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Abstract: Cucurbit crops, such as watermelon, pumpkin, and cucumber, exhibit distinct monoecious characteristics, 
with significant differences in the timing and morphology of staminate and pistillate flowers. Staminate flowers are 
typically smaller, borne on shorter pedicels, and characterized by prominent anther structures, whereas pistillate 
flowers are larger, borne on longer pedicels, and distinguished by well-developed ovary structures. Image recognition 
technology enables automated flower identification and classification, assisting farmers in optimizing pollination 
strategies and crop management. In controlled environments, manual pollination remains a critical step for 
enhancing fruit quality and yield. Automated monitoring of flowering stages and floral abundance allows for precise 
control of production timing and output. Traditional manual pollination relies heavily on human experience, which 
is time-consuming, error-prone, and inefficient due to challenges in visual identification, time constraints, and 
precision requirements. By integrating an image-based recognition system, the identification of staminate and 
pistillate flowers can be automated, streamlining pollination processes, improving efficiency and success rates, and 
reducing labor and costs. Furthermore, flower image analysis contributes to pest and disease management by 
detecting early signs of plant health issues through morphological abnormalities. In this study, we established an 
image dataset based on the black-seeded mini watermelon cultivar, comprising 939 staminate flower images and 
311 pistillate flower images. A YOLO v2 deep learning model was trained on this dataset, achieving an accuracy 
rate exceeding 97%. Future research will expand the database to include stem classification (main vine, secondary 
vine, and tertiary vine) to support the development of automated field operations for cucurbit crops. 
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I. INTRODUCTION 
This study focuses on cucurbit crops, such as watermelon and melon, as the primary research subjects 
due to their high economic value and growing market demand. Cucurbit fruits are widely consumed, 
especially in Asia, where their demand has been increasing annually. However, pollination management 
in these crops is complex, directly impacting fruit quality and yield. Cucurbit plants exhibit a 
monoecious flowering system with separate staminate and pistillate flowers. Farmers must manually 
inspect fields to ensure an optimal staminate-to-pistillate flower ratio, often removing excess flowers 
when necessary. Under natural pollination conditions, the success rate is only around 10%, and 
incomplete pollination frequently results in malformed fruits. To improve pollination rates, farmers 
have traditionally relied on pollinator bees or manual pollination, both of which require extensive 
experience and are subject to inconsistencies. 

To address these challenges, we apply deep learning-based artificial intelligence (AI) to recognize 
staminate and pistillate flowers, transforming traditional experience-based decision-making into data-
driven precision agriculture. By leveraging high-resolution imaging and feature extraction techniques, 
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this approach enables accurate, rapid differentiation between staminate and pistillate flowers, 
minimizing errors and optimizing labor resources. Furthermore, precise identification of the optimal 
pollination timing enhances pollination success rates. 

The integration of image recognition technology into the pollination process not only improves 
efficiency and success rates but also enhances overall crop management, increasing both yield and 
quality. This research aims to develop an intelligent image recognition system for distinguishing 
staminate and pistillate flowers in cucurbit crops, optimizing pollination strategies, and addressing key 
challenges in traditional agricultural practices. By automating the identification process, the system 
reduces human error, minimizes redundant manual operations, and significantly enhances operational 
efficiency and accuracy. As a result, this approach contributes to higher crop yields, reduced labor costs, 
and improved fruit quality, ultimately benefiting modern agricultural production. 

II. LITERATURE REVIEW 
To prevent excessive flowering or fruiting that could lead to nutrient competition and hinder proper 
fruit development, farmers often implement artificial flower and fruit thinning techniques. Excessive 
fruit load not only results in smaller, lower-quality fruits but also weakens plant vigor, making crops 
more susceptible to frost damage and diseases. Thinning flowers and fruits help regulate fruit load, 
adjust nutrient distribution, and optimize the leaf-to-fruit ratio. This balance significantly influences 
fruit growth duration and maturation. Studies have shown that modifying the leaf-to-fruit ratio affects 
the final fruit size and quality [1]. 

Cucurbit crops, including watermelon, muskmelon, cucumber, and pumpkin, exhibit distinct staminate 
and pistillate flowers, a characteristic that significantly impacts pollination, fruit development, and yield 
quality. The ability to accurately distinguish between staminate and pistillate flowers is crucial for 
optimizing pollination strategies, improving fruit set rates, and enhancing overall agricultural efficiency. 
Traditionally, farmers rely on manual observation and experience-based methods to identify and 
manage flowers, which can be labor-intensive, time-consuming, and prone to errors. However, 
advancements in computer vision and artificial intelligence (AI) are revolutionizing the precision and 
efficiency of flower recognition in cucurbit cultivation. 

One of the primary reasons for distinguishing staminate and pistillate flowers is to ensure proper 
pollination. In many cucurbit species, natural pollination relies on insect activity, primarily bees, to 
transfer pollen from staminate to pistillate flowers. Insufficient or imbalanced pollination can lead to 
fruit deformation, lower yields, and poor-quality produce. In controlled environments such as 
greenhouses, where natural pollinators may be absent or insufficient, farmers often resort to manual 
pollination. Accurate flower identification allows for targeted pollination, reducing the risk of 
pollination failure and optimizing resource allocation. 

Additionally, precise flower recognition aids in better crop management practices, such as flower 
thinning and pruning. By monitoring the ratio of staminate to pistillate flowers, farmers can make 
informed decisions to enhance plant health and fruit development. Excess staminate flowers may 
compete for nutrients, while an inadequate number of pistillate flowers can limit fruit production. 
Automated detection using AI-powered image recognition systems can provide real-time data on flower 
distribution, enabling farmers to adjust their management techniques dynamically. 

Moreover, advanced image recognition techniques can contribute to early disease detection in flowers. 
Abnormalities in flower shape, color, or texture may indicate the presence of pests or diseases that could 
threaten the entire crop. AI-driven monitoring systems can identify these early warning signs, allowing 
for timely interventions that minimize damage and reduce the need for excessive pesticide use. 

In conclusion, staminate and pistillate recognition in cucurbit crops is a critical aspect of modern 
precision agriculture. The integration of AI and imaging technologies not only enhances pollination 
efficiency but also improves overall crop health, reduces labor costs, and increases yield consistency. As 
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agricultural technology continues to evolve, automated flower identification will become an 
indispensable tool in sustainable and high-efficiency farming. 

Fen’s study in 2020 explores the impact of precise nitrogen and potassium management in hydroponic 
systems for netted muskmelons. The research found that adjusting nutrient formulations at different 
growth stages improved fruit weight, dry matter ratio, and total soluble solids. These findings highlight 
the importance of targeted nutrient management to enhance muskmelon quality and productivity. 

Musajan’s research in 2024 [2] examines how digital technology influences farmers' transition to 
environmentally friendly muskmelon production. Using data from China’s major muskmelon-growing 
regions, the study found that adopting digital tools significantly reduced pesticide and fertilizer use, 
improved precision management, and enhanced market access. The results suggest that digital 
agriculture can be a crucial factor in sustainable muskmelon farming. 

III. MATERIALS AND METHODS 
As previously mentioned, pollination is a critical factor in determining the quality and yield of cucurbit 
crops in field operations. Accurate monitoring of flowering conditions is essential for making informed 
decisions. In this study, we selected the mini watermelon variety from Known-You Seed Co., Ltd. as the 
primary crop. The plants were cultivated in a greenhouse environment, and a total of 1,250 images were 
collected (939 staminate flower images and 311 pistillate flower images) using the built-in camera of an 
iPhone 15. 

A. DataBase and Image Label 
In a controlled greenhouse environment, we germinated 200 mini watermelon seeds. Once the 
seedlings developed their second set of true leaves, they were transplanted into 10-inch soft pots, 
achieving an 85% seedling survival rate. Approximately 30 days post-transplantation, lateral buds below 
the fifth leaf were removed, while those between the fifth and tenth leaves were retained. At this stage, 
image collection of the flowers commenced. 

Mini watermelons exhibit a monoecious flowering pattern, where staminate and pistillate flowers not 
only differ in morphology but also in their growth positions. Staminate flowers predominantly develop 
on the primary vine, while pistillate flowers appear on secondary and tertiary vines. As illustrated in Fig. 
1, the blue dashed box highlights a pistillate flower, with a distinct red arrow indicating its ovary, while 
the yellow dashed box marks a staminate flower, which lacks the rounded ovary at its base. 

For our dataset, we collected images of staminate and pistillate flowers at various blooming stages, 
including unopened, partially opened, and fully opened flowers. The collected images were resized to a 
resolution of 1920 × 1080 pixels for further processing. 

 
Fig. 1: Staminate (yellow dotted line) and pistillate (blue dotted line) 

We used MATLAB Image Label tool, using a rectangular shape and two category labels (staminate, 
pistillate). For the label the staminate and pistillate, the range of the frame does not include the pedicel 
under the flower, and the frame includes the range of the entire flower. 

B. Deep Learning 
Deep learning encompasses various applications, including different methods for annotating ground 
truth data. Common annotation techniques include bounding boxes (Rectangle), pixel-wise labeling 
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(Pixel Label), and polygonal annotations (Polygon). The choice of annotation method influences the 
selection of network architectures and detection performance. For instance, bounding box annotations 
are widely used in object detection models such as YOLO v1–v5 [4-8] and SSD [9]. Both bounding box 
and polygon annotations are applicable to Mask R-CNN [10], while pixel-wise annotations are primarily 
utilized in semantic segmentation networks [11]. 

To enhance localization accuracy, this study employs a semantic segmentation network with pixel-wise 
annotations, using the pre-trained DeepLabv3+ [12] model. DeepLabv3+ is a convolutional neural 
network (CNN) specifically designed for semantic image segmentation, incorporating architectures such 
as Fully Convolutional Networks (FCN), SegNet [13], and U-Net [14]. Given the initial limitation in 
dataset size, the pre-trained model accelerates the training process, enabling preliminary performance 
evaluation with minimal additional data. Furthermore, the Cambridge CamVid dataset [15], which 
provides pixel-level annotations for 32 semantic categories, is integrated to refine object boundary 
detection. This integration improves edge accuracy, ensuring that detected objects align more precisely 
with their actual contours rather than exhibiting dispersed or inaccurate boundaries. 

As discussed earlier, various AI network architectures exist for different applications. In our study, the 
primary objective was to detect and analyze flower counts rather than to achieve highly detailed flower 
shape segmentation. Therefore, we opted against using a semantic segmentation network, which 
requires higher hardware specifications and significantly longer computational time. 

Among non-semantic segmentation networks, our target objects did not involve detecting smaller 
objects within larger ones. Given these considerations, we selected the YOLOv2 pre-trained model, 
which offers high computational efficiency and does not prioritize small-object detection, making it a 
suitable choice for our application. 

IV. RESULT AND DISCUSSION 
We implemented the YOLO v2[5] deep learning architecture with a learning rate set at 0.001 and a 
mini-batch size of 32. From a dataset of 1,250 images, 70% (875 images) were randomly selected as the 
training set, while the remaining 30% (375 images) were used as the test set. The training samples, 
along with their corresponding ground truth annotations, were used to optimize the network weights. 
To prevent overfitting and ensure the stability of detection results, the untrained test samples were 
utilized for validation. 

To determine the optimal training epoch, we evaluated model performance at five different epochs: 
200, 300, 400, 500, and 600. The model’s accuracy, precision, recall, and F1 score were computed for 
each case. Our results indicated that at Epoch = 400, all performance metrics exceeded 99%, with no 
signs of overfitting, confirming the model's stability and reliability. 

A. Confusion Matrix 
A confusion matrix [16] is a fundamental tool for evaluating the performance of object detection 
models, such as YOLOv2. It assesses classification accuracy by comparing predicted results with ground 
truth annotations, ensuring both correct classification and proper bounding box placement. The 
confusion matrix consists of four key components: 

True Positive (TP): Objects that are correctly classified and have an accurately placed bounding box. 

True Negative (TN): Background regions or non-target objects that are correctly identified as not 
belonging to the target class. 

False Positive (FP): Objects that are incorrectly classified or have an inaccurate bounding box, leading 
to false detections. 

False Negative (FN): Objects that are missed by the model due to incorrect classification or improper 
bounding box placement. 

From these values, several key performance metrics are derived: 
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1. Precision (P): Measures the proportion of correctly detected objects out of all predicted instances. 
A high precision indicates fewer false positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
T𝑃

T𝑃+𝐹𝑃
                                                                         (1) 

2. Accuracy (Acc): Indicates the proportion of correctly classified objects out of the total dataset. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
T𝑃+𝑇𝑁

T𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                                                       

(2) 

3. Recall (R) / Sensitivity: Evaluates the model’s ability to detect objects correctly. A high recall means 
fewer false negatives. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
T𝑃

T𝑃+𝐹𝑁
                                                                                                                                                                 

(3) 

4. F1 Score: The harmonic mean of precision and recall, balancing both metrics to assess overall model 
performance. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                                                                           

(4) 

 

B. Deep Learning Recognition Rate 
To assess the performance of our object detection model, we trained YOLOv2 with EPOCH values of 
200, 300, 400, 500, and 600. After training, we stored the corresponding network weights and 
evaluated the model on a dataset of 1250 images, analyzing the confusion matrix for each EPOCH 
setting, as shown in Table  I. 

Since each image may contain one or more objects, the evaluation criteria adjust accordingly. For 
example, if an image contains two objects, but only one is correctly detected and classified, the True 
Positive (TP) is recorded as 0.5, and the True Negative (TN) is also 0.5 to reflect partial detection 
accuracy. 

At Epoch = 200 and 300, the detection results were inconsistent, leading to variations in TP and TN 
values. Notably, at Epoch = 200, TP and TN were higher than at Epoch = 300, indicating fluctuations 
in detection stability. As training progressed to Epoch = 400, the model's recognition ability improved 
significantly, achieving a stable detection rate. 

Beyond Epoch = 400, the model successfully classified and detected at least 1210 out of 1250 images 
correctly, with TN and FP values remaining below 50, ensuring a high detection reliability. 

To enhance localization accuracy, this study employs a semantic segmentation network with pixel-wise 
annotations, using the pre-trained DeepLabv3+ [12] mod 

Table I: Confusion Matrix Analysis For Different Epoch Settings. 
Epoch TP TN FP FN 

200 1198 21 31 0 
300 1188 43 19 0 
400 1210 30 10 0 
500 1217 27 6 0 
600 1231.7 18.3 0 0 
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C. Stability Analysis 
To further evaluate the stability of the trained network weights, we conducted a detailed analysis using 
the confusion matrix at different EPOCH settings. By applying Equations (1)–(4), we assessed key 
performance metrics, including Precision, Accuracy, Recall, and F1 Score, as shown in Table II. 

The stability of the network weights was determined by monitoring fluctuations in these metrics across 
different EPOCH values. A stable model should maintain consistently high values for Precision, 
Accuracy, Recall, and F1 Score, while minimizing variations in False Positives (FP) and False Negatives 
(FN). 

Through our evaluation, we observed that as EPOCH increased beyond 400, the detection performance 
reached an optimal and stable state, with all four metrics exceeding 99%. The consistency of these 
results confirms that the network weights effectively generalize to unseen data, ensuring reliable object 
detection. 

Table III: Performance Metrics Derived From The Confusion Matrix Using Equations (1)–(4). 
Epoch 200 300 400 500 600 

Accuracy 97.52 98.48 99.2 99.52 100 
Precision 97.47 98.42 99.18 99.5 100 

Recall 100 100 100 100 100 
F1 score 98.71 99.2 99.58 99.74 100 

Author details must not show any professional title (e.g. Managing Director), any academic title (e.g. 
Dr.) or any membership of any professional organization (e.g. Senior Member ONGC). 

To avoid confusion, the family name must be written as the last part of each author name (e.g. John 
A.K. Smith). 

Each affiliation must include, at the very least, the name of the company and the name of the country 
where the author is based (e.g. Causal Productions Pty Ltd, Australia). 

Email address is compulsory for the corresponding author. 

V. CONCLUSION 
Accurate identification of staminate and pistillate in cucurbit crops, such as watermelon and 
muskmelon, is crucial for optimizing pollination, fruit development, and yield quality. Traditional 
manual identification is time-consuming and error-prone, while AI-powered image recognition offers 
precision and efficiency. Proper pollination management ensures high fruit set rates, preventing 
deformities and low yields. In greenhouses, where natural pollinators are scarce, targeted manual 
pollination based on accurate flower detection improves productivity. Additionally, monitoring flower 
ratios helps optimize pruning and nutrient allocation, enhancing plant health. AI-driven detection also 
enables early disease identification by recognizing abnormalities in flower shape or color. Integrating 
advanced imaging technology in agriculture reduces labor costs, increases efficiency, and improves yield 
quality, making it a vital tool for modern precision farming. 

This study utilized a dataset of 1,250 images, consisting of 939 staminate images and 311 pistillate 
images. The dataset was randomly split, with 70% used for training and 30% for testing. Using a YOLO 
v2 pre-trained network, we fine-tuned the model by integrating our dataset and training it for 500 
iterations with a batch size of 32 and a learning rate of 0.001. The retrained model achieved an accuracy 
of 99.52%, a precision of 99.5%, a recall of 99.5%, and an F1 score of 99.58%. Future work will 
expand the dataset to 3,000 images and incorporate images of primary, secondary, and tertiary vines. 
These additional categories will be included in the training process to further advance the automation 
of field operations for cucurbit crop management. 
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