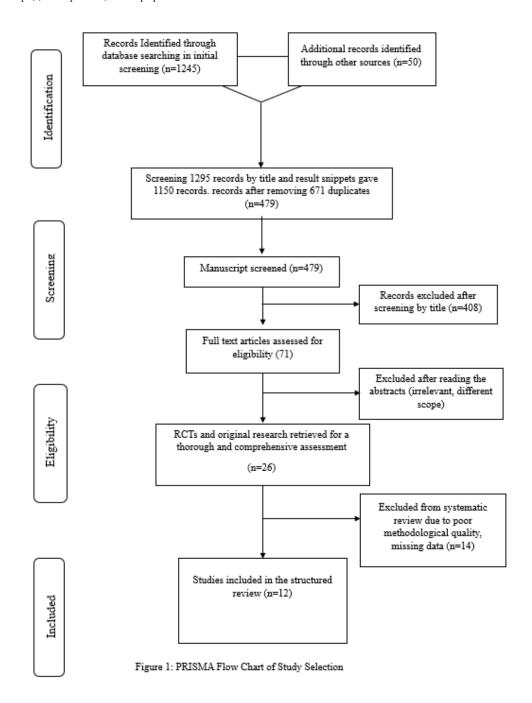
This research is a systematic review aimed at evaluating the predicted values and interpretation of impulse oscillometry (IOS) lung function tests across various population models. The objective is to assess the applicability and limitations of current IOS reference equations, particularly across diverse demographic groups. The review was conducted following the PRISMA guidelines for methodological rigor and transparency.

Eligibility Criteria

Studies included in this review were required to meet several key criteria. Only peer-reviewed studies published between 2018 and 2025 were considered. These studies needed to either develop or utilize IOS reference equations for respiratory parameters, focusing on resistance and reactance. Participants had to be healthy individuals with no history of chronic respiratory conditions such as asthma, chronic obstructive pulmonary disease (COPD), or any related diseases. The studies were required to provide data on predicted IOS parameters, including total airway resistance (R5), central airway resistance (R20), total airway reactance (X5), and the area under the reactance curve (AX). Clear demographic information, including age, height, weight, and ethnicity, was also necessary. Only full-text studies were included. Studies were excluded if they did not meet these criteria. This included studies that were not published in English, those that were not peer-reviewed, or studies lacking clear demographic details. Additionally, studies focusing on populations with chronic respiratory conditions, smokers, or those with unclear age distributions were excluded. Studies that did not develop reference equations for IOS parameters or were not available in full-text format were also excluded.

Information Sources and Search Strategy

A comprehensive search was conducted across multiple bibliographic databases, including PubMed, MEDLINE, Scopus, Web of Science, and the Cochrane Library. The search was limited to studies published between 2018 and 2025 and focused on those that provided IOS reference equations for healthy individuals. Keywords used in the search included terms such as "impulse oscillometry," "reference equations," "predicted values," "lung function," and "respiratory resistance/reactance." Grey literature was also considered, with searches conducted on platforms like ResearchGate. The search was performed in January 2024.


Study Selection Process

The initial search yielded a total of 1245 studies. After duplicates were removed, two authors independently screened the titles and abstracts. Studies that appeared to meet the eligibility criteria underwent full-text review by both authors. Any disagreements were resolved by a third author. The study selection process is shown in Figure 1.

Data Extraction and Management

Data extraction was carried out by two authors independently, using a standardized extraction form. Key data points included study characteristics (author, year, sample size, study design) and participant details (age, height, weight, gender, ethnicity). IOS parameters measured (R5, R20, X5, AX) and the methods used to develop the reference equations were also extracted. The data were compiled into a spreadsheet and cross-checked for accuracy. Any discrepancies in the extracted data were resolved through discussion and consensus.

https://theaspd.com/index.php

Quality Assessment of Included Studies

The quality of the included studies was assessed using a standardized tool for observational studies. This tool evaluated the study design, potential bias in participant selection, sample size adequacy, and statistical methods used in developing the reference equations. The transparency and reproducibility of the methods were also assessed. Each study was rated as high, medium, or low quality. Studies rated as low quality were excluded from the final synthesis to ensure that only reliable and rigorous evidence was included.

Data Synthesis and Analysis

The data were synthesized using a narrative approach. The findings were organized based on IOS parameters (such as resistance and reactance) and population characteristics (age, gender, ethnicity). Due to methodological differences among the studies, a meta-analysis was not conducted. Instead, the predicted values across different demographic groups were compared in detail. Trends were identified, and gaps in the literature were noted. The implications of these findings for various population models were discussed.

International Journal of Environmental Sciences ISSN: 2229-7359 Vol. 11 No. 22s, 2025 https://theaspd.com/index.php

RESULT:

A total of 1,245 records were identified through database searching during the initial screening. After applying inclusion and exclusion criteria, 12 studies were selected for review. These assessed respiratory impedance using oscillometry in diverse populations, employing devices such as the MasterScreen IOS and Resmon Pro® Full. The studies spanned regions including Brazil, China, Egypt, India, Mexico, South Africa, Sweden, Thailand, Turkey, and the USA, covering a wide age range—from children to older adults. Key parameters like resistance (R), reactance (X), and resonance frequency (Fres) were analyzed. Height, age, sex, and body mass were consistently identified as significant predictors, with height being the most prominent across multiple studies.

Table 1: Summary of Key Studies on Respiratory Impedance Using Oscillometry

Autho	Countr	Sam	Age	Key Results	Predi	Study	Oscillo	Signal	Frequen	Reference
r (Year)	y / Popula tion	ple Size	Rang e (year s)		ction Equat ion Varia bles	Populati on	metry Device(s)	Type	cies Conside red (Hz)	Paramete rs
Ribeir o, F.C.V. (2025) [29]	Brazil / Adult populat ion (Non- smoker s)	288	20 to 86	Reduced resistance with age, higher in females, height is the best predictor for impedance.	Age, Body mass, Heigh t	Non- smoking Brazilian adults, 20-86, sex- based groups	Not specifie d	Whole- breath impeda nce measure ments	4 Hz, 6 Hz, 8 Hz, 10 Hz, 12 Hz, 14 Hz, 16 Hz, 18 Hz, 20 Hz, 22 Hz	Height, Body Mass, Age, Resistance
Wu, J. (2025) [30]	China / Health y childre n	627 0	4 to 17	Significant IOS differences by age group, height, age, and weight are key predictors.	Heigh t, Age, Weig ht	Healthy children 4-17 years from China	Master Screen IOS (Jaeger Co, Germa ny)	Impulse Oscillo metry (IOS)	5 Hz, 10 Hz, 15 Hz, 20 Hz, 25 Hz, 30 Hz, 35 Hz	Height, Age, Weight, Resistance (R), Reactance (X), Zrs, Fres, X5
Liang, X.L. (2025) [31]	China / Health y adults	567	Not speci fied	Height, not age, is the main factor in IO indices, R5 and X5 predicted by reference equations.	Heigh t, Weig ht, Age	Healthy adults from 20 hospitals in China (2016- 2018)	Masters creen Impuls e Oscillo metry (CareF usion, Hoech berg, Germa ny)	Impulse Oscillo metry (IO)	5 Hz, 10 Hz, 15 Hz, 20 Hz, 25 Hz, 30 Hz	Height, R5, X5, R5-R20, Resonant Frequency (fres), Low- frequency Reactance Area (AX)
Ishak, S.R. (2025) [32]	Egypt / Childre n and Adoles cents	113	3 to 18	Height and age most predictive in IOS regression equations for Egyptian	Age, Heigh t, Weig ht, BMI	Egyptian children and adolesce nts (3-18 years)	VIASY S Healthc are (Jaeggar	Impulse Oscillo metry (IOS)	5 Hz, 10 Hz, 20 Hz, 25 Hz	Z5, R5, R20, X5, Fres, AX

De, S. (2025) [33]	India / Health y adults	253	18 to 81	children and adolescents. Higher resistance at 5 Hz (R5) and reactance at 5 Hz (X5) in women, height is the main determinant .	Heigh t, Weig ht, Age	Healthy Indian adults (323 screened , 253 analyzed)	Resmo n Pro® Full device (Restec h, Milan, Italy)	Forced Oscillati on Techniq ue (FOT)	5 Hz, 11 Hz, 19 Hz	R5, X5, Whole- breath Resistance (Rrs), Whole- breath Reactance (Xrs)
Moitra , S. (2025) [34]	India / Health y adults	191	18 to 88	Significant IOS differences between males and females, with weight and height as best predictors.	Age, Heigh t, Weig ht	Non- smoking Indian adults, 18-88, excludin g asthma/ COPD	Jaeger Master Screen PFT system (Jaeger Co, Wurzb urg, Germa ny)	Impulse Oscillo metry (IOS)	5 Hz, 10 Hz, 15 Hz, 20 Hz	R5, R20, R5-20, X5, Z5, AX, Fres, FEV1%
Gochi coa- Rangel (2023) [35]	Mexico / Health y Mexica ns	830	2.7 to 90	Segmented regression found age breakpoints at 7 and 17 years for most IOS variables.	Sex, Age, Heigh t, BMI	Healthy non-smoking Mexican mestizo populati on (childre n & adults)	MS- IOS (Jaeger, CareFu sion, USA)	Impulse Oscillo metry (IOS)	5 Hz, 10 Hz, 15 Hz, 20 Hz	R5, R10, R15, R20, X5, X10, X15, X20, R5-R20, Fres, AX
Shaaki ra Chaya (2022) [36]	South Africa / African childre n and adolesc ents	692	3 to 17	Developed first respiratory oscillometry reference equations for South African children and adolescents.	Heigh t, Sex, Ances try	Healthy African children and adolesce nts	INCIR CLE wavetu be system (Univer sity of Szeged, Hungar y)	Conventional Spectral Oscillo metry & Intrabreath Oscillo metry	6-32 Hz (convent ional), 10 Hz (intra- breath tracking)	Rrs (6 Hz, 8 Hz, 10 Hz), Xrs (6 Hz, 8 Hz, 10 Hz), Frequency dependen ce (R6-R20), Resonanc e frequency (Fres), Absolute area (Ax), ReI, ReE, XeI, Δ R, Δ X

Björn Qvarn ström (2022) [37]	Sweden / Genera l adult populat ion	10,3 60 (3,6 64 for IOS)	50 to 64	Abnormal IOS (16% of participants) linked to increased respiratory symptoms, even with normal spirometry.	Age, Heigh t, Weig ht (separ ately by sex)	General populati on sample from Uppsala and Malmö (SCAPIS)	Jaeger Master Screen IOS	Fixed square wave	5–35 Hz (multipl es of 5 Hz)	R5, R20, X5, Fres, AX; Abnormal = R5/R20/ AX/Fres >95th percentile, X5 <5th percentile
Athav udh Deeso mchok (2023) [38]	Thailan d / Health y adults	127	22 to 92	Women had higher R5, R20, and AX; age, height, and weight were key predictors. Separate equations by sex.	Age, Heigh t, Weig ht (sex- specifi c model s)	Healthy Thai adults with normal spiromet ry and no chronic respirato ry disease	Not specifie d	Not specifie d	5 Hz, 20 Hz, Fres	R5, R20, R5-R20, X5, AX
İlkay Er et al. (2019) [39]	Turkey / Health y prescho olers	151 (93 girls)	3 to 7	Resistance correlated with height, reactance with age. Boys/girls showed different patterns.	Age, Heigh t, Weig ht, BMI (separ ately for boys/ girls)	Healthy Turkish children, free of respirato ry disease	Jaeger Master Screen IOS (Germa ny)	Pressure oscillati on	5-20 Hz	R5, R20, R5-R20, X5-X20, Fres, AX, Z5
Kenne th I. Berger et al. (2020) [40]	USA / Health y urban adults	439	Adul ts (exac t range not speci fied)	Normative IOS equations created with BMI, age, height; BMI stronger than weight. Increased BMI linked to resistance.	Age, Heigh t, BMI (prefe rred over Weig ht)	Healthy, asympto matic adults from NYC, lifetime nonsmo kers	Jaeger Master Screen IOS (Germa ny)	Pressure oscillati on	5, 10, 15, 20 Hz (R); X5, X10; Fres, AX	R5, R10, R15, R20, R5-15, R5-20, X5, X10, Fres, AX

Table 1 presents key findings from various studies that assessed respiratory impedance parameters using oscillometry techniques across diverse populations. It includes details on sample size, age range, study population, key results, and oscillometry devices used. The table provides an overview of the factors influencing respiratory impedance measurements, highlighting variations in age, height, weight, sex, and BMI across different geographical regions and age groups. Additionally, it outlines differences in oscillometry devices, signal types, and frequencies used, offering insights into how these factors affect respiratory health measurements in both children and adults.

Author	Country/	Male	Female
Name	Populatio	TARKE .	
	n		
Ribeiro,	Brazil /	R0: 2.47 ± 0.12	R0: 3.11 ± 0.15
F.C.V.	Adult	Rm: 2.44 ± 0.11	Rm: 2.97 ± 0.14
(2025)	populatio	R4: 3.17 ± 0.14	R4: 4.02 ± 0.20
[29]	n (Non-	Xm: 0.45 ± 0.06	$Xm: 0.30 \pm 0.09$
	smokers)	Fr: 11.66 ± 0.58	Fr: 13.88 ± 0.78
Wu, J.	China /	R0: 1.894 - 0.007H - 0.028A + 0.002W	R0: 1.834 - 0.008H - 0.019A + 0.003W
(2025)	Healthy	Rm: 1.087 - 0.004H - 0.010A + 0.001W	Rm: 0.964 - 0.003H - 0.009A
[30]	children	R4: 1.934 - 0.008H - 0.017A + 0.002W	R4: 1.970 - 0.009H - 0.020A + 0.003W
		Xm: 31.885 - 0.094H - 0.257A + .035W	Xm: 33.941 - 0.104H - 0.303A +
			0.040W
Liang,	China /	R0: 0.6811 - 0.0032 × H + 0.0019 × W	R0: 0.9110 - 0.0042 × H + 0.0023 × W
X.L.	Healthy	Rm: 0.6275 – 0.0030 × H + 0.0019 × W	- 0.0008 × A
(2025)	adults	R4: 0.2485 – 0.0018 × H + 0.0010 × W	Rm: 0.8103 – 0.0038 × H + 0.0024 × W
[31]		Xm: 1.9238 – 0.0068 × H + 0.0033 × W	- 0.0005 × A
			R4: 0.2360 – 0.0019 × H + 0.0017 × W
			Xm: 1.8261 – 0.0067 × H + 0.0051 × W
Ishak,	Egypt /	Fres: 26.742 - (0.525 × Age)A	Fres: 35.454 - (0.115 × Height)A
S.R.	Children	X: 6.778 - (0.037 × Height)	X: 7.517 - (0.041 × Height)
(2025)	and	R5Hz: 1.596 - (0.021 × Age) - (0.005 ×	R5Hz: 1.751 - (0.019 × Age) - (0.006 ×
[32]	Adolesce	Height)	Height)
	nts	X5Hz: -0.520 + (0.023 × Age)	X5Hz: -0.796 + (0.012 × Age) + (0.003 ×
			Height)
De, S.	India /	R5: 10.498 - 0.056 × Ht + 0.028 × Wt	R5: 9.487 - 0.042 × Ht + 0.022 × Wt
(2025)	Healthy	$X5: -3.667 + 0.016 \times Ht$	X5: -4.545 + 0.019 × Ht + 0.009 × Wt
[33]	adults	1.75	- 0.005 × Age
Moitra,	India /	lnR5 = 0.30 + 0.003(Age) + 0.01	lnR5 = 0.003 + 0.004(Age) +
S. (2025)	Healthy	(Weight) – 0.83(Height)	0.007(Weight) - 0.66(Height)
(2025)	adults	$\ln R20 = 0.14 + 0.001(Age) + 0.01$	$\ln R20 = 0.164 + 0.0003(Age) +$
[34]		(Weight) - 0.99(Height)	0.007(Weight) - 0.92(Height)
		$\ln R5 - 20 = 4.05 + 0.02(Age) + 0.004$	$\ln R5 - 20 = 3.35 + 0.007(Age) +$
		(Weight) + 0.68(Height) lnZ5 = 0.79 + 0.008(Age) + 0.008	0.01(Weight) + 0.68(Height) lnZ5 = 0.68 + 0.27(lnAge) +
			0.003(Weight) -0.53 (Height)
		(Weight) - 1.42(Height) X5 = 0.23 - 0.002(Age) - 0.002	X5 = 0.60 - 0.004(Age) - 0.001(Weight)
		(Weight) + 0.15(Height)	+ 0.37(Height)
		$\ln \text{Fres} = 2.44 + 0.39(\ln \text{Age}) + 0.001$	$\ln \text{Fres} = 1.19 + 0.27(\ln \text{Age}) +$
		(Weight) – 0.55(Height)	0.0002(Weight) + 0.68(Height)
Gochic	Mexico /	$R5 = 0.446 - 0.0154 \times 1 - 0.055 \times Age +$	$R5 = 0.446 - 0.0154 \times 0 - 0.055 \times Age +$
oa-	Healthy	100.38/Height – 2.61/BMI	100.38/Height — 2.61/BMI
Rangel	Mexicans	$R10 = 0.508 - 0.0093 \times 1 - 0.056 \times Age$	$R10 = 0.508 - 0.0093 \times 0 - 0.056 \times Age$
(2023)		+ 75.93/Height — 2.08/BMI	+ 75.93/Height — 2.08/BMI
[35]		$R15 = 0.477 - 0.0141 \times 1 - 0.053 \times Age$	$R15 = 0.477 - 0.0141 \times 0 - 0.053 \times Age$
		+ 64.43/Height — 1.23/BMI	+ 64.43/Height — 1.23/BMI
		$R20 = 0.468 - 0.0210 \times 1 - 0.049 \times Age$	$R20 = 0.468 - 0.0210 \times 0 - 0.049 \times Age$
		+ 54.52/Height — 0.80/BMI	+ 54.52/Height — 0.80/BMI
		$R5-R20 = 0.013 - 0.0075 \times Age +$	$R5-R20 = 0.013 - 0.0075 \times Age +$
		43.01/Height — 1.79/BMI	43.01/Height — 1.79/BMI
		$(R5-R20)/R5 = 0.767 + 2.21 \times Age +$	$(R5-R20)/R5 = 0.767 + 2.21 \times Age +$
		3347.06/Height - 251.39/BMI +	3347.06/Height - 251.39/BMI +
		1.25×1	1.25×0
Chaya,	South	$R6 = \exp(4.34 - 0.0189 \text{Ht})$	$R6 = \exp(4.34 - 0.0189 \text{Ht})$
S.	Africa /	$R8 = \exp(4.29 - 0.0190Ht)$	$R8 = \exp(4.29 - 0.0190 \text{Ht})$

R0, R4, R5, R10, R15, R20 – Respiratory resistance at respective frequencies (cm $H_2O \cdot s \cdot L^{-1}$);Rm – Mean resistance; Xm, X5 – Mean reactance or reactance at 5 Hz; Fres – Resonant frequency (Hz); AX – Area of reactance (cm H_2O/L); Ht – Height (cm); Wt/W – Weight (kg); A – Age (years); BMI – Body Mass Index; exp() – Exponential function; ln – Natural logarithm

Table 2: Respiratory Impedance Reference Values and Predictive Equations from Global Oscillometry Studies

Table 2 presents the population-based studies that established normative values and predictive equations for respiratory impedance using oscillometry techniques. These studies, conducted across various countries and age groups, report key impedance parameters—such as resistance (e.g., R5, R20, R4), reactance (e.g., X5, Xm), resonance frequency (Fres), and area under the reactance curve (AX)—stratified by sex. Regression models incorporate anthropometric and demographic predictors including height, age, weight, and body mass index. The findings, derived using devices such as the MasterScreen IOS and Resmon Pro® Full, underscore both physiological and regional variability in respiratory mechanics across healthy populations.

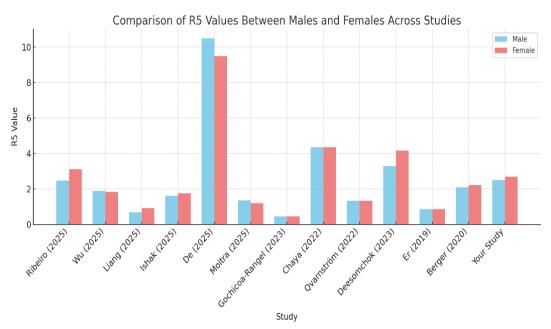


Figure 1: Graphical Comparison of R5 Values Across Multiple Studies

Figure 1 presents a comparative analysis of R5 values between males and females as reported across several population-based oscillometry studies. The data illustrate a consistent pattern wherein females generally exhibit higher respiratory resistance at 5 Hz (R5) compared to males. This trend is particularly pronounced in the study by De (2025), which reported the highest R5 values for both sexes. Similar sex-related differences are observed in the findings of Chaya (2022) and Er (2019). In contrast, studies such as those by Gochicoa-Rangel (2023) and Ishak (2025) show smaller disparities between sexes. The results from the present study align with this overall pattern, demonstrating moderately elevated R5 values in females. These findings highlight the influence of sex on airway resistance and underscore the importance of considering sex-specific reference values in the interpretation of oscillometric measurements.

DISCUSSION:

The evaluation of respiratory impedance across various studies using oscillometry provides valuable insights into factors influencing respiratory mechanics. The integration of demographic variables, geographical factors, and device-specific influences enhances the understanding of variability in impedance measurements. These factors must be carefully considered when interpreting data and developing reference equations for clinical and research purposes.

Age and Height as Key Predictors

Height consistently emerged as one of the most influential predictors of respiratory impedance measures across all studies, particularly for parameters like resistance (R5) and reactance (X5) at specific frequencies. For instance, studies conducted by Ribeiro et al. (2025) in Brazil [29] and Liang et al. (2025) in China [31] demonstrated that taller individuals typically exhibited lower airway resistance, especially at higher frequencies (R5, X5, Fres). This finding is supported by the general understanding that taller individuals tend to have larger airway volumes, reducing resistance at higher frequencies. In line with this, studies in Sweden [37] and Thailand [38] also reported similar trends, emphasizing the influence of height in adult populations.

The impact of age on respiratory impedance measures, however, showed variation depending on the population. In pediatric populations, age was consistently a strong predictor of resistance and reactance, as shown in the studies by Wu et al. (2025) [30] and Ishak et al. (2025) [32], where significant age-related changes were observed. These changes in younger populations are attributed to the developmental processes in the respiratory system, which contribute to increased resistance and reactance as children age. In contrast, in adult populations, particularly in studies from Brazil [29] and India [33], the influence of age was less pronounced than height, suggesting that airway structure and function stabilize with age.

International Journal of Environmental Sciences ISSN: 2229-7359

Vol. 11 No. 22s, 2025

https://theaspd.com/index.php

Sex Differences in Respiratory Parameters

Sex differences were highlighted in several studies, showing that men and women may exhibit distinct respiratory mechanics, particularly in adulthood. Ribeiro et al. (2025) [29] found that women generally exhibited higher resistance values, especially at lower frequencies (R0 and R4), which might be linked to smaller airway diameters in females. Similarly, Deesomchok (2023) [38] found that females had higher resistance and reactance (R5, R20, AX) values in Thailand, potentially due to factors such as hormonal variations, airway size, and body fat distribution.

Interestingly, studies by Gochicoa-Rangel et al. (2023) [35] in Mexico, Shaakira Chaya et al. (2022) [36] in South Africa, and Berger et al. (2020) [40] in the USA found that age and BMI had a more significant effect on respiratory impedance in males compared to females. These findings suggest that while sex differences in airway dimensions and hormonal factors may play a role, other factors such as age and BMI may have a differential impact on respiratory function in males and females.

Influence of Weight and BMI

The role of weight and BMI as predictors of respiratory impedance was significant across many studies. In Moitra et al. (2025) [34], increased body weight was strongly associated with higher resistance at lower frequencies (R5), indicating that higher BMI individuals may experience more airway constriction due to fat deposition around the chest wall. This is consistent with findings from Berger et al. (2020) [40] in the USA, where BMI showed a stronger association with airway resistance compared to weight alone. Obesity impacts airway mechanics by contributing to increased resistance and decreased lung volumes, particularly at higher frequencies.

However, Gochicoa-Rangel et al. (2023) [35] observed that in the Mexican population, height had a stronger effect on respiratory impedance compared to BMI, suggesting that the influence of anthropometric factors on respiratory function may differ across populations. This highlights the importance of considering region-specific factors when assessing the role of BMI and height in respiratory health.

Impulse Oscillometry (IOS) Devices and Frequencies

Variations in the type of IOS devices used across studies were also noted as a source of potential discrepancies in the results. Different devices, such as the Jaeger MasterScreen IOS (used in Brazil, South Africa, Mexico, and other studies) and the Resmon Pro® Full device (used in India) [33], may introduce variations in how resistance and reactance are measured. Studies from Turkey [39] and Sweden [37] highlighted these variations, emphasizing that the type of signal (e.g., square wave vs. impulse wave) and the frequencies considered (ranging from 5 Hz to 35 Hz) could contribute to discrepancies in the interpretation of respiratory parameters. Given these technological differences, consistency in device use is crucial when making comparisons across populations and regions.

Reference Equations and Predictors

Each study developed its own reference equations based on demographic factors, with variations in the significance of predictors such as height, weight, and age. For example, Wu et al. (2025) [30] proposed equations for Chinese children that emphasized height, weight, and age as important predictors of respiratory impedance. Similarly, Liang et al. (2025) [31] developed reference equations for Chinese adults where height was the dominant predictor, and age had less influence on resistance and reactance. These findings align with the study by De et al. (2025) [33] in India, where height and weight were found to be significant predictors of R5 and X5 in adults.

In contrast, the study by Moitra et al. (2025) [34] in India presented more complex interactions between age, weight, and height, with weight being a significant predictor of resistance at various frequencies. This complexity underscores the need for population-specific reference equations that account for the unique demographic characteristics of different regions. For instance, the study by Gochicoa-Rangel et al. (2023) [35] in Mexico and Shaakira Chaya et al. (2022) [36] in South Africa emphasized the regional differences in how age, BMI, and height interact to influence respiratory impedance, further supporting the idea that ethnic and regional factors play a role in the development of reference models.

CONCLUSION

The review underscores the critical influence of demographic variables—such as age, height, and weight—on oscillometric measurements of respiratory function. Although there is some variation in findings

International Journal of Environmental Sciences

ISSN: 2229-7359 Vol. 11 No. 22s, 2025

https://theaspd.com/index.php

across different populations, the evidence consistently supports the necessity for region-specific reference equations to provide accurate interpretations of respiratory data. These models contribute to a more precise understanding of lung function, particularly in diverse populations that have historically been underrepresented in respiratory research. The results also emphasize the importance of standardizing oscillometric methodology, while accounting for the impact of regional, cultural, and environmental factors. As respiratory health can be influenced by a variety of elements, future studies should aim to enhance these reference models and explore the role of chronic diseases and lifestyle factors in shaping pulmonary health outcomes.

Limitations

Many studies are cross-sectional, limiting the ability to assess long-term changes in respiratory impedance. Additionally, the exclusion of individuals with chronic respiratory diseases leaves their implications underexplored. Future research should include longitudinal data from diverse populations, including both healthy individuals and those with respiratory conditions, to enhance the generalizability and clinical relevance of oscillometric measurements.

Ethics approval and consent to participate - Not Applicable

Consent for publication - We, the undersigned authors, give our consent for the publication of the manuscript.

Availability of data and materials - Not Applicable

Competing interests - The authors declare that they have no conflict of interest.

Funding - Nil.

REFERENCES

- 1. Bateman ED, Hurd SS, Barnes PJ, et al. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J 2008; 31: 143–178.
- 2. Vestbo J, Hurd SS, Agusti AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 2013; 187: 347–365.
- 3. Vogel J, Smidt U (1994) Impulse Oscillometry. Analysis of lung mechanics in general practice and clinic, epidemiological and experimental research. Frankfurt: PMI-Verlagsgruppe.
- 4. Oostveen E, MacLeod D, Lorino H, Farre R, Hantos Z, et al. (2003) The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur Respir J 22: 1026–1041.
- 5. Schulz H, Flexeder C, Behr J, et al. Reference values of impulse oscillometric lung function indices in adults of advanced age. PLoS One. 2013;8(5):e63366. Published 2013 May 15. doi:10.1371/journal.pone.0063366
- 6. Dubois A, Brody A, Lewis D, et al. Oscillation mechanics of lungs and chest in man. J Appl Physiol 1956; 8: 587-594.
- 7. King GG, Bates J, Berger KI, et al. Technical standards for respiratory oscillometry. Eur Respir J 2020; 55: 1900753 [https://doi.org/10.1183/13993003.00753-2019].
- 8. Sarkar S, Jadhav U, Ghewade B, Sarkar S, Wagh P. Oscillometry in Lung Function Assessment: A Comprehensive Review of Current Insights and Challenges. Cureus. 2023;15(10):e47935. Published 2023 Oct 29. doi:10.7759/cureus.47935
- 9. Salvi S, Kumar GA, Dhaliwal RS, Paulson K, Agrawal A, Koul PA, et al. The burden of chronic respiratory diseases and their heterogeneity across the states of India: The Global Burden of Disease Study 1990–2016. Lancet Global Health 2018;6:e1363-74.
- 10. Singh P, Saxena P, Ahuja NB, Chopra M, Yadav A, Tiwari S. Spirometry parameters versus forced oscillometry parameters in obstructive airway disease Is there a correlation? Lung India 2023;40:291-4.
- 11. Liu Z, Lin L, Liu X. Clinical application value of impulse oscillometry in geriatric patients with COPD. Int J Chron Obstr Pulm Dis 2017;12:897.
- 12. Zaigham S, Persson M, Jujic A, et al. Measures of lung function and their relationship with advanced glycation end-products. ERJ Open Res 2020; 6: 00356-2019.
- 13. Goldman MD, Saadeh C, Ross D. Clinical applications of forced oscillation to assess peripheral airway function. Respir Physiol Neurobiol 2005; 148: 179-194.
- 14. Qvarnström B, Engström G, Frantz S, et al. Impulse oscillometry indices in relation to respiratory symptoms and spirometry in the Swedish Cardiopulmonary Bioimage Study. ERJ Open Res. 2023;9(5):00736-2022. Published 2023 Sep 25. doi:10.1183/23120541.00736-2022
- 15. Crisafulli E, Pisi R, Aiello M, et al. Prevalence of small-airway dysfunction among COPD patients with different GOLD stages and its role in the impact of disease. Respiration 2017; 93: 32–41.
- 16. Shi Y, Aledia AS, Galant SP, et al. Peripheral airway impairment measured by oscillometry predicts loss of asthma control in children. J Allergy Clin Immunol 2013; 131: 718–723.
- 17. Butzko RP, Sotolongo AM, Helmer DA, et al. Forced oscillation technique in veterans with preserved spirometry and chronic respiratory symptoms. Respir Physiol Neurobiol 2019; 260: 8–16.
- 18. Bednarek M, Grabicki M, Piorunek T, Batura-Gabryel H. Current place of impulse oscillometry in the assessment of pulmonary diseases. Respir Med. 2020;170:105952.
- 19. Thompson JE, Sleigh AC, Passey ME, et al. Ventilatory standards for clinically well Aboriginal adults. Med J Aust 1992; 156: 566-569

International Journal of Environmental Sciences

ISSN: 2229-7359 Vol. 11 No. 22s, 2025

https://theaspd.com/index.php

- 20. Heraganahally SS, Howarth T, White E, et al. Lung function parameters among Australian Aboriginal "apparently healthy" adults: an Australian Caucasian and Global Lung Function Initiative (GLI- 2012) various ethnic norms comparative study. Expert Rev Respir Med 2021; 15: 833-843.
- 21. Collaro AJ, Foong R, Chang AB, et al. Which reference equation should we use for interpreting spirometry values for First Nations Australians? A cross-sectional study. Med J Aust. 2024;220(10):523-529. doi:10.5694/mja2.52306
- 22. Hegewald MJ, Crapo RO. Socioeconomic status and lung function. Chest 2007; 132: 1608-1614.
- 23. Moitra S, Moitra S, Ghosh AK, et al. Reference values of impulse oscillometry (IOS) for healthy Indian adults. Int J Tuberc Lung Dis 2020; 24: 536–539.
- 24. Oostveen E, Boda K, van der Grinten CP, et al. Respiratory impedance in healthy subjects: baseline values and bronchodilator response. Eur Respir J 2013; 42: 1513–1523.
- 25. Deprato A, Ferrara G, Bhutani M, et al. Reference equations for oscillometry and their differences among populations: a systematic scoping review. Eur Respir Rev. 2022;31(165):220021. Published 2022 Jul 12. doi:10.1183/16000617.0021-2022
- 26. Chaya S, MacGinty R, Jacobs C, et al. Normal values of respiratory oscillometry in South African children and adolescents. ERJ Open Res. 2023;9(2):00371-2022. Published 2023 Apr 11. doi:10.1183/23 120541.00371-2022
- 27. Statistics South Africa. Mid-Year Population Estimates—P0302. 2019. www.statssa.gov.za/publications /P0302/P03022019.pdf Date last updated: July 2022.
- 28. King GG, Bates J, Berger KI, et al. Technical standards for respiratory oscillometry. Eur Respir J 2020; 55: 1900753.
- 29. Ribeiro FCV, Lopes AJ, Melo PL. Reference values for respiratory impedance measured by the forced oscillation technique in adult men and women. Clin Respir J. 2018;12(6):2126-2135. doi:10.1111/crj.12783
- 30. Wu J, Zhang H, Shi Y, et al. Reference values of impulse oscillometry (IOS) for healthy Chinese children aged 4-17 years [published correction appears in Respir Res. 2023 Feb 22;24(1):61. doi: 10.1186/s12931-023-02350-4.]. Respir Res. 2022;23(1):182. Published 2022 Jul 12. doi:10.1186/s12931-022-02080-z
- 31. Liang XL, Gao Y, Guan WJ, et al. Reference values of respiratory impedance with impulse oscillometry in healthy Chinese adults. J Thorac Dis. 2021;13(6):3680-3691. doi:10.21037/jtd-20-3376
- 32. Ishak, S.R., Hassan, A.M. Reference equations for parameters of impulse oscillometry in Egyptian children and adolescents. Egypt J Bronchol 14, 37 (2020). https://doi.org/10.1186/s43168-020-00037-8
- 33. De S, Banerjee N, Kushwah GDS, Dharwey D. Regression equations of respiratory impedance of Indian adults measured by forced oscillation technique. Lung India. 2020;37(1):30-36. doi:10.4103/lungindia. lungindia_260_19
- 34. Moitra S, Moitra S, Ghosh AK, et al. Reference values of impulse oscillometry (IOS) for healthy Indian adults. Int J Tuberc Lung Dis. 2020;24(5):536-539. doi:10.5588/ijtld.19.0796
- 35. Gochicoa-Rangel L, Martínez-Briseño D, Guerrero-Zúñiga S, et al. Reference equations using segmented regressions for impulse oscillometry in healthy subjects aged 2.7-90 years. ERJ Open Res. 2023;9(6):00503-2023. Published 2023 Dec 18. doi:10.1183/23120541.00503-2023
- 36. Chaya S, MacGinty R, Jacobs C, et al. Normal values of respiratory oscillometry in South African children and adolescents. ERJ Open Res. 2023;9(2):00371-2022. Published 2023 Apr 11. doi:10.1183/23120541. 00371-2022
- 37. Qvarnström B, Engström G, Frantz S, et al. Impulse oscillometry indices in relation to respiratory symptoms and spirometry in the Swedish Cardiopulmonary Bioimage Study. ERJ Open Res. 2023;9(5):00736-2022. Published 2023 Sep 25. doi:10.1183/23120541.00736-2022
- 38. Deesomchok A, Chaiwong W, Liwsrisakun C, Namwongprom S, Pothirat C. Reference equations of the impulse oscillatory in healthy Thai adults. J Thorac Dis. 2022;14(5):1384-1392. doi:10.21037/jtd-21-1989
- 39. Er İ, Günlemez A, Baydemir C, Kılıçbay F, Ersu R, Uyan ZS. Impulse oscillometry reference values and correlation with predictors in Turkish preschool children. Turk J Pediatr. 2019;61(4):560-567. doi:10.24953 /turkjped.2019.04.013
- 40. Berger KI, Wohlleber M, Goldring RM, et al. Respiratory impedance measured using impulse oscillometry in a healthy urban population. ERJ Open Res. 2021;7(1):00560-2020. Published 2021 Mar 29. doi:10.1183/23120541.00560-2020