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ABSTRACT 
The rapid growth of deep neural networks (DNNs) has led to remarkable improvements in accuracy and scalability 
but at the expense of high energy consumption, making them difficult to deploy on resource-constrained edge devices. 
With the increasing demand for real-time and privacy-preserving AI applications in healthcare, autonomous systems, 
and smart cities, energy-efficient deep learning has become a critical research frontier. This paper reviews the historical 
progression and state-of-the-art strategies for optimizing neural networks to run effectively on edge hardware. Key 
approaches include model compression, pruning, and quantization, which significantly reduce storage and 
computational costs while maintaining accuracy. Lightweight architectures such as MobileNet, ShuffleNet, and 
EfficientNet have further enhanced the feasibility of on-device inference. Additionally, hardware–software co-design, 
federated edge learning, and neuromorphic computing provide promising pathways toward ultra-low-power AI systems. 
Despite these advances, challenges remain in balancing accuracy-efficiency trade-offs, addressing hardware 
heterogeneity, and ensuring robustness against adversarial attacks. This paper highlights current methodologies, 
identifies key challenges, and outlines future directions, including sustainable AI metrics and adaptive neural models. 
By bridging algorithmic innovation with energy-aware design, the study emphasizes the path toward scalable, 
sustainable, and real-world deployment of deep learning on edge devices. 
Keywords: Energy-efficient deep learning, Edge AI, Model compression, Quantization, Pruning, Neuromorphic 
computing 
 
INTRODUCTION 
Over the last decade, deep neural networks (DNNs) have witnessed an exponential growth in both size 
and accuracy. Some of these models—in terms of parameters—are fitted in the range of millions and 
billions, which is massive and power-hungry for deployment at the edge.  
 
Therefore, real-time AI solutions for edge devices are in great demand in applications such as wearable 
health monitoring, autonomous drones, and industrial IoT deployments. 
i) Cloud-based inference, in certain instances, is not an option due to: 
ii) Latency in sending data to/from the cloud. 
iii) Privacy issues with sensitive information (health, surveillance). 
iv) Energy waste of ongoing communication. 
v) Energy-efficient deep learning models that can run on edge devices are, therefore, highly desirable. 
 
Historical Development of Energy-Efficient AI 
i) Early Compact Architectures 
a. SqueezeNet (2016) proposed fire modules, which reduce parameters while retaining accuracy. 
b. MobileNet (2017) proposed depth-wise separable convolutions between speed and accuracy 
benchmarks. 
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ii) Compression Era 
Han et al. (2015) proposed the Deep Compression approach, with pruning, quantization, and Huffman 
coding procedures. This has been a breakthrough, reducing the model size by as much as 50 times without 
a huge drop in accuracy. 
 
iii) Quantization Breakthrough 
Between 2016 and 2020, Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT) 
provided inference in INT8 and even lower precision, with significantly lower memory and energy 
requirements. 
 
iv) Sparsity through Pruning 
Unstructured pruning operated by removing unnecessary weights whereas structured pruning targeted 
the removal of filters/blocks thereby creating sparse networks that are easy to implement on hardware. 
 
Core Techniques for Energy Efficiency 
i) Model Compression 
a. Weight Sharing: Similar weights grouping in a bid to reduce storage. 
b. Knowledge Distillation: Training smaller "student" models on top of bigger "teacher" models. 
c. Factorization: Decomposition of the weight matrix to reduce complexity. 
 
ii) Quantization 
a. Post-Training Quantization (PTQ): Map weights into low-bit precision die recognizable post-training. 
b. Quantization-Aware Training (QAT): Low precision simulation during training for robustness. 
c. Binary/Ternary Networks: A very aggressive quantization achievable for ultra-low power use; 
efficiency at the expense of accuracy. 
 
iii) Pruning 
a. Unstructured Pruning: Paring specific weights; more sparsity but less hardware-friendly. 
b. Structured Pruning: Removing neurons, filters, or layers; easier to optimize on actual hardware. 
c. Dynamic Pruning: Dynamic modification of the model structure at runtime, based on workload. 
 
Applications 
i) Smart Cities 
• Surveillance cameras for real-time face-and-object detection 
• Air quality aware with edge AI sensors 
 
ii) Autonomous Vehicles and Drones 
• Lightweight perception models for obstacle detection 
• Pruned real-time object detection CNNs with energy constraints 
 
iii) Industrial IoT 
• Predictive maintenance employing edge-based fault detection 
• Energy-optimized microcontroller vibration analysis 
 
Comparative Literature Review Table : 
 
Table: Comparative Literature Review on Energy-Efficient Deep Learning for Edge Devices 

Sl. 
No. 

Author(s), 
Year 

Focus Area 
Methodology / 
Approach 

Key Findings 
Limitations / 
Research Gaps 

1 
Han et al., 
2015 

Model 
Compression 

Deep Compression: 
pruning, quantization, 
Huffman coding 

Reduced model size by 
35–49× with negligible 
accuracy drop 

Limited support for 
dynamic inference on 
edge 

2 
Courbariaux et 
al., 2015 

Quantization 
BinaryConnect for 
training with binary 
weights 

Significant memory and 
compute savings 

Accuracy degradation 
for large-scale tasks 
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Sl. 
No. 

Author(s), 
Year 

Focus Area 
Methodology / 
Approach 

Key Findings 
Limitations / 
Research Gaps 

3 
Hubara et al., 
2016 

Quantization 
Binarized Neural 
Networks (BNNs) 

Efficient inference with 
binary weights/activations 

Poor accuracy on 
complex datasets 

4 
Iandola et al., 
2016 

Lightweight 
Architectures 

SqueezeNet 
Achieved AlexNet-level 
accuracy with 50× fewer 
parameters 

Limited robustness 
across domains 

5 
Howard et al., 
2017 

Lightweight 
Architectures 

MobileNet (depthwise 
separable conv.) 

Strong efficiency–accuracy 
trade-off 

Struggles with large-
scale tasks 

6 
Zhang et al., 
2018 

Lightweight 
Architectures 

ShuffleNet (channel 
shuffling) 

High accuracy with lower 
FLOPs 

Sensitive to 
hyperparameters 

7 
Tan & Le, 
2019 

Lightweight 
Architectures 

EfficientNet 
(compound scaling) 

State-of-the-art accuracy 
with fewer parameters 

Complex search, 
hardware-dependent 

8 
Molchanov et 
al., 2017 

Pruning 
Variational Dropout-
based pruning 

Automated neuron 
removal with low accuracy 
loss 

Requires retraining, 
high complexity 

9 Liu et al., 2017 Pruning 
Network Slimming 
(channel pruning) 

Simple and effective 
pruning via sparsity 

Limited 
transferability to new 
tasks 

10 Horowitz, 2014 
Hardware 
Efficiency 

Energy cost analysis of 
computation 

Detailed power 
breakdown of operations 

Does not propose 
direct solutions 

11 
Chen et al., 
2016 

Model 
Compression 

HashedNets 
(parameter sharing) 

Memory-efficient 
networks with hashing 

Accuracy sensitive to 
hash collisions 

12 
McMahan et 
al., 2017 

Federated 
Learning 

Decentralized model 
training 

Preserves privacy, reduces 
data transfer 

High communication 
overhead 

13 
Kairouz et al., 
2019 

Federated 
Learning 

Comprehensive FL 
survey 

Identified challenges and 
advances 

Limited focus on 
energy efficiency 

14 Sze et al., 2017 
Hardware Co-
design 

Survey on efficient 
DNN processing 

Covered hardware–
algorithm optimizations 

Lacks real-world 
deployment analysis 

15 
Esser et al., 
2016 

Neuromorphic 
Computing 

Spiking Neural 
Networks (SNNs) 

High energy efficiency in 
event-driven tasks 

Limited accuracy vs. 
ANN baselines 

16 
Davies et al., 
2018 

Neuromorphic 
Hardware 

Intel Loihi chip 
Demonstrated low-power 
neuromorphic inference 

Limited 
programmability & 
ecosystem 

17 
Rastegari et al., 
2016 

Quantization XNOR-Nets 
58× faster convolution, 
32× memory saving 

Accuracy gap for 
large-scale vision tasks 

18 
Lane et al., 
2017 

Edge AI 
Deployment 

Survey of deep learning 
on mobile/edge devices 

Provided taxonomy and 
challenges 

Early-stage; lacks 
newer methods 

 
Discussion Based on Comparative Literature Review Table 
The reviewed literature demonstrates significant progress in improving the energy efficiency of deep 
learning for edge devices through model compression, quantization, pruning, lightweight architectures, 
federated learning, and neuromorphic computing. However, not all approaches contribute equally in 
terms of accuracy, scalability, and practicality for deployment in real-world edge scenarios. 
 
Best Papers from the Review 
1. Tan & Le (2019) – EfficientNet 
o EfficientNet represents a breakthrough in lightweight architectures by introducing compound scaling, 
which systematically balances network depth, width, and resolution. It achieves state-of-the-art accuracy 
on ImageNet with substantially fewer parameters and FLOPs compared to previous models. Unlike earlier 
lightweight models (e.g., SqueezeNet, MobileNet, ShuffleNet), EfficientNet achieves an excellent trade-
off between accuracy and efficiency across diverse tasks, making it highly suitable for edge deployments. 
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o Despite its efficiency, EfficientNet requires sophisticated Neural Architecture Search (NAS), which 
demands high computational resources and is hardware-dependent, limiting accessibility for resource-
constrained edge systems. 
2. Han et al. (2015) – Deep Compression 
o Han et al.’s work is foundational in the field of model compression, introducing pruning, 
quantization, and Huffman coding in a unified framework. It reduces model size by 35–49× with 
negligible accuracy loss, making it extremely influential and practical for memory-limited edge devices. 
o The approach requires retraining after pruning, which increases computational overhead. 
Additionally, dynamic, on-device model updates remain challenging. 
3. McMahan et al. (2017) – Federated Learning 
o This paper pioneered federated learning, enabling model training without centralized data collection. 
It addresses privacy and bandwidth constraints—two critical issues for edge AI. Its impact is broad, 
influencing privacy-preserving machine learning in healthcare, IoT, and mobile devices. 
o Despite strong privacy benefits, federated learning still suffers from high communication overhead 
and lacks built-in energy efficiency optimizations, which are essential for battery-powered devices. 
 
Overall Research Gaps Identified 
1. Hardware-Aware Design: While lightweight models (MobileNet, ShuffleNet, EfficientNet) reduce 
computational demand, most approaches are not fully optimized for specific edge hardware (e.g., ARM, 
RISC-V, neuromorphic chips). This results in suboptimal real-world performance. 
2. Dynamic Inference Adaptation: Few studies explore models that dynamically adapt their complexity 
during inference based on available resources (e.g., battery, latency requirements). Existing methods like 
pruning or quantization are largely static. 
3. Energy-Centric Evaluation Metrics: Most works measure efficiency in FLOPs or memory, but very 
few report actual energy consumption (Joules/inference) on real devices. This creates a gap between 
academic benchmarks and real deployment scenarios. 
4. Integration of Privacy and Efficiency: While federated learning focuses on privacy, it often neglects 
energy constraints. Conversely, model compression and lightweight design emphasize efficiency but 
ignore privacy. Future research should unify both aspects. 
5. Neuromorphic Computing: Although works like Esser et al. (2016) and Davies et al. (2018) highlight 
promising low-power spiking neural networks, their accuracy lags behind traditional ANNs, and 
programmability remains limited. Bridging this gap is crucial for future ultra-low-power AI. 
 
Among the reviewed works, EfficientNet (Tan & Le, 2019) stands out as the best overall contribution 
due to its state-of-the-art accuracy and efficiency, making it highly practical for edge deployment. However, 
Deep Compression (Han et al., 2015) and Federated Learning (McMahan et al., 2017) are equally 
influential in shaping compression techniques and privacy-aware edge AI. Despite these advances, 
significant gaps remain in dynamic adaptation, hardware-aware optimization, energy-centric evaluation, 
and privacy–efficiency integration, offering strong directions for future research. 
 
Challenges 
i) Accuracy-Efficiency Trade-off: Pruning/quantization too aggressively can cause performance damage. 
ii) Hardware Variability: The methods that work over NVIDIA Jetson may not necessarily extend to 
ARM Cortex-M. 
iii) Scalability: The compression of billion-parameter LLMs is still an open question in research. 
iv) Robustness and Security: Efficient methods can render the model more vulnerable to the adversarial 
attacks. 
 
Future Directions 
i) Neomorphic computing: Spiking neural networks and event-driven systems such as Intel Loihi. 
ii) Federated Edge Learning: Training in a distributed way across devices without centralizing data. 
iii) Green AI Metrics: FLOPs-per-watt and CO₂ footprint as part of the standard benchmarks to measure 
green AI. 
iv) Self-adaptive AI models: Energy scaling based on context in mobile/IoT applications. 
v) Cross-disciplinary integration: Intersecting with hardware design, algorithms, and principles of 
sustainability. 
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CONCLUSION 
This chapter discussed the progress in energy-efficient deep learning, placing a focus on compression, 
quantization, and pruning as key strategies for facilitating low-power AI for edge devices. Although these 
techniques are already driving real-world applications in healthcare, smart cities, and autonomous 
systems, issues such as scalability, heterogeneity, and robustness still need to be addressed. The future of 
research is to bridge the gap between AI innovation and sustainability and inclusivity so that edge AI is 
not only efficient but also eco-friendly. 
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