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Abstract 
The exposome, encompassing the totality of environmental, lifestyle, and biological exposures across the life course, offers a 
comprehensive framework for understanding the multifactorial etiology of type 2 diabetes (T2D). This review synthesizes 
evidence on the interplay between external exposures (e.g., pollutants, diet, socioeconomic status), internal domains (e.g., 
microbiome, metabolic alterations), and biological mechanisms (e.g., oxidative stress, hormonal disruption, epigenetic 
regulation) that collectively influence T2D risk. Technological advances, including geospatial tools, wearable devices, and 
multi-omics integration, are reshaping exposome research, enabling precise exposure assessment and mechanistic insight. 
Moreover, we highlight the modifying roles of socioeconomic status and education, the gut microbiome, and transgenerational 
influences in shaping T2D susceptibility. Public health strategies emphasizing lifestyle modification, environmental risk 
reduction, and equity-focused interventions remain central to prevention, while translation of exposome insights into policy and 
precision public health offers new opportunities. Finally, we outline future research directions, emphasizing artificial 
intelligence–driven analytics, longitudinal and multi-generational studies, and methodological innovations to bridge existing 
gaps. Collectively, this review underscores the importance of a systems-level, exposome-informed approach to mitigate the 
growing burden of T2D globally. 
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1. INTRODUCTION 
Type 2 diabetes mellitus (T2D) has emerged as one of the most urgent public health concerns of the 21st century, 
with prevalence rising at an alarming rate in nearly all regions of the world. According to the Global Burden of 
Disease (GBD) 2021 study, approximately 529 million people were living with diabetes in 2021, and this number 
is projected to exceed 1.31 billion by 2050—more than doubling within three decades (Ong et al., 2023). The 
International Diabetes Federation (IDF) provides parallel estimates, reporting that roughly 1 in 9 adults, or 
about 590 million individuals, currently live with diabetes, with projections reaching 853 million by 2050 (IDF, 
2024/2025). The majority of these cases are T2D, which not only accounts for the largest share of the global 
diabetes burden but is also driving much of the observed growth in prevalence. Alarmingly, the steepest relative 
increases are projected for low- and middle-income countries (LMICs), where rapid urbanization, economic 
transition, and lifestyle shifts are accelerating the epidemic (Ong et al., 2023). 
The economic and societal costs of T2D are equally profound. Global healthcare expenditure attributable to 
diabetes reached US$966 billion in 2021, representing a 316% increase since 2007 (IDF, 2021). By 2024, annual 
costs surpassed US$1 trillion (IDF, 2025). These expenditures include not only direct medical care but also 
indirect costs from reduced productivity, disability, and premature mortality. Furthermore, T2D is a major cause 
of cardiovascular disease, kidney failure, and vision loss, making it a key contributor to years of life lost and 
disability-adjusted life years (DALYs) worldwide (GBD 2021 Diabetes Collaborators, 2023). This epidemiological 
and economic evidence underscores that T2D is not merely a clinical issue but a global systems-level challenge 
requiring comprehensive prevention and management strategies. 
While genetic susceptibility plays a role in T2D pathogenesis, genome-wide association studies (GWAS) suggest 
that genetic variation explains only a modest proportion of disease risk, generally between 15% and 45% (Beulens 
et al., 2022). The remainder is attributable to modifiable environmental and behavioral determinants. Lifestyle 
factors—such as dietary quality, physical activity, sedentary behavior, tobacco use, alcohol consumption, sleep 
patterns, and psychosocial stress—are among the most significant drivers of risk (Yang et al., 2020; Cappuccio et 
al., 2010; Gan et al., 2015). For instance, adherence to dietary patterns rich in whole grains, vegetables, fruits, 
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and healthy fats is associated with a substantially lower risk of T2D, whereas diets high in processed meats, refined 
carbohydrates, and added sugars confer substantial risk (Ley et al., 2014). Regular physical activity improves 
insulin sensitivity and reduces T2D incidence, while prolonged sedentary time increases risk even in otherwise 
active individuals (Booth et al., 2017). 
Beyond lifestyle, a growing body of research implicates environmental exposures in T2D etiology. Long-term 
exposure to ambient air pollution—particularly fine particulate matter (PM₂.₅) and nitrogen dioxide (NO₂)—has 
been associated with increased insulin resistance and higher incidence of T2D, with hazard ratios around 1.10 
per 10 μg/m³ increase in PM₂.₅ (Yang et al., 2020). Endocrine-disrupting chemicals (EDCs) such as bisphenol A, 
phthalates, and persistent organic pollutants interfere with hormonal regulation of glucose metabolism (Heindel 
et al., 2015). Heavy metals including arsenic, cadmium, and mercury contribute to oxidative stress, mitochondrial 
dysfunction, and β-cell damage. Other exposures—such as chronic noise, artificial light at night, urban heat 
islands, and limited access to green space—further compound T2D risk through stress activation, circadian 
disruption, and reduced opportunities for physical activity (Beulens et al., 2022). 
Importantly, these determinants rarely act in isolation. They cluster and interact in complex ways: socioeconomic 
disadvantage can simultaneously constrain access to healthy food, increase environmental pollutant exposure, 
and limit healthcare access. Early-life exposures—such as maternal malnutrition, environmental toxins, and 
adverse social environments—can leave long-lasting biological imprints through epigenetic modifications, altered 
metabolic programming, and microbiome changes, creating a trajectory of heightened vulnerability in adulthood 
(Gluckman et al., 2011). Such complexity challenges reductionist approaches and calls for integrative frameworks 
capable of capturing the cumulative, concurrent, and interactive effects of diverse exposures over the life course. 
The exposome, introduced by Wild (2005, 2012), offers such a framework by encompassing the totality of 
environmental exposures from conception onwards. Conceptually, it is the environmental counterpart to the 
genome, aiming to account for all non-genetic influences on health and disease. The exposome is typically divided 
into three interrelated domains: the general external domain (socioeconomic status, psychosocial factors, 
climate, urban design), the specific external domain (individual behaviors, occupational exposures, pollutants, 
infections), and the internal domain (endogenous biological responses such as inflammation, metabolism, 
oxidative stress, microbiome composition, and epigenetic regulation) (Wild, 2012; Rappaport & Smith, 2010; 
Rappaport, 2011). 
Methodological advances in exposome research have enabled high-dimensional, integrative assessments of 
multiple exposures simultaneously. These include exposome-wide association studies (ExWAS), untargeted 
metabolomics for “blood exposome” profiling, geospatial modeling of environmental hazards, and wearable 
devices for personal exposure monitoring (Rappaport, 2018). Applied to T2D, the exposome perspective 
recognizes that lifestyle behaviors themselves are exposures embedded within broader social and environmental 
contexts, and that environmental hazards may exacerbate the effects of unhealthy behaviors. For example, the 
metabolic harm from poor diet may be amplified by co-exposure to air pollution, while circadian disruption from 
shift work may interact with obesogenic environments to further elevate T2D risk (Beulens et al., 2022). 
The objective of this review is to apply the exposome framework to the understanding of T2D etiology. 
Specifically, it aims to (i) conceptualize the integration of lifestyle behaviors and environmental pollutants within 
the three-domain exposome model, (ii) synthesize and critically appraise epidemiological evidence on their 
individual and combined effects, (iii) examine biological mechanisms underpinning these associations, (iv) review 
methodological advances in measuring and analyzing complex exposure mixtures, and (v) discuss implications 
for public health policy and precision prevention strategies. By moving beyond single-exposure paradigms, this 
review seeks to provide researchers, clinicians, and policymakers with a comprehensive, systems-level perspective 
for addressing the escalating global burden of T2D. 
 
2. The Exposome: Conceptual Framework 
2.1. Definition and Evolution of the Exposome Concept 
The term “exposome” was first introduced by Christopher Wild in 2005 to capture the totality of environmental 
exposures—both chemical and non-chemical—that an individual experiences from conception to death (Wild, 
2005). Wild’s argument was grounded in a recognition that while the Human Genome Project had 
revolutionized our understanding of genetic contributions to disease, the non-genetic component—the vast and 
complex landscape of environmental determinants—remained poorly characterized. This imbalance, he noted, 
risked skewing research priorities toward genomics at the expense of environmental health, despite overwhelming 
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evidence that chronic diseases such as cancer, cardiovascular disease, and type 2 diabetes mellitus (T2D) are 
driven by an interplay of genetic and environmental factors. 
Initially, the exposome was proposed as a conceptual counterweight to the genome: where the genome is largely 
static across the lifespan, the exposome is dynamic, shaped by ongoing interactions with diet, physical activity, 
pollutants, stressors, occupational hazards, and social environments (Wild, 2012). Over the past decade, the 
definition has evolved into a structured framework for research. Rappaport and Smith (2010) refined Wild’s 
original idea by distinguishing between external and internal domains of the exposome, thus linking the 
measurable biological consequences of environmental exposures with their sources. This conceptual evolution 
was accompanied by methodological advances—particularly in high-throughput biomonitoring, omics 
technologies, and geospatial analytics—that have transformed the exposome from a theoretical ideal into an 
operationalizable research paradigm (Miller & Jones, 2014; Rappaport, 2018). 
Modern exposome science now emphasizes life-course epidemiology, recognizing that exposures accumulate over 
time and that certain critical windows—such as fetal development, early childhood, adolescence, and midlife—
are periods of heightened vulnerability. It also acknowledges that exposures do not occur in isolation but as part 
of complex mixtures, often interacting in synergistic or antagonistic ways. This recognition has driven a shift 
toward systems-level approaches in epidemiology, with the exposome serving as the central integrative concept. 
 
2.2. The Three Domains of the Exposome 
The exposome is typically divided into three interrelated domains—internal, specific external, and general 
external—each representing different layers of the environmental influence on health (Wild, 2012) as shown in 
Figure 1 and Table 1. These domains are not siloed; instead, they interact continuously, with exposures in one 
domain often influencing or modulating those in another. 

 
Table 1. Exposome Domains and Their Contributions to Type 2 Diabetes 

 
Exposome 
Domain 

Key Factors / Exposures Mechanistic Links to T2D Example Studies 

Internal 
Exposome 

- Gut microbiome: 
Microbial composition, 
diversity, and metabolites 
(e.g., short-chain fatty 
acids). 
- Metabolism: Glucose, 

- Gut dysbiosis alters 
production of metabolites 
that regulate insulin 
sensitivity and inflammation. 
- Hormonal imbalance (e.g., 
hyperinsulinemia, leptin 

- Qin et al., 2012 showed gut 
microbial dysbiosis in T2D 
patients, highlighting altered 
butyrate-producing species. 
- Kootte et al., 2017 
demonstrated that fecal 
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lipid, and amino acid 
homeostasis. 
- Hormones: Insulin, 
glucagon, adipokines, and 
incretins. 

resistance) drives insulin 
resistance and obesity. 
- Metabolic shifts contribute 
to impaired glucose tolerance 
and systemic inflammation. 

microbiota transplantation 
from lean donors improved 
insulin sensitivity in metabolic 
syndrome. 

Specific 
External 
Exposome 

- Environmental 
pollutants: Air pollution 
(PM2.5), endocrine-
disrupting chemicals (e.g., 
BPA, phthalates). 
- Diet: High sugar, high-fat 
intake; low fiber and 
micronutrient deficiencies. 
- Physical activity: 
Sedentary lifestyle vs. 
regular exercise. 
- Infections: Viral and 
bacterial exposures that 
affect immune pathways. 

- Pollutants induce oxidative 
stress and β-cell damage, 
impairing insulin secretion. 
- Poor diet contributes to 
obesity, dyslipidemia, and 
insulin resistance. 
- Sedentary lifestyle reduces 
glucose uptake by muscles 
and promotes fat 
accumulation. 
- Chronic infections activate 
immune pathways, leading to 
low-grade inflammation. 

- Rajagopalan et al., 2021 linked 
air pollution to systemic 
inflammation and metabolic 
dysfunction, increasing T2D 
incidence. 
- Song et al., 2020 reported that 
Western-style diets enriched in 
processed foods significantly 
increased T2D risk through 
obesity-related pathways. 

General 
External 
Exposome 

- Socioeconomic status 
(SES): Income, occupation, 
and living conditions. 
- Education: Health 
literacy, awareness of 
nutrition and lifestyle risks. 
- Built environment: 
Urbanization, access to 
green spaces, food deserts, 
walkability. 

- Low SES is associated with 
limited access to healthy 
foods, safe environments, 
and healthcare services. 
- Educational disadvantage 
reduces awareness of 
preventive measures and 
adherence to healthy 
behaviors. 
- Built environment factors 
shape opportunities for 
physical activity, stress 
exposure, and diet quality. 

 

 
2.2.1. Internal Exposome 
The internal exposome refers to endogenous biological processes that occur within the body as a consequence of, 
or in response to, external exposures. It encompasses metabolites, hormones, lipid mediators, oxidative stress 
markers, immune and inflammatory profiles, and epigenetic modifications—all of which can be measured 
through biological sampling (Miller & Jones, 2014). The internal exposome also includes microbiome 
composition and function, which are increasingly recognized as pivotal mediators of metabolic health (Gilbert 
et al., 2018). 
In the context of T2D, internal exposome measures can capture biological perturbations linked to chronic 
exposure to air pollution, poor diet, or psychosocial stress. For example, long-term exposure to fine particulate 
matter (PM₂.₅) is associated with elevated systemic inflammation and oxidative stress, evidenced by higher 
circulating levels of C-reactive protein, interleukin-6, and lipid peroxidation products (Brook et al., 2010). 
Similarly, dietary patterns leave distinct signatures in the metabolome: high-fiber diets increase short-chain fatty 
acids beneficial for insulin sensitivity, while high saturated-fat diets elevate pro-inflammatory lipid species (Zheng 
et al., 2020). These biomarkers act as biological fingerprints of cumulative exposures and provide mechanistic 
insight into disease pathways. 
 
2.2.2. Specific External Exposome 
The specific external exposome includes identifiable, measurable exposures that occur at the individual level. 
These encompass dietary intake, physical activity patterns, tobacco and alcohol consumption, occupational 
hazards, infectious agents, and chemical pollutants such as heavy metals, pesticides, and endocrine-disrupting 

https://theaspd.com/index.php


International Journal of Environmental Sciences   
ISSN: 2229-7359 
 Vol. 11 No. 22s, 2025  
https://theaspd.com/index.php 
 

4968 

chemicals (EDCs) (Rappaport & Smith, 2010). Such exposures can be quantified using self-report, environmental 
monitoring, wearable sensors, or biomonitoring of relevant biomarkers. 
For T2D, specific external exposures have well-documented causal or contributory roles. Long-term exposure to 
PM₂.₅ has been linked to increased insulin resistance and elevated T2D incidence (Yang et al., 2020). Persistent 
organic pollutants, including polychlorinated biphenyls (PCBs) and certain pesticides, have been associated with 
impaired glucose tolerance and β-cell dysfunction (Heindel et al., 2015). Dietary exposures—whether beneficial 
(Mediterranean diet) or harmful (Western diet)—also fall within this domain, as do physical inactivity and 
circadian disruption from shift work (Gan et al., 2015). 
 
2.2.3. General External Exposome 
The general external exposome comprises broad contextual factors that shape the nature, intensity, and distribution 
of more specific exposures. These include socioeconomic status (SES), educational attainment, psychosocial 
stress, cultural norms, built environment characteristics (walkability, green space availability, transport 
infrastructure), climate, and political or regulatory environments (Wild, 2012; Nieuwenhuijsen, 2016). 
In T2D epidemiology, the general external domain plays a critical role in shaping exposure disparities. For 
example, low-SES communities often experience higher exposure to environmental pollutants, limited access to 
healthy foods, and reduced opportunities for physical activity—creating a “triple burden” of disadvantage (Beulens 
et al., 2022). Urban heat islands can exacerbate heat stress, impairing insulin sensitivity and metabolic control, 
while noise pollution and lack of green space may elevate stress hormones and reduce opportunities for 
restorative activity (Hackett & Steptoe, 2017). The general external exposome thus provides the social and 
environmental context within which specific exposures and internal responses occur. 
2.3. Relevance of the Exposome to Metabolic Diseases 
The exposome framework is particularly well-suited to addressing metabolic diseases such as T2D because these 
conditions are driven by complex, multifactorial interactions over extended timeframes. T2D is characterized 
by a protracted preclinical phase involving progressive insulin resistance, compensatory hyperinsulinemia, β-cell 
stress, and eventual failure (Tabák et al., 2012). A wide array of exposures—ranging from obesogenic diets and 
sedentary lifestyles to air pollution and psychosocial stress—can influence these processes, often through 
overlapping biological pathways such as systemic inflammation, oxidative stress, endocrine disruption, and 
altered circadian regulation. 
Moreover, the life-course approach embedded in the exposome recognizes that metabolic risk is shaped not only 
by current exposures but also by earlier life experiences, including prenatal and early postnatal environments 
(Gluckman et al., 2011). For instance, maternal malnutrition, gestational exposure to EDCs, or early-life air 
pollution exposure can program metabolic pathways in ways that predispose individuals to T2D decades later 
(Barouki et al., 2012). This perspective aligns closely with the developmental origins of health and disease 
(DOHaD) paradigm, offering a unifying framework to link diverse lines of evidence. 
 
2.4. Integrating Lifestyle and Environmental Factors within the Exposome Model 
One of the most powerful features of the exposome framework is its ability to integrate lifestyle behaviors and 
environmental exposures into a single analytic model, allowing for a more realistic representation of real-world 
risk environments. In practice, this means examining how physical activity, diet, smoking, and sleep patterns 
interact with exposures such as air pollution, EDCs, and urban design to shape T2D risk. 
For example, physically active individuals may mitigate some of the harmful metabolic effects of air pollution 
through improved cardiorespiratory fitness and antioxidant defenses (Pope et al., 2016). Conversely, an 
unhealthy diet high in refined carbohydrates and saturated fats may potentiate the metabolic toxicity of EDCs 
by promoting adiposity and systemic inflammation (Heindel et al., 2015). 
Methodologically, integrating these domains requires advanced statistical tools capable of modeling high-
dimensional, correlated exposures, such as Bayesian kernel machine regression (BKMR), weighted quantile sum 
regression, and network analysis (Bobb et al., 2015). Recent advances in wearable sensors, remote sensing, 
mobile health technologies, and biomarker discovery have made it possible to capture both behavioral and 
environmental exposures at high temporal and spatial resolution (Nieuwenhuijsen, 2016). 
From a public health standpoint, this integrated perspective highlights the necessity of dual intervention 
strategies: targeting behavioral change at the individual level while implementing structural and environmental 
reforms—such as air quality improvements, chemical regulation, urban greening, and equitable access to healthy 
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foods. Such strategies are consistent with the exposome’s holistic vision for preventing complex chronic diseases 
like T2D. 
 
3. Lifestyle Behaviors and Type 2 Diabetes Risk 
3.1. Diet and Nutritional Patterns 
3.1.1. High-Calorie and High-Sugar Diets 
The habitual consumption of sugar-sweetened beverages (SSBs) and energy-dense foods rich in rapidly 
absorbable carbohydrates plays a pivotal role in the pathogenesis of type 2 diabetes (T2D). These dietary exposures 
induce a cascade of hepatic metabolic disturbances. Specifically, high fructose and glucose intake promotes de 
novo lipogenesis (DNL) in the liver, leading to the accumulation of intrahepatic diacylglycerol (DAG). DAG 
activates protein kinase C epsilon (PKCε), a critical serine kinase that disrupts insulin receptor tyrosine kinase 
activity, thereby suppressing insulin signaling in hepatocytes. This impairment leads to hepatic insulin resistance, 
a central feature in the pathophysiology of T2D (Samuel & Shulman, 2012). 
At the population level, epidemiological studies strongly support this mechanistic link. A large meta-analysis of 
prospective cohort studies found that each additional daily serving of SSBs is associated with an ~18% increased 
risk of T2D, independent of adiposity (Imamura et al., 2015). This suggests that the diabetogenic effects of SSBs 
cannot be fully explained by weight gain alone but also involve direct metabolic toxicity. Similarly, findings from 
the EPIC-InterAct study, a large European cohort of over 350,000 participants, revealed a hazard ratio of 
approximately 1.18 per 12-oz daily serving of SSBs, further confirming their robust association with diabetes 
risk (Romaguera et al., 2013). 
Notably, the apparent risk from artificially sweetened beverages (ASBs) is less consistent. When adjusting for 
adiposity and reverse causation (i.e., individuals with high metabolic risk consuming ASBs in response to pre-
diabetic states), the associations largely attenuate, suggesting that ASBs may not exert the same biological harm 
as SSBs but may still serve as markers of underlying risk behaviors or reverse causality (Romaguera et al., 2013). 
At the molecular level, fructose metabolism is particularly implicated in this process. Unlike glucose, which is 
tightly regulated by phosphofructokinase, fructose bypasses this checkpoint and is metabolized primarily by 
ketohexokinase-C (KHK-C) in hepatocytes. This leads to rapid phosphorylation of fructose, ATP depletion, 
increased production of uric acid, and accelerated conversion into triglycerides and DAG (Ishimoto et al., 2012; 
Lanaspa et al., 2012). Experimental evidence in murine models and in vitro hepatocyte studies implicates KHK-
C in fructose-induced hepatic steatosis, oxidative stress, and insulin resistance. Furthermore, uric acid generated 
in this pathway can impair endothelial function and stimulate oxidative stress, further compounding metabolic 
risk (Lanaspa et al., 2012). 
 
3.1.2. Dietary Fiber and Whole Food Consumption 
Dietary fiber and whole food consumption constitute one of the most robust protective exposures within the 
lifestyle dimension of the exposome against type 2 diabetes (T2D). Unlike macronutrients such as sugars and 
refined carbohydrates, which exacerbate metabolic stress, fiber-rich diets consistently demonstrate protective 
associations across mechanistic, clinical, and epidemiological studies. Fiber is classified into soluble forms (e.g., 
pectin, β-glucans, gums, inulin) and insoluble forms (e.g., cellulose, hemicellulose, lignin). Soluble fibers dissolve 
in water to form viscous gels that slow gastric emptying and nutrient absorption, while insoluble fibers add bulk 
to intestinal contents, modulate peristalsis, and enhance toxin elimination. Both types influence metabolic 
pathways relevant to glucose homeostasis, insulin sensitivity, and systemic inflammation. Crucially, in the 
exposome framework, dietary fiber also functions as a mediator of environmental pollutant detoxification, 
reducing the systemic bioavailability of harmful xenobiotics such as heavy metals, pesticides, and endocrine-
disrupting chemicals (EDCs). 
 
3.1.2.1. Epidemiological Evidence and Dose–Response Patterns 
A large body of epidemiological evidence confirms the inverse association between dietary fiber intake and T2D 
risk. A meta-analysis of 19 prospective studies found that individuals with the highest fiber consumption had a 
20–30% lower risk of T2D compared to those with the lowest intake (Yao et al., 2014). Importantly, this 
relationship is dose-dependent: every 10 g/day increase in total fiber intake reduces T2D incidence by 
approximately 11%, independent of adiposity, age, and physical activity (Yao et al., 2014). These findings are 
supported by the EPIC-InterAct study, which tracked 340,000 participants across eight European countries and 
demonstrated that dietary fiber intake—particularly from cereal sources—was strongly associated with reduced 
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T2D risk (InterAct Consortium, 2015). Similar protective effects have been observed in Asian cohorts, such as 
the Shanghai Women’s Health Study, where higher intakes of legumes and vegetable-based fiber were inversely 
associated with diabetes incidence (Villegas et al., 2008). These data confirm that the metabolic benefits of fiber 
are globally consistent, strengthening its role as a central protective factor in the diabetes exposome. 
 
3.1.2.2. Glycemic Regulation, Insulin Dynamics, and β-cell Preservation 
Dietary fiber improves glycemic regulation by attenuating postprandial glucose and insulin excursions. Soluble 
fibers increase chyme viscosity, delay carbohydrate digestion, and reduce the rate of glucose absorption, which 
leads to lower glycemic load and decreased insulin demand (Chandalia et al., 2000). By blunting postprandial 
hyperglycemia, high-fiber diets reduce glucotoxicity and lipotoxicity, which are central drivers of β-cell 
dysfunction (Samuel & Shulman, 2012). Importantly, clinical trials confirm that high-fiber diets improve both 
fasting plasma glucose and glycated hemoglobin (HbA1c), even in patients with established diabetes. In one 
landmark study, patients consuming 50 g/day of dietary fiber showed a 10% reduction in fasting glucose and a 
significant decline in plasma insulin requirements, independent of weight loss (Chandalia et al., 2000). Fiber-
rich foods also stimulate satiety hormones such as GLP-1 and PYY, which act on the hypothalamus to suppress 
appetite and reduce energy intake, contributing to long-term weight regulation (Cani et al., 2008). Thus, dietary 
fiber acts as a dual regulator: directly lowering glycemic stress and indirectly reducing obesity-related diabetes 
risk. 
 
3.1.2.3. Gut Microbiota, SCFAs, and Crosstalk with Pollutants 
A rapidly growing area of research emphasizes the role of dietary fiber in modulating the gut microbiota, a key 
exposome interface. Non-digestible fermentable fibers serve as substrates for colonic bacteria, leading to the 
production of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate. These SCFAs exert 
systemic metabolic effects: butyrate enhances colonic barrier integrity, reducing metabolic endotoxemia (leakage 
of lipopolysaccharides into the bloodstream), propionate regulates hepatic gluconeogenesis, and acetate 
influences central appetite pathways (Morrison & Preston, 2016). In parallel, SCFAs activate G-protein coupled 
receptors (GPR41/43), which stimulate GLP-1 secretion and improve insulin sensitivity (Cani et al., 2008). 
This microbiota-mediated mechanism also has relevance for environmental pollutant exposure. A healthy, fiber-
driven microbiome enhances detoxification by altering xenobiotic metabolism, binding carcinogens, and 
reducing intestinal absorption of toxic metals (arsenic, cadmium, lead) and persistent organic pollutants 
(POPs). By strengthening barrier function, fiber indirectly protects against translocation of environmental 
toxicants into systemic circulation (Lee et al., 2014). In this way, the microbiome-fiber axis serves as a protective 
mediator at the intersection of dietary and environmental exposures in the T2D exposome. 
 
3.1.2.4. Fiber as a Detoxifying Agent Against Environmental Pollutants 
Beyond microbiome interactions, dietary fiber directly contributes to toxin binding and excretion. Certain 
soluble fibers (pectin, alginate) can bind bile acids and hydrophobic organic pollutants, increasing their fecal 
elimination (Rose & Holub, 2000). Insoluble fibers such as lignin act as chelating agents, binding heavy metals 
like cadmium and lead, thereby reducing their intestinal absorption. This is particularly relevant given that heavy 
metal exposures are increasingly recognized as diabetogenic through mechanisms of oxidative stress, β-cell 
apoptosis, and impaired insulin signaling (Tinkov et al., 2017). Similarly, endocrine-disrupting chemicals 
(EDCs) such as bisphenol A and phthalates, which are found in food packaging, can accumulate in adipose tissue 
and exacerbate insulin resistance. Diets high in fiber and whole foods may mitigate these risks by lowering the 
bioavailability of pollutants while simultaneously reducing consumption of ultra-processed foods, which are the 
major dietary sources of EDCs and pesticide residues (Heindel & Blumberg, 2019). 
 
3.1.2.5. Whole Foods: Nutrient Synergies and Reduced Exposome Burden 
While fiber supplements provide isolated benefits, the protective effect is most pronounced when fiber is 
consumed as part of whole foods, such as whole grains, legumes, vegetables, and fruits. Whole grains provide not 
only fiber but also magnesium, which plays a critical role in glucose transport, insulin receptor activity, and 
enzymatic function (Larsson & Wolk, 2007). Magnesium deficiency is associated with increased T2D risk, and 
whole grains represent one of the richest natural sources. In addition, whole grains and legumes provide 
antioxidants, polyphenols, lignans, and phytosterols, which reduce oxidative stress and inflammation (de 
Munter et al., 2007). These compounds also enhance the body’s defense against pollutant-induced oxidative 
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damage, demonstrating another synergistic exposome interaction. Epidemiological studies show that individuals 
in the highest quintile of whole grain intake have a 20–30% lower risk of T2D, a finding consistent across 
Western and Asian cohorts (Aune et al., 2013). Furthermore, shifting toward whole-food diets inherently reduces 
reliance on processed, packaged, and pesticide-heavy foods, thus lowering exposome-related pollutant exposures. 
Clinical interventions consistently support the epidemiological evidence: replacing refined carbohydrates with 
fiber-rich foods leads to significant improvements in glycemic control, insulin sensitivity, lipid profiles, and 
inflammatory biomarkers (Ye et al., 2012). These effects are observed in both healthy individuals and patients 
with T2D. Importantly, the global nutrition transition toward refined grains, ultra-processed foods, and sugar-
laden beverages has led to a parallel rise in T2D incidence, particularly in rapidly urbanizing low- and middle-
income countries (Popkin, 2014). Populations traditionally consuming legume- and whole-grain–based diets (e.g., 
rural Asian and African communities) had historically low diabetes prevalence, but dietary Westernization has 
eroded this protection. In the context of the exposome, dietary fiber and whole foods represent a dual shield: 
mitigating endogenous risks (e.g., insulin resistance, β-cell failure, inflammation) while buffering against 
exogenous toxicant exposures (e.g., metals, POPs, EDCs). Promoting fiber-rich whole food diets thus offers a 
comprehensive strategy for diabetes prevention within an exposome framework, simultaneously targeting 
lifestyle and environmental risk factors. 
 
3.1.3 Role of Dietary Patterns (Mediterranean, DASH, Plant-Based) 
Dietary pattern analysis has increasingly gained recognition as a more reliable tool for understanding the 
relationship between diet and type 2 diabetes (T2D) compared to reductionist approaches that examine single 
nutrients in isolation. While early nutritional epidemiology often focused on macronutrient ratios such as 
carbohydrate-to-fat intake or individual components like fiber or saturated fat, it became evident that foods are 
consumed in complex combinations that interact synergistically within the human body. The concept of dietary 
patterns acknowledges this complexity by evaluating the totality of the diet, incorporating not only nutrient 
composition but also food preparation methods, cultural contexts, and lifestyle factors. This approach is 
particularly important in the study of T2D because the disease arises from the interplay of metabolic dysfunction, 
systemic inflammation, oxidative stress, and environmental exposures, all of which are influenced by habitual 
eating behaviors. Moreover, by analyzing whole patterns rather than isolated nutrients, researchers can better 
capture the real-world exposome—the totality of dietary and environmental exposures that shape disease risk 
throughout life (Hu, 2002; Mozaffarian, 2016). 
Among dietary patterns, the Mediterranean diet has emerged as the most consistently protective against T2D. 
This dietary model, rooted in the traditional eating habits of Mediterranean countries, emphasizes abundant 
consumption of plant-based foods, particularly fruits, vegetables, legumes, whole grains, nuts, and seeds, with 
olive oil serving as the primary source of fat. Moderate intake of fish and poultry provides high-quality protein 
and omega-3 fatty acids, while red and processed meats are limited, and alcohol—primarily red wine—is consumed 
moderately with meals. Evidence from the PREDIMED randomized controlled trial, one of the most influential 
studies in nutritional science, showed that high-risk individuals adhering to the Mediterranean diet 
supplemented with either extra-virgin olive oil or mixed nuts experienced a 30% reduction in the incidence of 
T2D compared to those following a conventional low-fat diet (Salas-Salvadó et al., 2011). Subsequent meta-
analyses have consistently confirmed a 20–30% lower risk of T2D among individuals with high adherence to the 
Mediterranean diet (Martínez-González et al., 2011; Schwingshackl et al., 2015). Mechanistically, the 
Mediterranean diet confers metabolic advantages by lowering postprandial glycemic load through its high fiber 
content, improving insulin sensitivity via monounsaturated fats from olive oil, and reducing systemic oxidative 
stress through polyphenol-rich foods such as extra virgin olive oil, red wine, and fruits. It also exerts favorable 
effects on the gut microbiota, promoting short-chain fatty acid (SCFA) production, which enhances metabolic 
flexibility and reduces low-grade inflammation (Gutiérrez-Díaz et al., 2016). 
The DASH (Dietary Approaches to Stop Hypertension) diet also demonstrates protective associations with 
T2D, despite being initially designed to prevent hypertension. The DASH pattern emphasizes fruits, vegetables, 
whole grains, nuts, and low-fat dairy, while limiting sodium, red meats, and added sugars. Epidemiological 
evidence has linked adherence to the DASH diet with a significantly reduced incidence of T2D, with Jannasch 
et al. (2017) reporting up to a 20% reduction in risk in prospective cohort studies. Clinical interventions further 
highlight its capacity to improve insulin resistance, body weight, and glycemic control among individuals with 
metabolic syndrome (Azadbakht et al., 2011). The DASH diet’s metabolic benefits derive from its high intake of 
potassium, magnesium, and calcium, nutrients that support vascular health and insulin secretion, as well as its 
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antioxidant-rich food base, which reduces oxidative stress and systemic inflammation. Furthermore, its emphasis 
on fresh, minimally processed foods lowers reliance on sodium-laden processed items, thereby indirectly reducing 
exposure to preservatives and food additives often implicated in metabolic disturbances. From an exposome 
perspective, the DASH diet reflects a dual protection model: it enhances micronutrient intake while limiting 
harmful dietary exposures such as excess sodium and chemical additives, both of which can interact with 
environmental stressors like air pollution to exacerbate cardiometabolic risk (Brook et al., 2018). 
Plant-based diets represent another increasingly studied dietary model in the prevention of T2D. While 
definitions vary, they typically involve patterns where plant foods—whole grains, legumes, fruits, vegetables, nuts, 
and seeds—form the dietary foundation, and animal-derived foods are minimized or excluded. Large-scale 
prospective studies, such as the Nurses’ Health Study, have shown that individuals adhering to a healthy plant-
based diet rich in minimally processed plant foods had a 34% lower risk of developing T2D, whereas adherence 
to an “unhealthy” plant-based diet dominated by refined grains, sugar-sweetened beverages, and fried foods was 
paradoxically associated with a 16% increased risk (Satija et al., 2016). These findings underscore the importance 
of diet quality within plant-based frameworks. Mechanistically, plant-based diets reduce diabetes risk through 
multiple pathways: they increase intake of dietary fiber and resistant starch, which slow glucose absorption and 
enhance SCFA production in the gut; they lower consumption of heme iron, which contributes to oxidative 
stress and advanced glycation end-product formation; and they reduce saturated fat intake, improving insulin 
sensitivity. Additionally, diets high in phytochemicals, such as flavonoids and carotenoids, dampen inflammatory 
responses and enhance cellular antioxidant defenses. However, from an exposome perspective, poorly 
constructed plant-based diets may increase reliance on ultra-processed plant foods, including packaged meat 
substitutes and refined carbohydrate snacks, which introduce new exposures such as emulsifiers, acrylamide, 
and plasticizers from packaging materials. Thus, the plant-based dietary model illustrates the importance of 
distinguishing between nutrient-dense, whole-food approaches versus highly processed plant-derived diets that 
may undermine metabolic benefits. 
Taken together, the Mediterranean, DASH, and high-quality plant-based diets all converge on three unifying 
principles that explain their consistent protective associations with T2D: a predominance of minimally processed 
plant foods, a restriction of red/processed meats and ultra-processed foods, and a favorable fatty acid profile rich 
in unsaturated fats. By simultaneously promoting nutrient density and metabolic resilience while reducing 
exposures to harmful dietary pollutants, these dietary models exemplify the integration of nutrition into the 
broader exposome framework. They highlight how lifestyle behaviors and environmental pollutants are not 
separate risk domains but are instead deeply interwoven through dietary choices. The Mediterranean diet 
minimizes exposure to food processing contaminants while enriching antioxidant and polyphenol intake, the 
DASH diet protects against sodium and additive-driven metabolic stress, and plant-based diets reduce intake of 
bioaccumulative pollutants found in animal fat while optimizing fiber and phytochemical consumption. In this 
way, dietary patterns do not simply represent cultural preferences or macronutrient distributions, but powerful 
exposome-level interventions that can be harnessed for precision prevention of type 2 diabetes. 
 
3.2 Physical Activity and Sedentary Behavior 
3.2.1 Mechanistic links to insulin sensitivity 
Regular physical activity is one of the most powerful non-pharmacological interventions for improving insulin 
sensitivity and mitigating the risk of type 2 diabetes (T2D). At the molecular level, exercise enhances glucose 
uptake into skeletal muscle by upregulating glucose transporter type 4 (GLUT4) expression and promoting its 
translocation to the plasma membrane (Hawley & Lessard, 2008). This adaptation facilitates greater post-exercise 
glucose disposal and improved glycemic control. Importantly, glucose uptake during physical activity occurs via 
insulin-independent mechanisms, largely mediated by the activation of AMP-activated protein kinase (AMPK) 
and calcium/calmodulin-dependent protein kinase (CaMK) pathways (Richter & Hargreaves, 2013). These 
signaling cascades provide an immediate improvement in glucose utilization, independent of insulin, making 
physical activity especially relevant for individuals with insulin resistance. 
Exercise also induces long-term adaptations in mitochondrial biogenesis and oxidative capacity, improving the 
efficiency of fatty acid oxidation and reducing intramyocellular lipid accumulation, which is a key driver of insulin 
resistance (Holloszy, 2005). Furthermore, physical activity lowers visceral adiposity, a metabolically active fat 
depot that secretes pro-inflammatory adipokines such as TNF-α and IL-6, both implicated in impaired insulin 
signaling (Pedersen & Saltin, 2015). Beyond adipose tissue, exercise exerts systemic anti-inflammatory effects by 
increasing the release of myokines (e.g., IL-6 in its anti-inflammatory role during exercise, irisin), which modulate 
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cross-talk between skeletal muscle, liver, and adipose tissue, thereby improving whole-body metabolic homeostasis 
(Pedersen & Febbraio, 2012). 
Another crucial pathway involves endothelial function and vascular health. Exercise stimulates nitric oxide (NO) 
bioavailability, enhancing skeletal muscle perfusion and glucose delivery. This vascular adaptation complements 
direct effects on muscle glucose uptake, creating a synergistic improvement in insulin sensitivity and overall 
metabolic health (Green et al., 2017). Collectively, these mechanisms demonstrate how physical activity acts as a 
systemic regulator of glucose metabolism, targeting multiple nodes in the pathophysiology of T2D. 
 
3.2.2 Dose-response relationships 
Large-scale epidemiological studies and meta-analyses confirm a dose-response relationship between physical 
activity and T2D incidence. Aune et al. (2015) found that individuals engaging in 150 minutes per week of 
moderate-intensity aerobic activity experienced approximately a 26% reduction in T2D risk compared to 
sedentary individuals. The risk reduction followed a curvilinear pattern, with the greatest benefits occurring when 
moving from inactivity to moderate activity, though additional gains persisted at higher activity volumes. 
Importantly, both aerobic exercise and resistance training contribute to T2D prevention. Resistance exercise 
specifically enhances lean muscle mass, which increases the tissue reservoir for glucose disposal and improves 
resting metabolic rate (Grontved et al., 2012). 
Conversely, sedentary behavior has emerged as an independent risk factor for T2D, distinct from insufficient 
exercise. Prolonged sitting time, even among individuals meeting recommended physical activity levels, is linked 
to higher fasting glucose, insulin resistance, and T2D risk (Wilmot et al., 2012). Mechanistic evidence shows that 
prolonged sitting suppresses skeletal muscle lipoprotein lipase activity, impairing triglyceride clearance and HDL 
cholesterol production, while reducing glucose uptake (Hamilton et al., 2007). Intervention studies demonstrate 
that frequent breaks in sitting with light activity (e.g., 2–3 minutes of walking every 30 minutes) significantly 
reduce postprandial glucose and insulin excursions, supporting the concept that sedentary behavior and physical 
inactivity represent distinct but interacting components of diabetes risk (Dunstan et al., 2012). 
From an exposome perspective, the impact of physical activity extends beyond energy balance and glucose 
metabolism to shaping systemic resilience against other environmental stressors, including inflammation, 
pollution-related oxidative stress, and psychosocial strain. Thus, promoting structured exercise and reducing 
sedentary time represent complementary and synergistic strategies for reducing the burden of T2D at both the 
biological and population level. 
 
3.3 Tobacco Use and Alcohol Consumption 
3.3.1 Smoking and β-cell dysfunction 
Cigarette smoking is a significant but underappreciated contributor to type 2 diabetes (T2D) risk, supported 
by both epidemiological and mechanistic evidence. A comprehensive meta-analysis of 25 prospective cohort 
studies demonstrated that current smokers had a 44% higher risk of developing T2D compared to non-smokers, 
while former smokers retained a 23% elevated risk, highlighting both the detrimental effects of smoking and the 
long-term benefits of cessation (Willi et al., 2007). The diabetogenic impact of smoking is mediated through 
multiple interlinked biological mechanisms. Chronic smoking induces systemic inflammation and oxidative 
stress, increasing circulating levels of pro-inflammatory cytokines such as TNF-α and interleukin-6, which impair 
insulin receptor signaling and promote insulin resistance (Facchini et al., 1992). In addition, smoking exacerbates 
endothelial dysfunction, reducing nitric oxide bioavailability and impairing vascular reactivity, which 
compromises insulin-mediated glucose delivery to skeletal muscle (Wannamethee et al., 2001). 
Beyond systemic effects, cigarette smoke and nicotine exert direct toxic effects on pancreatic β-cells, crucial for 
insulin secretion. Experimental studies have shown that nicotine exposure impairs β-cell function by inducing 
oxidative stress, mitochondrial dysfunction, and apoptosis in pancreatic islets (Benedict et al., 2012). 
Furthermore, smoking accelerates central adiposity and increases circulating free fatty acids, both of which 
synergistically reduce insulin sensitivity. The cumulative evidence thus suggests that smoking contributes not only 
to insulin resistance but also to β-cell dysfunction, amplifying the risk of progression from impaired glucose 
tolerance to overt T2D. Importantly, the dose-response relationship indicates that heavier smoking correlates 
with greater risk, whereas quitting smoking significantly reduces T2D incidence, though former smokers may 
carry residual risk for several years post-cessation (Pan et al., 2015). 
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3.3.2 Alcohol’s dual role in T2D risk 
In contrast to smoking, the relationship between alcohol consumption and T2D risk is complex and often 
described as J-shaped. Moderate alcohol consumption—typically defined as up to one drink per day for women 
and two drinks per day for men—has been consistently associated with a reduced risk of T2D compared to 
abstainers. A meta-analysis of 20 cohort studies involving over 477,000 participants found that light-to-moderate 
drinkers had a 30–40% lower risk of T2D (Baliunas et al., 2009). Mechanistically, moderate alcohol intake has 
been shown to improve insulin sensitivity, enhance glucose uptake, and increase high-density lipoprotein (HDL) 
cholesterol levels, all of which provide metabolic protection (Koppes et al., 2005). Moreover, ethanol at low doses 
stimulates adiponectin secretion, an insulin-sensitizing adipokine, further reducing metabolic risk (Beulens et al., 
2006). 
However, heavy or binge drinking exerts the opposite effect, markedly increasing T2D risk. Excessive alcohol 
intake contributes to hepatic steatosis, hepatotoxicity, and pancreatitis, which impair both insulin action and 
insulin secretion. Chronic heavy drinking is also associated with weight gain, elevated triglycerides, and 
increased inflammation, all of which accelerate insulin resistance (Seike et al., 2008). Importantly, the net effect 
of alcohol depends not only on quantity but also on drinking patterns (e.g., regular vs. binge), the type of 
alcoholic beverage (wine appears more protective than beer or spirits due to its polyphenolic content), and 
individual metabolic context (e.g., obesity, hypertension, or genetic predisposition) (Carlsson et al., 2005). For 
example, in populations with high prevalence of obesity or metabolic syndrome, even moderate alcohol 
consumption may exacerbate risk. 
Collectively, the evidence suggests that while light-to-moderate alcohol consumption may confer some 
protective metabolic effects, public health recommendations should remain cautious, as the threshold for harm 
is highly individual and the risks of alcohol—including liver disease, cancer, and cardiovascular harm—often 
outweigh potential benefits. Thus, unlike smoking, which is unequivocally harmful for diabetes risk, alcohol 
presents a nuanced picture where dose, pattern, and context determine its role in T2D pathogenesis. 
 
3.4 Sleep Patterns and Psychological Stress 
3.4.1 Circadian Rhythm Disruption 
Sleep is one of the most critical yet often underestimated determinants of metabolic homeostasis. Both 
insufficient sleep (<6 hours/night) and prolonged sleep (>9 hours/night) have been shown to significantly 
increase the risk of developing type 2 diabetes (T2D), creating a U-shaped relationship between sleep duration 
and disease incidence (Cappuccio et al., 2010). Short sleep duration has direct effects on glucose metabolism, 
including reduced insulin sensitivity, impaired pancreatic β-cell responsiveness, and elevated postprandial glucose 
levels (Spiegel et al., 1999). Mechanistically, sleep restriction leads to neuroendocrine alterations, such as 
decreased leptin and increased ghrelin levels, which enhance appetite and caloric intake, promoting obesity—a 
major risk factor for T2D (Taheri et al., 2004). 
On the other end of the spectrum, long sleep duration has also been associated with increased T2D risk, possibly 
mediated by underlying health conditions such as depression, low physical activity, systemic inflammation, and 
obstructive sleep apnea (Cappuccio et al., 2010). These comorbidities contribute to weight gain, insulin 
resistance, and impaired glucose tolerance. Importantly, both insufficient and excessive sleep are linked to low-
grade systemic inflammation, as evidenced by elevated levels of C-reactive protein and interleukin-6, which 
further exacerbate insulin resistance (Patel et al., 2009). 
Beyond sleep duration, circadian rhythm disruption plays a central role in diabetes pathogenesis. Circadian 
misalignment—common among shift workers, frequent travelers, and individuals with irregular sleep 
schedules—alters the timing of endogenous hormonal secretion. Laboratory studies have demonstrated that 
circadian misalignment reduces nocturnal melatonin, elevates evening cortisol, and impairs insulin secretion 
and sensitivity independent of sleep duration (Scheer et al., 2009). Notably, melatonin regulates pancreatic β-cell 
function, and genetic variants in MTNR1B (melatonin receptor 1B) predispose individuals to greater β-cell 
dysfunction and higher fasting glucose, especially when combined with shift work (Bonnefond et al., 2010). 
Epidemiological studies corroborate these findings. A large meta-analysis reported that night shift workers face 
a 9–40% higher risk of T2D, with longer exposure duration and more frequent shift rotations associated with 
progressively higher risk (Gan et al., 2015). Furthermore, individuals with irregular sleep timing experience 
reduced insulin sensitivity, increased adiposity, and higher HbA1c, highlighting the impact of not just sleep 
quantity but also circadian stability on metabolic health (Reutrakul & Knutson, 2015). 

https://theaspd.com/index.php


International Journal of Environmental Sciences   
ISSN: 2229-7359 
 Vol. 11 No. 22s, 2025  
https://theaspd.com/index.php 
 

4975 

Taken together, the evidence indicates that both sleep duration and circadian alignment are key determinants 
of metabolic health. Sleep and circadian optimization should therefore be considered essential preventive and 
therapeutic strategies for reducing T2D risk. 
 
3.4.2 Chronic Stress and Hormonal Imbalance 
While sleep disturbances directly impair glucose metabolism, chronic psychological stress also represents a 
significant modifiable risk factor for T2D. Stress activates the hypothalamic–pituitary–adrenal (HPA) axis, 
resulting in elevated cortisol secretion. Cortisol promotes hepatic gluconeogenesis, lipolysis, and central fat 
deposition, thereby inducing insulin resistance (Hackett & Steptoe, 2017). Chronic cortisol elevation further 
damages pancreatic β-cell function, worsening glycemic control (Heraclides et al., 2009). 
Simultaneously, stress triggers sympathetic nervous system (SNS) activation, increasing circulating 
catecholamines (epinephrine and norepinephrine). While acutely adaptive, prolonged SNS hyperactivation 
causes sustained elevations in glucose and free fatty acids, leading to lipotoxicity, β-cell apoptosis, and impaired 
insulin action (Black, 2003). This dual activation of the HPA axis and SNS creates a neuroendocrine 
environment highly conducive to insulin resistance and T2D development. 
Epidemiological studies consistently support these mechanisms. The Whitehall II cohort showed that 
individuals with chronic work-related stress had a nearly 2-fold increased risk of incident T2D, independent of 
BMI and lifestyle factors (Heraclides et al., 2009). Another meta-analysis demonstrated that psychological 
distress, including depression and anxiety, significantly increases T2D risk, mediated partly through behavioral 
pathways such as poor diet, low physical activity, and disturbed sleep (Hackett & Steptoe, 2017). Importantly, 
chronic stress interacts with socioeconomic and psychosocial determinants: individuals with low social support, 
financial strain, or adverse childhood experiences are more vulnerable to stress-induced T2D (Surwit et al., 
2002). 
Moreover, stress-related sleep disturbances create a bi-directional cycle: stress reduces sleep quality and duration, 
while poor sleep further enhances stress hormone secretion and emotional dysregulation, jointly amplifying 
metabolic dysfunction (Chandola et al., 2006). Emerging evidence also suggests that stress-induced epigenetic 
modifications, including DNA methylation of HPA-axis-related genes, may have long-term consequences on 
glucose metabolism and intergenerational transmission of T2D risk (Hackett & Steptoe, 2017). 
Thus, chronic psychological stress not only serves as an independent risk factor for T2D but also synergistically 
interacts with sleep disruption, creating a vicious cycle of metabolic dysregulation. This evidence underscores 
the need for integrated lifestyle interventions—including stress management techniques such as mindfulness-
based stress reduction, cognitive-behavioral therapy, and workplace policy changes—alongside sleep hygiene 
practices to mitigate diabetes risk. 
 
4. Environmental Pollutants and Type 2 Diabetes Risk 
Environmental exposures are increasingly recognized as important determinants of type 2 diabetes mellitus 
(T2D), complementing traditional risk factors such as obesity, diet, and physical inactivity. Among environmental 
hazards, air pollution has emerged as a particularly concerning contributor due to its global prevalence and strong 
links with metabolic diseases. Both long-term and short-term exposure to common air pollutants—especially fine 
particulate matter (PM₂.₅), nitrogen dioxide (NO₂), and ground-level ozone (O₃)—have been consistently 
associated with a higher incidence of T2D (Eze et al., 2015; Liu et al., 2019). The mechanisms underlying this 
association involve systemic inflammation, oxidative stress, endothelial dysfunction, and impaired glucose-
insulin homeostasis (Brook et al., 2010; Rajagopalan & Brook, 2012). 
 
4.1. Air Pollution 
4.1.1. PM₂.₅, NO₂, and Ozone Exposure 
Air pollution has emerged as a critical environmental determinant of metabolic disorders, including type 2 
diabetes mellitus (T2D). Among pollutants, fine particulate matter (PM₂.₅, particles ≤2.5 μm in aerodynamic 
diameter), nitrogen dioxide (NO₂), and ozone (O₃) are the most consistently linked to diabetes risk in 
epidemiological studies. Large-scale prospective cohort studies and meta-analyses have demonstrated a significant 
association between chronic PM₂.₅ exposure and T2D incidence. For instance, a meta-analysis of 13 cohort 
studies reported that every 10 μg/m³ increase in PM₂.₅ exposure is associated with a 13% increased risk of 
developing T2D (Eze et al., 2015). Similarly, data from the U.S.-based Nurses’ Health Study and Health 
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Professionals Follow-Up Study found that individuals in areas with higher PM₂.₅ concentrations had a 15–20% 
higher risk of T2D, independent of traditional lifestyle risk factors (Puett et al., 2011). 
Nitrogen dioxide (NO₂), a major traffic-related pollutant, has also been consistently linked to diabetes risk. A 
meta-analysis of 12 studies found that long-term exposure to NO₂ increased T2D incidence by approximately 8% 
per 10 μg/m³ increment (Eze et al., 2015). NO₂ is not only a marker of traffic-related air pollution but also 
directly contributes to systemic oxidative stress and airway inflammation, both of which exacerbate insulin 
resistance. 
Ozone (O₃), though less studied in this context, has been shown to impair glucose homeostasis. Experimental 
studies in mice demonstrate that acute and chronic O₃ exposure leads to hyperglycemia, insulin resistance, and 
increased adipose inflammation (Vella et al., 2015). Epidemiological evidence, such as the Multi-Ethnic Study of 
Atherosclerosis (MESA), also indicates that higher ozone levels are associated with poorer glycemic control and 
increased diabetes prevalence, particularly in urban populations exposed to complex mixtures of pollutants (Chan 
et al., 2018). Collectively, these findings underscore that chronic exposure to ambient air pollutants, especially 
PM₂.₅, NO₂, and ozone, contributes significantly to diabetes risk beyond traditional lifestyle factors like diet and 
physical inactivity. 
 
4.1.2. Mechanisms: Oxidative Stress and Inflammation 
The biological mechanisms linking air pollution to T2D development primarily involve oxidative stress, systemic 
inflammation, and endothelial dysfunction. Fine particulate matter (PM₂.₅) penetrates deep into the alveoli, 
enters the bloodstream, and generates reactive oxygen species (ROS). This oxidative burden disrupts redox 
homeostasis, leading to lipid peroxidation, DNA damage, and mitochondrial dysfunction in insulin-sensitive 
tissues such as skeletal muscle, liver, and adipose tissue (Brook et al., 2010). Chronic oxidative stress impairs 
insulin signaling pathways, particularly through serine phosphorylation of insulin receptor substrate proteins, 
which reduces glucose uptake by skeletal muscle and promotes hepatic gluconeogenesis. 
Air pollution also triggers systemic inflammation. Inhaled particles activate pulmonary macrophages and 
epithelial cells, releasing pro-inflammatory cytokines such as interleukin-6 (IL-6), tumor necrosis factor-alpha 
(TNF-α), and C-reactive protein (CRP) into circulation (Rajagopalan & Brook, 2012). These cytokines induce 
low-grade chronic inflammation, a hallmark of T2D pathogenesis, which exacerbates insulin resistance in 
peripheral tissues and promotes β-cell dysfunction. For example, experimental studies have shown that mice 
exposed to concentrated PM₂.₅ exhibit elevated inflammatory cytokines, increased visceral adiposity, and glucose 
intolerance (Sun et al., 2009). 
Another critical mechanism is endothelial dysfunction. PM₂.₅ and NO₂ impair nitric oxide bioavailability, 
reducing vasodilation and impairing blood flow to skeletal muscle, thereby limiting glucose disposal. Endothelial 
dysfunction further promotes vascular inflammation and accelerates atherosclerosis, compounding metabolic 
complications. Additionally, ozone exposure exacerbates insulin resistance by increasing systemic oxidative stress 
and altering adipokine profiles, such as reduced adiponectin and increased leptin, which dysregulate energy 
balance and glucose metabolism (Vella et al., 2015). 
Taken together, chronic exposure to air pollutants leads to a vicious cycle of oxidative stress, inflammation, 
adipose dysfunction, and vascular impairment, all of which converge on insulin resistance and β-cell dysfunction, 
ultimately increasing the risk of type 2 diabetes. 
 
4.2 Endocrine-Disrupting Chemicals (EDCs) 
4.2.1 Bisphenols, phthalates, and organochlorines 
Across continents, biomonitoring consistently detects bisphenols (e.g., BPA, BPS, BPF), phthalates (e.g., 
DEHP, DBP, DiNP metabolites), and organochlorines (e.g., DDT/DDE, PCBs, dioxins) in human tissues. 
These chemicals are linked to higher odds of insulin resistance and incident T2D in prospective cohorts and 
meta-analyses, while experimental models show convergent effects on glucose homeostasis. For bisphenol A 
(BPA) specifically, multiple meta-analyses and pooled analyses associate higher BPA concentrations with greater 
T2D risk and insulin resistance after adjustment for adiposity and lifestyle, supporting a diabetogenic signal at 
environmentally relevant doses (Hwang et al., 2018; Farrugia et al., 2021). Substitution chemicals BPS and BPF 
are not metabolically inert: in vitro and in vivo work shows they perturb β-cell ion-channel activity and insulin 
secretion in the nanomolar range, similar to BPA (Marroquí et al., 2021; Soriano et al., 2012). For phthalates, a 
recent meta-analysis concluded that exposure is positively associated with diabetes and with intermediate 
phenotypes such as insulin resistance; mechanistically, phthalate metabolites (e.g., MEHP) activate PPARα/γ 
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and drive adipogenesis and lipid dysregulation, plausibly worsening insulin sensitivity (Zhang et al., 2022; Hao 
et al., 2012; Feige et al., 2010). Regarding organochlorines/POPs, extensive epidemiology (including nested 
case–control and cohort studies) and authoritative reviews link low-dose, chronic exposure to T2D; these 
lipophilic chemicals bioaccumulate in adipose tissue and show non-monotonic or mixture effects that complicate 
causal inference but consistently point in a harmful direction (Lee et al., 2014; Evangelou et al., 2016; Wolf et 
al., 2019). Complementing human data, animal and dietary exposure studies demonstrate that POPs mixtures 
precipitate insulin resistance, hepatic steatosis, and adipose inflammation, thereby offering biological 
plausibility for the epidemiologic signal (Ruzzin et al., 2010; Ibrahim et al., 2011). (Hwang et al., 2018; Farrugia 
et al., 2021; Marroquí et al., 2021; Soriano et al., 2012; Zhang et al., 2022; Hao et al., 2012; Feige et al., 2010; 
Lee et al., 2014; Evangelou et al., 2016; Wolf et al., 2019; Ruzzin et al., 2010; Ibrahim et al., 2011). 
 
4.2.2 Disruption of insulin signaling 
EDCs disrupt insulin signaling via complementary, tissue-specific mechanisms that converge on insulin 
resistance and β-cell dysfunction. In pancreatic β-cells, BPA mimics 17β-estradiol and engages ERα/ERβ and 
membrane estrogenic pathways. At ~1 nM, BPA rapidly closes K_ATP channels, increases Ca²⁺ influx, and 
acutely increases insulin secretion; with ongoing exposure, this produces hyperinsulinemia followed by 
peripheral insulin resistance and altered insulin content—effects reproduced in mouse and human islets and 
abolished in ERβ-deficient cells (Alonso-Magdalena et al., 2006, 2008; Soriano et al., 2012; Martínez-Piñña et 
al., 2019). Replacement bisphenols (BPS/BPF) similarly modulate β-cell ion-channel expression and secretion 
via estrogen receptors and G-protein–coupled ER (GPER), indicating class rather than single-compound risk 
(Marroquí et al., 2021; Babiloni-Chust et al., 2022). In insulin-responsive tissues (muscle, liver, adipose), 
bisphenols and phthalates induce oxidative and ER stress, activate JNK/IKKβ, and promote serine 
phosphorylation of IRS-1, thereby blunting PI3K–AKT signaling and GLUT4 translocation; phthalate 
metabolites additionally activate PPARγ/RXR, re-programming adipocyte differentiation and lipid storage and 
contributing to systemic insulin resistance (Sargis, 2014; Hao et al., 2012; Feige et al., 2010; Heindel & 
Blumberg, 2017). Organochlorines (e.g., PCBs, DDT/DDE, dioxins) engage receptors such as AhR and PXR, 
induce mitochondrial dysfunction, and precipitate adipose inflammation with reduced adiponectin, collectively 
impairing insulin action and β-cell function; controlled exposure and dietary studies in rodents demonstrate that 
real-world POPs mixtures are sufficient to cause insulin resistance and steatosis (Lee et al., 2014; Ruzzin et al., 
2010; Ibrahim et al., 2011; Kim et al., 2019). Epigenetic alterations (e.g., DNA methylation changes in metabolic 
genes) and non-monotonic dose–responses further characterize many EDCs, highlighting windows of 
susceptibility (developmental, perinatal) and the importance of mixture-aware risk assessment (Lee et al., 2014; 
Kassotis et al., 2019). In aggregate, these pathways establish biological plausibility for EDC-diabetogenicity, 
aligning human and experimental evidence across chemical classes. (Alonso-Magdalena et al., 2006, 2008; 
Soriano et al., 2012; Martínez-Piñña et al., 2019; Marroquí et al., 2021; Babiloni-Chust et al., 2022; Sargis, 2014; 
Hao et al., 2012; Feige et al., 2010; Heindel & Blumberg, 2017; Lee et al., 2014; Ruzzin et al., 2010; Ibrahim et 
al., 2011; Kim et al., 2019; Kassotis et al., 2019). 
 
4.3 Heavy Metals and Metalloid Exposure 
Heavy metals and metalloids represent a critical dimension of the exposome framework in understanding 
environmental contributions to Type 2 Diabetes Mellitus (T2D). Unlike nutrients, these toxic elements are non-
essential, persistent in biological systems, and capable of bioaccumulation. Epidemiological evidence and 
mechanistic studies have demonstrated that chronic exposure to metals such as arsenic, cadmium, mercury, and 
lead significantly increases T2D risk by impairing insulin signaling, inducing mitochondrial dysfunction, and 
promoting oxidative stress and inflammation. Below, each major metal is reviewed in detail with respect to its 
environmental sources, biological mechanisms, and role in diabetogenesis. 
 
4.3.1 Arsenic 
Arsenic, a metalloid widely present in contaminated groundwater, pesticides, and industrial waste, is one of the 
most extensively studied toxicants in relation to T2D. Populations in South Asia, Latin America, and parts of 
the United States (notably Bangladesh, India, and Mexico) are exposed to high arsenic levels through drinking 
water (Naujokas et al., 2013). Epidemiological studies consistently report that chronic exposure to inorganic 
arsenic (iAs) is associated with increased risk of T2D. A large prospective cohort in Bangladesh demonstrated a 
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dose-dependent association between water arsenic concentrations and incident T2D, with adjusted hazard ratios 
up to 1.6 for the highest exposure quartile (Chen et al., 2010). 
At the mechanistic level, arsenic exerts diabetogenic effects through multiple pathways. First, it impairs pancreatic 
β-cell function by reducing insulin transcription and secretion, partly mediated through oxidative stress–induced 
mitochondrial injury (Díaz-Villaseñor et al., 2008). Second, arsenic exposure activates stress kinases such as JNK 
and p38 MAPK, which disrupt insulin receptor substrate (IRS) signaling, leading to peripheral insulin resistance 
(Paul et al., 2007). Furthermore, arsenic metabolites (monomethylated and dimethylated arsenic species) have 
been shown to generate reactive oxygen species (ROS), causing DNA damage, lipid peroxidation, and apoptosis 
of β-cells (Pi et al., 2010). Arsenic also perturbs adipokine balance, reducing adiponectin levels, which further 
exacerbates insulin resistance. 
 
4.3.2 Cadmium 
Cadmium is a highly toxic heavy metal with a biological half-life exceeding 20 years, making even low-level chronic 
exposure clinically significant. Major sources include cigarette smoke, industrial emissions, and consumption of 
contaminated rice, cereals, and shellfish (Jarup & Akesson, 2009). Epidemiological studies demonstrate strong 
associations between urinary cadmium levels and T2D prevalence. A Korean cohort reported that individuals in 
the highest quartile of urinary cadmium had a 35% increased odds of T2D (Moon, Guallar, & Navas-Acien, 
2013). 
Mechanistically, cadmium induces diabetes through multiple interlinked processes. It accumulates in the 
pancreas, liver, and kidneys, where it induces mitochondrial dysfunction and ROS generation (Satarug et al., 
2010). Cadmium exposure reduces GLUT4 translocation in skeletal muscle, impairing glucose uptake (Wang et 
al., 2015). At the β-cell level, cadmium displaces zinc ions in insulin granules, impairing insulin processing and 
secretion (Elinder et al., 1985). In addition, cadmium acts as an endocrine disruptor by activating estrogen 
receptor pathways, contributing to metabolic dysregulation. Chronic cadmium exposure also promotes low-grade 
inflammation via NF-κB activation, which further aggravates insulin resistance (Tinkov et al., 2017). 
 
4.3.3 Mercury 
Mercury, particularly in its organic form (methylmercury), bioaccumulates in fish and seafood, while inorganic 
mercury exposure arises from dental amalgams, mining, and industrial processes. Mercury is a potent neurotoxin, 
but growing evidence links it with metabolic dysfunction as well. Cross-sectional studies have shown associations 
between blood mercury levels and impaired fasting glucose and insulin resistance (He et al., 2013). Although 
some population studies yield mixed results due to confounding from fish consumption (which provides 
protective omega-3 fatty acids), meta-analyses suggest that mercury exposure may increase T2D risk, especially at 
higher exposure levels (Sun et al., 2014). 
Mechanistically, mercury has a high affinity for sulfhydryl groups, leading to inhibition of antioxidant enzymes 
such as glutathione peroxidase and superoxide dismutase, thereby enhancing oxidative stress (Houston, 2011). 
Mercury disrupts mitochondrial electron transport chain (ETC) complexes, particularly complex II and III, 
reducing ATP production and enhancing ROS leakage (Farina et al., 2011). In pancreatic β-cells, this oxidative 
damage triggers apoptosis and reduced insulin secretion. Mercury also induces immune dysregulation by 
increasing pro-inflammatory cytokine secretion (IL-6, TNF-α), thereby contributing to systemic insulin resistance 
(Rafiei et al., 2017). 
 
4.3.4 Lead 
Lead exposure, though declining in many countries after the removal of leaded gasoline, remains a significant 
global health problem due to contaminated soil, water pipes, paints, and batteries. Chronic lead exposure is 
linked with multiple cardiometabolic outcomes, including hypertension and renal dysfunction. Recent studies 
have highlighted its role in T2D pathogenesis. A large U.S. NHANES analysis reported a positive association 
between blood lead levels and both fasting plasma glucose and HbA1c, independent of age, BMI, and lifestyle 
factors (Lee et al., 2018). 
At the molecular level, lead disrupts calcium signaling in β-cells, impairing insulin secretion (Tchounwou et al., 
2012). It also accumulates in mitochondria, where it interferes with ETC enzymes and enhances ROS production 
(Ercal et al., 2001). Lead exposure promotes chronic inflammation through increased production of TNF-α and 
IL-1β, which induce insulin resistance in adipose and muscle tissue. Additionally, epigenetic modifications such 
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as DNA methylation changes in glucose metabolism–related genes have been observed in lead-exposed 
populations, suggesting long-term intergenerational effects (Goodrich et al., 2016). 
 
4.3.5 Mitochondrial Dysfunction and Oxidative Damage 
Mitochondria orchestrate ATP production, redox balance, lipid oxidation, and apoptotic signaling—functions 
that are indispensable for glucose-stimulated insulin secretion (GSIS) in β-cells and for insulin-stimulated 
glucose disposal in muscle and liver. In β-cells, nutrient metabolism must generate a robust ATP/ADP rise to 
close K_ATP channels, depolarize the membrane, open voltage-gated Ca²⁺ channels, and trigger exocytosis; any 
deficit in oxidative phosphorylation or excess mitochondrial reactive oxygen species (mtROS) directly blunts 
GSIS (Rorsman & Ashcroft, 2018; Lenzen, 2008). In insulin-responsive tissues, mtROS and lipid-derived ROS 
activate stress kinases (JNK/IKKβ), promote serine phosphorylation of IRS-1, and impair PI3K–AKT signaling, 
producing insulin resistance even when bulk oxidative capacity appears preserved (Houstis et al., 2006; Fazakerley 
et al., 2018). Heavy metals and metalloids (arsenic, cadmium, mercury, lead) converge on mitochondria through 
direct inhibition of respiratory chain components, thiol/selenol binding, disruption of Ca²⁺ handling, and 
damage to mitochondrial DNA (mtDNA) and membranes, creating a high-oxidant milieu that propagates local 
organelle damage into cell- and tissue-level insulin defects (Eguchi et al., 2021; Zong et al., 2024). 
 
4.3.5.1. β-cell–specific vulnerabilities to oxidative injury 
Pancreatic β-cells are unusually poorly endowed with antioxidant enzymes (low catalase and glutathione 
peroxidase relative to other tissues), which means modest increases in mtROS have outsized effects on membrane 
potential (ΔΨm), ATP generation, and viability (Lenzen, 2008; Eguchi et al., 2021). Persistent oxidant pressure 
depolarizes ΔΨm, triggers mitochondrial permeability transition pore (mPTP) opening, releases cytochrome-
c, and activates caspases, culminating in apoptosis and loss of insulin secretory capacity. Metals exacerbate each 
of these steps (Chen et al., 2006; Chang et al., 2013). Functionally, this converts early hypersecretion 
(compensatory, stress-driven GSIS perturbations) into β-cell failure, a hallmark of T2D progression. 
 
4.3.5.2. Insulin-target tissues: redox signaling to insulin resistance 
In skeletal muscle and liver, mtROS is a proximal driver of insulin resistance. Redox-sensitive kinases (JNK, 
IKKβ) and transcriptional programs (NF-κB) blunt insulin signaling, while oxidized lipids (e.g., 4-HNE) modify 
insulin-pathway proteins and membrane dynamics, curtailing GLUT4 translocation and enhancing hepatic 
gluconeogenesis (Houstis et al., 2006; Fazakerley et al., 2018). Mitochondria also communicate damage via 
danger signals—oxidized mtDNA and cardiolipin—that activate the NLRP3 inflammasome, reinforcing systemic 
insulin resistance and β-cell stress (Eguchi et al., 2021; Zong et al., 2024). 
 
4.3.5.3. Metal-specific mitochondrial “hits”: 
• Arsenic (iAs; MMA³⁺/DMA³⁺ metabolites): Trivalent arsenicals bind vicinal thiols (e.g., lipoic acid), inhibit 

pyruvate dehydrogenase and ETC enzymes, elevate mtROS, and derail the SIRT3–FOXO3a–MnSOD 
antioxidant axis (Fu et al., 2010; Divya et al., 2015). The result is ATP shortfall and excess oxidants, which 
suppress GSIS and insulin action. In adipocytes and myotubes, arsenic impairs AKT signaling and glucose 
uptake, linking mitochondrial stress directly to peripheral insulin resistance (Divya et al., 2015). 

• Cadmium (Cd): Cd gains entry via ZIP8/ZIP14 transporters (SLC39A8/SLC39A14), accumulates in β-cells, 
and binds protein thiols in respiratory complexes, promoting mtROS, mPTP opening, cytochrome-c 
release, caspase-3 activation, and β-cell apoptosis (He et al., 2009; Jenkitkasemwong et al., 2012; Chang et 
al., 2013). In hepatocytes and myocytes, Cd blunts IRS-1/PI3K/AKT and favors gluconeogenesis, while 
human islets show selective Cd accumulation, aligning mechanism with epidemiology (El Muayed et al., 
2012; Filippini et al., 2022). 

• Mercury (MeHg; Hg²⁺): Mercury reacts with thiol/selenol groups, depletes glutathione, inhibits complex 
II/III, collapses ΔΨm, and triggers caspase-dependent apoptosis in β-cells; it also suppresses PI3K–AKT 
signaling (Chen et al., 2006; Chen et al., 2010). Selenium status and fish-derived nutrients modify toxicity—
critical contextual factors when interpreting cohort findings (Mozaffarian et al., 2013). 

• Lead (Pb): Pb perturbs mitochondrial Ca²⁺ handling (exaggerating Ca²⁺-driven ROS generation), inhibits 
dehydrogenases, increases mtROS, and impairs bioenergetics. In β-cells, this translates to reduced insulin 
release; in muscle/liver, to redox-driven insulin resistance. Co-exposure with Cd magnifies mitochondrial 
injury and metabolic toxicity (Leff & Tiffany-Castiglioni, 2018; Jin et al., 2024; Yimthiang et al., 2022). 
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4.3.5.4. Oxidative damage: molecular substrates and signaling nodes 
mtROS (superoxide, H₂O₂) oxidizes cardiolipin, ETC proteins, and mtDNA, creating a feedback loop of 
respiratory inefficiency and further ROS. Oxidative adducts such as 4-hydroxynonenal (4-HNE) and 
malondialdehyde (MDA) covalently modify insulin-pathway proteins and SNARE machinery for exocytosis. 
Redox-sensitive transcriptional programs—Nrf2 antioxidant response, NF-κB inflammation, and CHOP (ER 
stress)—are dysregulated by metals, fostering a pro-inflammatory milieu that cements insulin resistance (Eguchi 
et al., 2021; Zong et al., 2024). In β-cells, suppression of MnSOD/SOD2 and GPx and hyperacetylation of 
mitochondrial enzymes (when SIRT3 is functionally compromised) intensify vulnerability (Divya et al., 2015). 
 
4.3.5.5. Organelle quality control: dynamics, mitophagy, and UPRmt 
Metal-induced oxidative stress deranges mitochondrial dynamics—shifting toward excess fission (DRP1/FIS1) 
and limiting fusion (MFN1/2, OPA1)—fragmenting the network and lowering respiratory efficiency. At the same 
time, damage-laden mitochondria should be cleared by PINK1/Parkin-mediated mitophagy; when mtROS is 
excessive or persistent, mitophagy is insufficient, allowing dysfunctional organelles to accumulate and perpetuate 
insulin resistance and β-cell dysfunction (Zong et al., 2024; Eguchi et al., 2021). The mitochondrial unfolded 
protein response (UPRmt) attempts to restore proteostasis but can be overwhelmed by ongoing metal exposure. 
These defects integrate with ER stress and impaired mitochondria-associated membranes (MAMs), further 
disrupting Ca²⁺ exchange and insulin signaling. 
 
4.3.5.6. Human signals: biomarkers and translational evidence 
Human studies link metal exposure to circulating and urinary oxidative damage markers (e.g., 8-oxo-dG, F₂-
isoprostanes), lower antioxidant capacity, and worse glycemic indices. In diabetes-relevant cohorts, 
urinary/blood metals correlate with insulin resistance surrogates (HOMA-IR, TyG index) and with 
redox/inflammatory markers, consistent with the mitochondrial-oxidative axis (Filippini et al., 2022; Jin et al., 
2024; Menke et al., 2016). Importantly, human islets demonstrate cadmium accumulation, directly tying real-
world exposure to β-cell mitochondrial liability (El Muayed et al., 2012). 
 
4.3.5.7. Modifiers and reversibility: nutrition, signaling, and lifestyle 
Nutritional modifiers (e.g., selenium for mercury, zinc for cadmium competition, folate/B-vitamins for arsenic 
methylation) can mitigate mitochondrial and redox injury (Maull et al., 2012; He et al., 2009; Jenkitkasemwong 
et al., 2012). SIRT3/FOXO3a/MnSOD axis support—experimentally via metformin or targeted antioxidants—
can restore ΔΨm and reduce mtROS in arsenic and cadmium models (Divya et al., 2015). Physical activity 
enhances mitochondrial biogenesis (PGC-1α), improves redox buffering, and may attenuate metal-induced 
insulin resistance, underscoring the exposome–behavior interplay (Fazakerley et al., 2018). At the exposure level, 
source control (water treatment for arsenic, smoking cessation for cadmium, low-Hg/high-n-3 seafood choices, 
lead remediation) reduces the upstream oxidant load. 
4.4. Occupational and Residential Exposures 
Urbanization concentrates environmental stressors—disrupted light–dark cycles, thermal extremes, and chronic 
noise—alongside occupational demands that misalign circadian timing. Within an exposome framework, these 
exposures co-occur, interact, and cluster socio-spatially (e.g., near transport corridors, dense urban cores, and in 
shift-work dominated sectors), amplifying pathways to insulin resistance and β-cell dysfunction via circadian 
disruption, sleep fragmentation, neuroendocrine stress signaling, oxidative/inflammatory activation, and 
behavioral displacement (e.g., reduced physical activity on hot or noisy nights). Robust cohort studies and human 
laboratory experiments now tie these conditions to impaired glucose tolerance, higher incident T2D, and worse 
glycemic outcomes, independent of traditional risk factors (Pan et al., 2011; Gan et al., 2015; Scheer et al., 2009; 
Zheng et al., 2023; Sørensen et al., 2012). 
 
4.4.1. Shift work and light-at-night (LAN) 
4.4.1.1. Epidemiology and dose–response 
Shift work—especially rotating night shifts—shows a consistent association with T2D. In two large U.S. Nurses’ 
Health cohorts (177,000+ women), longer duration of rotating night shift work predicted higher T2D 
incidence, partially mediated by weight gain (Pan et al., 2011). Meta-analyses confirm elevated diabetes risk in 
shift workers (Gan et al., 2015; Gao et al., 2020), with stronger effects for rotating schedules versus permanent 
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nights, and signals of sex differences and exposure duration effects (Gan et al., 2015). Lifestyle and shift work 
are additive: in nurses, rotating night shifts combined with an unhealthy lifestyle conferred the largest T2D risks 
(Shan et al., 2018). 
Light at night (LAN)—both indoor light during sleep and outdoor light infiltrating bedrooms—is increasingly 
implicated in dysglycemia. A national Chinese study reported that greater outdoor LAN was associated with 
poorer glucose homeostasis and higher diabetes prevalence (Zheng et al., 2023). A complementary line of 
evidence shows gestational diabetes (GDM) risks rising with higher outdoor LAN (Sun et al., 2024), consistent 
with a broader literature linking LAN to adverse metabolic profiles (Baek & Lee, 2024). 
 
4.4.1.2. Human mechanistic evidence (circadian misalignment, sleep & autonomic arousal) 
Stringent in-laboratory protocols establish causality from circadian misalignment to impaired glucose handling. 
Forced circadian misalignment reduces insulin sensitivity and glucose tolerance within days (Scheer et al., 2009), 
and experiments disentangling circadian phase from sleep/wake show intrinsic evening reductions in glucose 
tolerance (Morris et al., 2015). One-night exposure to moderate indoor light (~100 lux) during sleep raises 
sympathetic activity and next-morning insulin resistance, despite equivalent sleep duration (Mason et al., 2022). 
Collectively, these data map a plausible chain: LAN → melatonin suppression, autonomic activation, and sleep 
architecture disruption → impaired β-cell responsiveness and peripheral insulin signaling—mechanisms that 
align with the epidemiology of shift work–related T2D. 
 
4.4.1.3. Exposome considerations and mitigation 
Within cities, LAN, noise, and heat co-occur; thus, models should co-adjust for these exposures and for air 
pollution to reduce confounding. Practical mitigations include predictable shift rotations, forward-rotating 
schedules, strategic meal timing (avoid heavy caloric intake on circadian night), melanopic-aware lighting (dim, 
warm light in pre-sleep windows), blackout curtains/eye masks, and LAN reduction in bedrooms; at workplace 
scale, task lighting tuned to time-of-day and protected dark intervals may attenuate risk (Shan et al., 2018; Mason 
et al., 2022; Baek & Lee, 2024). 
 
4.4.2. Urban heat islands and noise pollution 
4.4.2.1. Urban heat islands (UHI): thermal stress, sleep, and glycemic control 
UHI intensifies nighttime heat, limiting physiological cooling and recovery; environmental agencies explicitly 
note persistent nocturnal warmth as a key health risk amplifier (CalEPA, 2023). Large global datasets show that 
hotter nights shorten sleep (by ~14 minutes on very warm nights), with disproportionate effects in older and 
lower-income populations—groups already at elevated metabolic risk (Minor et al., 2022). Systematic reviews 
confirm that higher ambient temperatures degrade sleep quality and duration worldwide, a biologically 
plausible pathway linking heat to metabolic dysregulation (Chevance et al., 2024). In people with diabetes, 
heatwaves raise mortality (~18%) and morbidity (~10%) risks, and acute heat links to hospitalizations for 
DKA/HHS and serious hypoglycemia (Moon et al., 2021; Miyamura et al., 2022; Diabetes Care, 2023). Urban 
analyses further show greater cardiovascular heat-attributable admissions in high-UHI neighborhoods, with 
diabetes status a vulnerability stratum—underscoring place-based, inequitable exposure (Cleland et al., 2023; 
Hsu et al., 2021). Mechanistically, nocturnal heat erodes slow-wave sleep, elevates sympathetic tone and cortisol, 
dehydrates and concentrates glucose, and reduces physical activity the following day—all unfavorable for insulin 
action. Thermal physiology also intersects with metabolism via brown adipose tissue (BAT); temperature 
manipulations that enhance BAT can improve insulin sensitivity, highlighting a thermoregulatory–metabolic 
interface (Lee et al., 2014; Iwen et al., 2017). 
Mitigation within the exposome includes cool-roof/cool-pavement programs, urban greening/tree canopy 
expansion, heat-health warning systems, night-cooling ventilation, and bedroom temperature targets (e.g., 
<24–25 °C) to preserve sleep and glycemic stability; public health messaging should prioritize at-risk, heat-
exposed communities (CalEPA, 2023; Cleland et al., 2023). 
 
4.4.2.2. Environmental noise: autonomic arousal, sleep fragmentation, and insulin resistance 
Transportation noise (road, rail, aircraft) is independently associated with incident diabetes in European and 
North American cohorts after adjustment for air pollution and socioeconomic factors (Sørensen et al., 2012; Eze 
et al., 2017; Shin et al., 2020). A systematic review/meta-analysis of cohort studies indicates higher T2D risk 
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per 10 dB increase in road traffic noise (Wu et al., 2023), and an updated nationwide cohort found diabetes 
mortality increased with road and rail noise, extending the evidence from incidence to lethality (Vienneau et 
al., 2024). 
Mechanistically, chronic noise activates sympathetic and HPA-axis pathways, causing nocturnal arousals, 
endothelial oxidative stress, inflammation (e.g., NF-κB activation), and metabolic derangements—biological 
routes long established for cardiovascular outcomes and increasingly supported for metabolic disease (Münzel et 
al., 2018; Hahad et al., 2023). Experimental work shows noise exposure exacerbates insulin resistance and 
glucose intolerance in rodent models, particularly when combined with a high-fat diet, mirroring human co-
exposure realities (Liu et al., 2018). Importantly, noise and LAN jointly fragment sleep, and noise often co-varies 
with air pollution, warranting mixture-aware modeling in exposome studies (Eze et al., 2017; Wu et al., 2023). 
Mitigation spans source controls (quiet road surfaces, traffic speed/calming, aircraft flight-path/night-curfew 
policies), pathway measures (noise barriers, building envelope upgrades), and receiver strategies (bedroom re-
orientation, sound-insulating windows, white-noise masking). For clinical practice, screening noise/LAN/heat 
in social–environmental histories and delivering sleep hygiene, bedroom darkness, evening light-reduction, 
cool-sleep guidance, and shift-schedule counseling can be integrated into diabetes prevention and management 
pathways (Mason et al., 2022; Shan et al., 2018; CalEPA, 2023). 
 
5. Interaction Between Lifestyle and Environmental Risk Factors 
5.1 Synergistic and Antagonistic Effects 
Lifestyle behaviors (dietary patterns, physical activity, smoking, alcohol, sleep/circadian regularity) and 
environmental pollutants (air pollution, EDCs, metals, heat, noise, light-at-night) often co-occur, act on shared 
biological pathways (oxidative stress, systemic inflammation, endothelial dysfunction, autonomic/circadian 
disruption), and can therefore amplify or buffer each other’s effects on type 2 diabetes (T2D) risk. This is the 
essence of the exposome: totality of exposures and their interdependencies across time (Rajagopalan & Brook, 
2012). Interactions can be synergistic (risk greater than the sum of parts)—for example, adiposity magnifying the 
diabetogenic impact of air pollution—or antagonistic (one factor mitigating another)—for example, nutrient 
patterns dampening pollution-induced oxidative injury. Cutting-edge mixture models (e.g., Bayesian kernel 
machine regression; quantile g-computation) now make these non-linear, non-additive relations empirically 
tractable in cohort data. 
Adiposity as an amplifier of air-pollution–diabetes associations (synergy). In a 378,000-participant UK Biobank 
analysis, obesity modified the joint effect of long-term PM₂.₅, NO₂, and traffic noise on incident T2D: hazard ratios 
were substantially larger among participants with obesity, while a polygenic risk score showed weaker or null 
modification (Li et al., 2021). This pattern—higher inhaled dose, greater systemic inflammation, lipotoxic milieu—fits a 
shared-pathway model (Li et al., 2021; Rajagopalan & Brook, 2012). Practically, obesity creates a “biological 
susceptibility” that converts background urban exposures into clinically meaningful diabetogenic load (Li et al., 
2021). 
Diet quality as a buffer of pollution toxicity (antagonism), from cohort evidence to intervention. Two 
complementary strands of evidence support a protective interaction of dietary quality with air pollution. 
(1) Cohort-level effect modification: In the Multi-Ethnic Study of Atherosclerosis, greater adherence to a 
Mediterranean-style diet attenuated the association between chronic air-pollution exposure and incident 
cardiovascular disease, plausibly via antioxidant and anti-inflammatory nutrient profiles (Lim et al., 2019)—
mechanisms relevant to insulin resistance and T2D pathogenesis. In a large Chinese cohort, higher dietary 
diversity weakened the PM₂.₅–T2D association, indicating that heterogeneous, minimally processed food 
patterns may buffer pollution-related diabetogenic effects (Zheng et al., 2024). 
(2) Human intervention signals: In a randomized crossover trial, B-vitamin supplementation (folate, B₆, B₁₂) 
attenuated PM₂.₅-induced epigenetic changes in circulating cells—mechanistic hallmarks of pollution-triggered 
oxidative stress and inflammatory signaling (Zhong et al., 2017). A separate human exposure study showed olive 
oil or fish-oil supplementation blunted vascular dysfunction after concentrated ambient particle exposure (Tong 
et al., 2015). Together, these data triangulate from mechanism to population: nutrient-dense, antioxidant-rich 
dietary patterns antagonize pollution toxicity relevant to glucose homeostasis. 
Physical activity: benefits dominate—but context matters. Modeling and cohort analyses indicate the health 
benefits of regular physical activity generally outweigh air-pollution harms, even in fairly polluted cities (Tainio 
et al., 2016). That said, micro-environment strategies (e.g., parks/greenways, off-peak training) can optimize the 
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benefit–risk balance; in cardiopulmonary trials, exercising in cleaner microenvironments yields greater vascular and 
respiratory gains than along high-traffic corridors (Tainio et al., 2016; mechanistic consistency with Tong et al., 
2015). From a diabetology perspective, prioritizing timing, location, and intensity of activity during lower-
pollution periods is an interaction-aware prevention strategy. 
Psychosocial stress and social context amplify pollution effects (synergy). Chronic psychosocial stress elevates 
HPA-axis and sympathetic outputs that worsen insulin resistance; stress also increases vulnerability to pollution-
induced oxidative and inflammatory injury. Epidemiologic work suggests perceived or chronic stress modifies air-
pollution associations with cardiometabolic indicators (Chen et al., 2021; Mehta et al., 2015), supporting a “double-
jeopardy” model wherein disadvantaged, high-stress populations experience stronger pollution–metabolic links. 
Nutritional one-carbon status modifies arsenic toxicity (antagonism) with implications for diabetes. In 
randomized trials in Bangladesh, folic acid supplementation enhanced arsenic methylation and lowered blood 
arsenic by ~14%, reducing the more toxic monomethyl-arsenic fraction (Gamble et al., 2007; Bozack et al., 2019). 
Because chronic arsenic exposure impairs insulin signaling and β-cell function, nutritional support of 
methylation represents a plausible antagonistic lever to lower diabetes risk in exposed settings (Spratlen et al., 
2018). 
Smoking and metals: behavioral–toxicant synergy. Smoking markedly increases cadmium body burden, and 
cadmium exposure has been linked—though heterogeneously—to higher risks of T2D and metabolic dysfunction, 
with stronger signals at greater doses and in women (Filippini et al., 2022; Yimthiang et al., 2022). Here, smoking 
behavior potentiates a toxicant exposure, creating synergy for renal and metabolic injury (Yimthiang et al., 2022). 
Conversely, selenium biochemistry illustrates antagonism with mercury via high-affinity selenol–mercury 
binding and restoration of selenoprotein antioxidant functions (Chen et al., 2006; Spiller, 2021), though the 
selenium–diabetes relation itself appears U-shaped, warranting caution (Cardoso et al., 2021; Casanova-Páez & 
Lee, 2023). 
Green infrastructure as an interaction-aware, multi-exposure buffer (antagonism). Residential greenness 
correlates with lower T2D incidence in longitudinal syntheses (18–21% lower odds/incidence with higher 
greenness), plausibly via reduced air/noise/heat, better sleep, and more physical activity (Ccami-Bernal et al., 2023; 
Feyissa et al., 2024; Doubleday et al., 2022). Greenness therefore operates as a contextual antagonist of multiple 
environmental stressors while promoting healthy behaviors—an exposome-level prevention tool. 
Mixture-aware methods to detect and quantify interactions. Beyond single-exposure models, Bayesian kernel 
machine regression (BKMR) flexibly captures high-order, non-linear interactions across co-exposures (e.g., 
PM₂.₅+NO₂+noise+metals) and behaviors. Quantile g-computation efficiently estimates joint effects of exposure 
bundles with interpretable weights. These approaches better reflect the exposome’s reality and have been 
increasingly applied in metabolic epidemiology to move past oversimplified additive assumptions 
(methodological reviews commonly recommend BKMR and q-gcomp for complex mixtures). 
 
Practice and policy implications—designing interaction-aware prevention. 
Individual-level: Pair dietary quality (Mediterranean/DASH, adequate B-vitamins/folate) with strategic physical 
activity (timed to lower pollution, in green spaces) to antagonize pollution effects (Lim et al., 2019; Zhong et al., 
2017; Tainio et al., 2016). Address sleep/stress, especially in shift workers where lifestyle changes show super-
additive risk reductions (Shan et al., 2018). In arsenic-exposed areas, support one-carbon nutrients to reduce 
arsenic body burden (Gamble et al., 2007; Bozack et al., 2019). 
 
Built environment & policy: Expand urban greening and active-travel networks to concurrently reduce 
pollution/noise/heat exposure and enable physical activity, leveraging a systemic antagonist to multiple hazards 
(Ccami-Bernal et al., 2023; Feyissa et al., 2024). 
 
Research: Routine testing for effect modification (e.g., by BMI, diet quality, stress) and deployment of mixture 
models is essential to quantify real-world synergistic and antagonistic dynamics. 
 
5.2. Modifying Effects of Socioeconomic Status and Education 
Conceptual frame (exposome and social determinants). Socioeconomic status (SES)—capturing education, 
income, wealth, occupation, and neighborhood context—shapes type 2 diabetes (T2D) risk through three 
interlocking pathways: (i) differential exposure to harmful environments (e.g., higher air/noise pollution, urban 
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heat, light-at-night, limited greenness and healthy food access); (ii) differential susceptibility via chronic 
psychosocial stress and allostatic load that amplify inflammatory and neuroendocrine dysregulation; and (iii) 
differential capacity to respond (health literacy, material resources, access to prevention and care) that governs 
whether healthy behaviors and clinical advice can be enacted. Large cohorts consistently show graded, inverse 
associations between SES/education and incident T2D, with portions of the gradient mediated by adiposity and 
lifestyle but with additional contribution from inflammation and stress biology—underscoring SES and education 
as modifiers of both lifestyle and environmental risks in an exposome framework (Lee et al., 2011; Stringhini et 
al., 2012; Stringhini et al., 2013). 
Differential exposure: where people live and work changes what they breathe, hear, and feel. Compared with 
affluent or highly educated groups, lower-SES or historically marginalized communities experience higher long-
term exposure to ambient PM₂.₅/NO₂, greater heat island intensity, and more transportation noise—a 
clustering of urban stressors that converges on insulin resistance pathways (oxidative stress, endothelial 
dysfunction, sleep/circadian disruption). Population-scale analyses in the U.S. show that racial–ethnic disparities 
in PM₂.₅ exposures exceed—and are not explained by—income gaps, pointing to structural and spatial mechanisms 
that concentrate pollution in specific communities (Tessum et al., 2021). Neighborhood-level analyses likewise 
document disproportionate urban heat burden among lower-income and minority residents, a pattern with 
downstream metabolic implications through sleep loss and autonomic activation (Hsu et al., 2021). For noise, 
systematic reviews and small-area studies across Europe and the U.K. consistently find higher environmental 
noise levels in socioeconomically deprived neighborhoods, adding an often-overlooked cardiometabolic stressor 
to the SES gradient (Dreger et al., 2019; Dale et al., 2015). Together, these data establish SES as an upstream 
driver of co-exposure profiles that raise T2D risk even before individual behavior is considered. 
Differential susceptibility: stress biology and inflammation magnify the same exposures. Beyond exposure 
differences, lifecourse socioeconomic disadvantage confers biologic vulnerability to diabetes. In the Whitehall II 
cohorts, chronic low SES from childhood through adulthood predicted incident T2D; serial C-reactive protein 
and interleukin-6 measurements explained a substantial portion of this association, indicating that 
inflammation and stress are key intermediates of social disadvantage on diabetogenesis (Stringhini et al., 2013). 
A complementary analysis showed that modifiable behaviors and adiposity explained about half of the SES–
T2D gradient, leaving a sizeable residual attributable to pathways like inflammation and stress (Stringhini et al., 
2012). These findings align with broader evidence that neighborhood deprivation and allostatic load track 
together, providing a mechanistic link between social context and metabolic disease risk. 
Education as a modifier of genetic and environmental risk. Education does more than signal SES; it appears to 
buffer risk by altering exposures, resources, and decision-making capacity. In UK Biobank, higher educational 
attainment attenuated polygenic susceptibility to T2D and related risk factors on the additive scale, suggesting 
that educational resources and cognition/skills can offset biological risk (Carter et al., 2022). Related work in the 
U.S. Health and Retirement Study points in the same direction—education mitigates genetic vulnerability to 
T2D/obesity, particularly at higher risk quantiles (Liu & Guo, 2015). Education also supports health literacy; 
in clinical cohorts, inadequate literacy was associated with worse glycemic control and diabetes outcomes, 
demonstrating a pragmatic pathway from education to day-to-day self-management (Schillinger et al., 2002). 
SES modifies the impact of work organization and time use. The same “dose” of work-related stress may not 
have the same metabolic impact across SES groups. In a pooled meta-analysis, long working hours were associated 
with incident T2D only in lower-SES participants, highlighting how economic constraints and reduced recovery 
resources convert occupational demand into metabolic disease (Kivimäki et al., 2015). This SES modification 
dovetails with evidence that shift work and light-at-night (more common in certain occupations) worsen insulin 
sensitivity and raise T2D risk, particularly when paired with unhealthy lifestyle—a combination more prevalent 
in socioeconomically constrained contexts (Shan et al., 2018). 
Food insecurity and neighborhood socioeconomic environment: interaction with lifestyle risk. Food 
insecurity—a concentrated feature of low-SES settings—is consistently linked to higher T2D prevalence and 
poorer glycemic outcomes and clusters with obesogenic food environments that impede adherence to 
recommended dietary patterns (Beltrán et al., 2022; Mujahid et al., 2023). Neighborhood-level SES also predicts 
incident T2D; in a large New York City study, lower neighborhood socioeconomic environment was associated 
with higher T2D risk, with food outlet profiles mediating part of the effect—an exposome-consistent pathway in 
which place-based features alter diet quality, sleep, and activity in tandem (Thorpe et al., 2022; Mujahid et al., 
2023). 
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Effect modification of environmental hazards by SES: examples for air and noise. In air-pollution epidemiology, 
associations are often stronger in lower-SES strata, plausibly due to co-morbid stress, diet, and housing 
conditions that heighten oxidative/inflammatory responses—a pattern synthesized in global reviews (Hajat et al., 
2015). For transportation noise, European cohorts link chronic exposure to incident diabetes and, more 
recently, to diabetes mortality; because noise exposure is socially patterned, the same decibels can translate into 
greater glycemic harm in deprived communities (Sørensen et al., 2012; Vienneau et al., 2024; Dreger et al., 2019). 
These examples illustrate true interaction (biologic susceptibility and co-exposures) layered on top of exposure 
inequality (environmental injustice). 
Implications for prevention and methods. From a prevention standpoint, SES and education should be pre-
specified effect modifiers when quantifying the diabetes impacts of air pollution, noise, heat, LAN, EDCs, and 
metals; modern mixture frameworks (e.g., BKMR, quantile g-computation) can estimate joint effects while 
testing interaction by SES/education. Practically, raising diet quality (and addressing food insecurity), 
preserving sleep, and facilitating safe physical activity in high-deprivation neighborhoods may antagonize 
pollution/noise/heat effects; patient education and literacy-tailored self-management can amplify benefits; and 
regulatory/urban design actions that reduce exposures in disadvantaged areas directly shrink the risk gradient 
(Mujahid et al., 2023; Hsu et al., 2021). 
 
5.3. Gene–Environment–Lifestyle Interactions in T2D 
Type 2 diabetes (T2D) is highly polygenic, with hundreds of common variants each conferring modest effects 
that act through β-cell function, insulin action, adiposity, and circadian/metabolic pathways. In practice, genetic 
risk does not operate in a vacuum: lifestyle and environmental exposures modify the phenotypic expression of 
inherited risk, while genetic architecture can determine vulnerability to specific exposures—an exposome 
perspective that integrates genomes, behaviors, and environments over time (Ben-Shlomo & Kuh, 2002). 
Contemporary cohort analyses show that high diet quality and healthy lifestyle are associated with substantially 
lower absolute T2D risk at every level of polygenic risk, and formal tests often find limited or no multiplicative 
gene×diet interaction—implicating primarily additive risk reduction that benefits even those at highest genetic 
risk (Merino et al., 2022). Conceptually, this means that genetic liability determines baseline susceptibility, while 
lifestyle and environmental levers shift risk across that baseline; methodologically, it also cautions that interaction 
tests are power-hungry and susceptible to exposure misclassification—particularly relevant for complex, dynamic 
exposures like diet and physical activity. (Ben-Shlomo & Kuh, 2002; Merino et al., 2022.) Oxford Academic 
Several well-characterized gene×lifestyle examples illustrate mechanism-anchored interactions relevant to T2D. 
First, the adiposity locus FTO: a large meta-analysis (>218,000 participants) showed that higher physical activity 
attenuates the BMI-increasing effect of FTO by ~27%, a clinically meaningful modification of a core upstream 
determinant of insulin resistance (Kilpeläinen et al., 2011). Second, TCF7L2—a canonical β-cell gene: in the 
randomized Diabetes Prevention Program, risk genotypes predicted progression to diabetes through impaired 
insulin secretion, but both intensive lifestyle and metformin reduced absolute risk across genotypes (no 
significant genotype×intervention multiplicative interaction), underscoring that prevention works even in those 
with high genetic susceptibility (Florez et al., 2006). Third, circadian biology provides a clear gene×behavior 
example: variants at MTNR1B (melatonin receptor 1B) amplify the deleterious glycemic effects of eating when 
endogenous melatonin is high—late dinner worsened glucose tolerance in MTNR1B risk-allele carriers but not 
in non-carriers in a randomized crossover trial; pharmacologic melatonin similarly impaired glucose tolerance 
preferentially in carriers (Lopez-Mínguez et al., 2017; Kampmann et al., 2021). Collectively, these data show that 
activity timing, meal timing, and sleep biology are axes where behavioral choice and genotype intersect to shape 
glycemic responses. (Kilpeläinen et al., 2011; Florez et al., 2006; Lopez-Mínguez et al., 2017; Kampmann et al., 
2021.) Florez LabPMCWiley Online Library 
Gene×environmental pollutant interactions are an emerging pillar of the T2D exposome. For arsenic, 
inter-individual differences in inorganic arsenic methylation—strongly influenced by AS3MT variants—govern 
internal dose of toxic metabolites (e.g., monomethylarsonic acid), which have been linked to cardiometabolic 
toxicity. Genetic variation in AS3MT and one-carbon metabolism pathways modifies arsenic biotransformation 
phenotypes in humans, plausibly altering diabetes risk at a given exposure (Agusa et al., 2011). Similarly, circadian 
genes (e.g., MTNR1B) may act as environmental sensors that transduce light-at-night/meal-timing exposures into 
pancreatic β-cell signaling changes, yielding gene×light/behavior interactions relevant to shift-work/ALAN 
contexts described elsewhere in this review. Mechanistically anchored G×E studies underscore the value of 
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integrated omics, repeated exposure assessment, and ancestry-inclusive sampling to detect and interpret 
interactions. (Agusa et al., 2011; Lopez-Mínguez et al., 2017.) MDPIPMC 
 
5.4. Life-course Perspective: Early-life vs. Adult Exposures 
A life-course approach distinguishes critical/sensitive periods, exposure accumulation, and chains of risk to 
explain how early and later exposures combine to shape T2D risk trajectories (Ben-Shlomo & Kuh, 2002). Pivotal 
human “natural experiments” demonstrate durable biological imprints of early adversity. Individuals conceived 
during the Dutch Hunger Winter (1944–45) exhibit persistent epigenetic alterations decades later—e.g., lower 
methylation at the IGF2 differentially methylated region 60 years post-exposure (Heijmans et al., 2008) and 
broader timing-specific methylation changes across metabolic and inflammatory loci (Tobi et al., 2009; 2014), 
some mediating associations with adult metabolic phenotypes (Tobi et al., 2018). In parallel, intrauterine 
exposure to maternal diabetes—independent of inherited genotype—raises offspring risk of diabetes and obesity 
(discordant-sibship analyses in the Pima Indians), implicating hyperglycemia-induced programming of β-cell 
function and adiposity that perpetuates intergenerational risk (Dabelea et al., 2000). Together, these findings 
validate the DOHaD paradigm for glycemic disease and argue that periconceptional and fetal windows are 
particularly sensitive periods for long-lived metabolic programming. (Ben-Shlomo & Kuh, 2002; Heijmans et al., 
2008; Tobi et al., 2009; 2014; Tobi et al., 2018; Dabelea et al., 2000.)  
Oxford AcademicPNASPMCNatureSciencePubMed 
Early-life environmental exposures also map onto glycemic phenotypes. Prenatal and childhood exposure to 
traffic-related air pollution has been associated with higher insulin resistance and adverse metabolic biomarkers 
in children and adolescents (e.g., German birth cohorts and the Southern California Children’s Health Study), 
suggesting both priming and early manifestation of insulin resistance (Thiering et al., 2013; 2016; Zhang A. L. 
et al., 2021). In pregnancy, multipollutant time-window analyses indicate that higher PM₂.₅/NO₂ exposures are 
linked with greater risk of gestational diabetes, a powerful antecedent of later maternal and offspring dysglycemia 
(Niu et al., 2023). Mechanistically, sustained oxidative stress, low-grade inflammation, endothelial dysfunction, 
and autonomic imbalance provide convergent pathways from air pollutants to impaired insulin signaling—
biologic themes that reappear in adult studies of pollution and incident T2D. (Thiering et al., 2013; 2016; Niu 
et al., 2023; Zhang A. L. et al., 2021.) PMC+1Environmental Health PerspectivesThe Lancet 
Critically, adult exposures remain potent and modifiable—even in those already “programmed” by early-life 
conditions—supporting an accumulation-of-risk model. Controlled circadian misalignment studies show that 
shifting behavioral schedules out of phase with endogenous clocks acutely impairs glucose tolerance and insulin 
sensitivity (Morris et al., 2015), while in free-living settings meal timing intersects with MTNR1B genotype to 
worsen evening glycemia (Lopez-Mínguez et al., 2017). Long-term ambient and traffic-related air pollution also 
tracks with incident T2D in adults, consistent with persistent oxidative/inflammatory signaling (Krämer et al., 
2010). Thus, later-life interventions—sleep regularity, earlier main meals, physical activity, pollution reduction, 
weight control—can partially counter early-life liabilities and reduce population risk, even absent strong statistical 
G×E interactions. (Morris et al., 2015; Lopez-Mínguéz et al., 2017; Krämer et al., 2010.) PMC+1Environmental 
Health Perspectives 
Finally, life-course models emphasize context, including social and built environments that co-expose individuals 
to unhealthy diet, inactivity, light-at-night, heat, noise, and pollution. Recent nationwide cohort work shows that 
area-level deprivation independently elevates T2D risk and compounds polygenic susceptibility—an example of 
how social exposures shape both baseline risk and the expression of genetic risk across adulthood (Diabetes Care, 
2023). These observations reinforce the core exposome message: what we inherit, what we do, and what we 
breathe/ingest are braided over time; effective prevention requires interventions at multiple life stages and 
across multiple layers of exposure. (Diabetes Care, 2023). 
 
6. Methods for Assessing the Exposome 
The exposome represents the totality of environmental exposures that an individual experiences throughout the 
life course, and its assessment requires diverse methodological strategies. Unlike single-exposure epidemiological 
studies, exposome approaches integrate multiple exposures, their interactions, and temporal variability. To 
effectively capture the complexity of environmental determinants of Type 2 Diabetes (T2D), researchers have 
employed traditional epidemiological designs, high-dimensional statistical frameworks such as exposome-wide 
association studies (ExWAS), and molecular-level assessments using biomonitoring and biospecimen analysis. 
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Together, these approaches help elucidate pathways linking environmental exposures with metabolic health 
outcomes. 
 
6.1. Traditional Epidemiological Approaches 
Traditional epidemiological approaches, such as prospective cohort studies, case-control studies, and cross-
sectional surveys, have long been the cornerstone of exposure-disease assessment. These methods often focus on 
single or a limited set of exposures (e.g., air pollution, occupational risk factors, or dietary patterns) and relate 
them to incident T2D risk using statistical models adjusted for confounders (Hu, 2011; Pan et al., 2011). 
For instance, large-scale cohorts such as the Nurses’ Health Study (NHS) and European Prospective 
Investigation into Cancer and Nutrition (EPIC) have provided critical evidence on associations between air 
pollutants, shift work, and metabolic disease (Sørensen et al., 2012; Pan et al., 2011). These designs benefit from 
temporal sequencing, allowing assessment of causality, and enable investigation of dose-response relationships. 
However, they face limitations such as exposure misclassification, residual confounding, and limited capacity to 
capture multiple simultaneous exposures that are often intercorrelated in real-world settings (Wild, 2012). 
Traditional approaches thus form the foundation of exposome science, but require integration with modern 
tools to manage complexity and interactions inherent in the totality of exposures. 
 
6.2. Exposome-Wide Association Studies (ExWAS) 
Exposome-Wide Association Studies (ExWAS) represent an extension of the genome-wide association study 
(GWAS) framework into the environmental domain. ExWAS systematically evaluates associations between a 
broad set of exposures (e.g., air pollutants, noise, chemicals, diet, lifestyle) and health outcomes, including T2D, 
in a hypothesis-free manner (Patel & Manrai, 2015). 
This approach leverages high-throughput environmental exposure data, statistical correction for multiple testing 
(e.g., false discovery rate), and integration with omics layers such as metabolomics or epigenomics. For example, 
studies within the HELIX (Human Early Life Exposome) project have applied ExWAS to identify critical early-
life exposures linked with cardiometabolic health (Vrijheid et al., 2014). Similarly, Patel et al. (2010) pioneered 
ExWAS in T2D by screening hundreds of environmental factors in relation to disease outcomes, highlighting 
previously unrecognized risk factors. 
While ExWAS provides a scalable framework for exposure discovery, challenges include high correlation among 
exposures, risk of false positives, and the need for integrated statistical models (e.g., Bayesian hierarchical 
modeling or environment-wide interaction studies, EWIS) to capture synergistic and antagonistic effects 
(Robinson et al., 2023). Nevertheless, ExWAS remains a key methodological advancement in uncovering the 
exposome’s contribution to T2D. 
 
6.3. Biomonitoring and Biospecimen Analysis 
Biomonitoring, which involves the measurement of chemicals, metabolites, and biomarkers in biological 
specimens, provides the most direct and individualized assessment of internal exposure (CDC, 2022). 
Biological matrices commonly used include blood, urine, saliva, hair, nails, and adipose tissue, each reflecting 
different windows of exposure (Angerer et al., 2007). For example, urinary bisphenol A (BPA) and phthalate 
metabolites have been widely studied in relation to insulin resistance and T2D (Sun et al., 2014). Similarly, blood 
concentrations of heavy metals such as arsenic, cadmium, and lead have been quantified to link environmental 
toxicants with mitochondrial dysfunction and diabetes risk (Menke et al., 2016). 
Biospecimen analysis is also crucial for integrating exposomics with omics technologies, such as metabolomics, 
epigenomics, and proteomics, allowing mechanistic insights into how exposures alter biological pathways leading 
to T2D (Rappaport & Smith, 2010). Advances in high-resolution mass spectrometry (HRMS) and non-targeted 
metabolomics have facilitated the detection of thousands of exogenous and endogenous molecules, providing 
an untargeted window into the internal exposome (Miller & Jones, 2014). 
Nonetheless, challenges remain, including issues of biomarker half-life, intra-individual variability, and the need 
for standardized protocols for sample collection and analysis (Dennis et al., 2017). Despite these challenges, 
biomonitoring represents a cornerstone for exposome assessment, especially when combined with geospatial data 
and personal exposure sensors for a multidimensional view of risk. 
 
6.4. Geospatial and Remote Sensing Tools 
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Geospatial and remote sensing technologies have become indispensable in exposome research because they allow 
investigators to quantify environmental exposures across space and time at unprecedented scales. Geographic 
Information Systems (GIS) enable the integration of spatial data such as land use, traffic density, green space 
distribution, and proximity to pollution sources with health outcomes, thereby providing a fine-grained exposure 
assessment (Browning & Rigolon, 2019). Satellite-based remote sensing adds another dimension by capturing 
large-scale environmental determinants, including air pollution (PM₂.₅, NO₂), vegetation indices such as NDVI, 
land surface temperature, and urban heat island effects (Brochu et al., 2019; Hsu et al., 2021). 
These tools provide temporal continuity, helping track exposures that fluctuate over time, such as air quality and 
climate variability. Remote sensing is particularly valuable for population-wide studies in regions where ground-
based monitoring networks are sparse. For example, the integration of satellite aerosol optical depth (AOD) data 
with atmospheric models has been used to estimate global PM₂.₅ levels linked to cardiometabolic risks, including 
type 2 diabetes (Shaddick et al., 2020). Additionally, combining geospatial data with personal health records 
supports a contextualized exposome framework, linking environmental determinants with socio-demographic 
variables and lifestyle risk factors. However, limitations remain, including spatial resolution challenges in urban 
microenvironments and potential exposure misclassification when assigning exposures at the residential level 
instead of accounting for daily mobility (Robinson et al., 2018). 
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6.5. Wearable Devices and Digital Health Tools 
Recent advances in wearable devices and mobile health (mHealth) technologies have revolutionized how 
exposures are captured at the individual level. These tools provide real-time, personalized data on physical activity, 
sleep, circadian rhythms, stress, and physiological responses, complementing traditional epidemiological 
exposure measurements (de Nazelle et al., 2021). Wearable sensors can also directly measure environmental 
exposures such as noise, air pollutants (e.g., PM₂.₅, VOCs), and UV radiation during daily activities, reducing 
reliance on static monitoring stations (Korsmo-Haugen et al., 2021). 
Smartphones, equipped with GPS, accelerometers, and integrated health apps, act as powerful digital 
phenotyping platforms, enabling the capture of spatiotemporal behavioral data and linking them with 
environmental conditions (Onnela & Rauch, 2016). For example, GPS-enabled wearables have been applied to 
assess physical activity in green versus urbanized environments, helping quantify the restorative effects of natural 
environments within the exposome framework (Klepeis et al., 2020). 
In metabolic health research, continuous glucose monitors (CGMs) and wearable heart rate variability (HRV) 
trackers provide insights into physiological stress and glycemic responses under varying environmental exposures. 
Despite their strengths, challenges include device accuracy, data interoperability, participant adherence, and 
privacy concerns regarding large-scale digital health data collection (Wright et al., 2022). 
 
6.6. Integrating Multi-omics Data into Exposome Research 
One of the most transformative advancements in exposome science is the integration of multi-omics approaches—
including genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics—to provide a 
mechanistic understanding of how environmental exposures interact with biological pathways. By linking 
external exposures with internal molecular signatures, multi-omics allows researchers to bridge the gap between 
environmental factors and disease etiology (Patel & Manrai, 2015). 
Metabolomics, in particular, plays a central role in exposome research by capturing small-molecule signatures 
that reflect both external exposures and internal metabolic responses. This has been applied in identifying 
metabolites associated with air pollution, endocrine-disrupting chemicals, and diet-related exposures in relation 
to type 2 diabetes and obesity risk (Walker et al., 2019). Similarly, epigenomics helps elucidate how long-term 
exposures, such as heavy metals or persistent organic pollutants, alter DNA methylation patterns that influence 
insulin sensitivity and beta-cell function (Vrijens et al., 2022). 
The integration of multiple omics layers enables systems-level modeling of the exposome, facilitating the discovery 
of biomarkers and exposure-response pathways. Advanced computational methods, including machine learning, 
Bayesian networks, and causal inference models, are increasingly used to integrate heterogeneous datasets from 
omics, epidemiology, and environmental monitoring (Li et al., 2022). The ultimate goal is to build predictive 
exposome profiles that capture gene–environment–lifestyle interactions across the life course. Nonetheless, key 
challenges include high dimensionality, the need for harmonization across platforms, and the requirement for 
longitudinal datasets that can disentangle causality from correlation. 
 
7. Mechanistic Pathways Linking Exposures to T2D 
7.1. Oxidative stress and chronic inflammation 
A central axis through which many lifestyle and environmental exposures promote type 2 diabetes (T2D) is redox 
imbalance, with reactive oxygen species (ROS) serving as both triggers and effectors of insulin resistance and β-
cell dysfunction. Causal evidence in humans and model systems shows that ROS can directly impair insulin 
action via serine phosphorylation of insulin receptor substrate proteins (e.g., IRS-1), activation of stress kinases 
(JNK, IKKβ), and inhibition of PI3K–Akt signaling in metabolic tissues (skeletal muscle, liver, adipose) (Houstis 
et al., 2006; Solinas & Becattini, 2016). In clamp-based human studies and cellular models, experimentally 
elevating ROS is sufficient to create insulin resistance, whereas antioxidant or genetic attenuation of stress-kinase 
signaling restores insulin responsiveness, establishing a mechanistic link beyond association (Houstis et al., 2006; 
Solinas & Becattini, 2016). 
At the molecular level, major ROS sources include mitochondrial electron-transport leakage, NADPH oxidases, 
and (in some exposures) xanthine oxidase; these activate redox-sensitive nodes such as JNK and NF-κB. The 
resulting transcriptional program promotes pro-inflammatory cytokines (TNF-α, IL-6), chemokines, and 
endoplasmic reticulum (ER) stress, which together blunt insulin signaling and alter substrate use in muscle and 
liver (Hotamisligil, 2017; Newsholme et al., 2019). Adipose tissue macrophage infiltration is both a cause and 
consequence of this state, sustaining “metaflammation” characteristic of obesity and T2D (Hotamisligil, 2017). 
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Environmental components of the exposome can initiate the same redox-inflammatory cascade. Fine particulate 
matter (PM₂.₅) and traffic-related mixtures generate pulmonary and systemic oxidative stress, induce endothelial 
dysfunction, and impair insulin signaling (e.g., reduced vascular insulin responses) within days to weeks 
(Haberzettl et al., 2016). Long-term exposure is linked to incident T2D and its progression, with oxidative stress 
and inflammation repeatedly implicated as dominant pathways in human cohorts and translational studies (Lim 
et al., 2019; Gangwar et al., 2020; Wu et al., 2022). 
The gut–immune interface provides a complementary redox–inflammatory conduit. Diets high in fat and low in 
fiber can increase circulating lipopolysaccharide (“metabolic endotoxemia”), activating TLR4/CD14-dependent 
inflammatory signaling and precipitating hepatic insulin resistance even in the absence of overt adiposity changes 
(Cani et al., 2007). Targeting downstream inflammatory mediators can improve glycemic control: IL-1 blockade 
with anakinra improved β-cell function and HbA1c in T2D, underscoring the pathogenic role of cytokine-driven 
islet inflammation (Larsen et al., 2007). (Notably, broad anti-inflammatory strategies do not uniformly prevent 
new-onset diabetes, emphasizing pathway-specific heterogeneity). 
β-cells are especially vulnerable to oxidative and ER stress because they express relatively low levels of catalase and 
glutathione peroxidase. Oxidative load drives loss of β-cell identity (decreased PDX1, MAFA), activation of the 
thioredoxin-interacting protein (TXNIP)–NLRP3 inflammasome axis, and IL-1β-mediated dysfunction and 
apoptosis—events documented in human islets and in vivo models (Robertson, 2007; Oslowski et al., 2012; 
Leenders et al., 2021; Choi et al., 2023). These observations link hyperglycemia-induced ER stress (glucotoxicity) 
to inflammasome activation and progressive insulin secretory failure, integrating metabolic and inflammatory 
stress into a single β-cell death pathway (Oslowski et al., 2012; Choi et al., 2023). 
Collectively, these data position oxidative stress as a unifying mechanism through which multiple exposome 
components—air pollution, obesogenic diets, psychosocial stress via stress-kinase activation, and even certain 
chemicals—converge on immune and stress pathways to degrade insulin action and β-cell viability. The causal 
chain runs from exposure → ROS/ER stress → JNK/NF-κB and inflammasome activation → tissue-level insulin 
resistance and β-cell failure (Houstis et al., 2006; Hotamisligil, 2017; Solinas & Becattini, 2016; Oslowski et al., 
2012). 
 
7.2. Hormonal disruption and insulin resistance 
Hormonal axes translate many exposures into metabolic phenotypes, creating gene–environment–lifestyle 
contingencies that affect insulin sensitivity and secretion. One pillar is the hypothalamic–pituitary–adrenal 
(HPA) axis. Chronic psychological stress elevates glucocorticoids, which (via glucocorticoid receptor signaling) 
increase hepatic gluconeogenesis, antagonize insulin-stimulated glucose uptake in muscle and adipose tissue, 
redistribute fat centrally, and impair β-cell function—changes that are well-characterized mechanistically and 
clinically (Hackett & Steptoe, 2017; Geer & Islam, 2014; Beaupere et al., 2021; Li et al., 2022). These effects are 
potentiated by co-exposures (e.g., sleep loss, circadian disruption, noise), illustrating how psychosocial and 
physical stressors within the exposome can converge on glucocorticoid biology to produce insulin resistance 
(Hackett & Steptoe, 2017; Li et al., 2022). 
Circadian hormone signaling is a second pillar. Controlled laboratory studies disentangle circadian phase from 
behavior and show that: (i) glucose tolerance is intrinsically lower in the biological evening due to reduced early-
phase insulin secretion, and (ii) circadian misalignment independently reduces insulin sensitivity—even when 
sleep and meals are held constant (Scheer et al., 2009; Morris et al., 2015). Melatonin signaling intersects with 
these effects: genetic variation at MTNR1B (e.g., rs10830963) associates with higher fasting glucose, reduced β-
cell function, and greater T2D risk, and acute melatonin administration can transiently impair glucose tolerance 
in some contexts (Karamitri & Jockers, 2019; Zhu et al., 2023). Because artificial light at night, rotating shift 
schedules, and late eating shift melatonin profiles, these environmental/lifestyle exposures can act as hormonal 
disruptors of glucose homeostasis (Morris et al., 2015; Karamitri & Jockers, 2019; Zhu et al., 2023). 
Endocrine-disrupting chemicals (EDCs) represent a third hormonal channel. Several classes—including 
bisphenols, phthalates, persistent organochlorines, and some PFAS—interact with nuclear receptors (ER/AR, 
PPARα/γ), influence glucocorticoid and thyroid signaling, and perturb adipokines and incretin pathways, 
thereby promoting adipogenesis, ectopic fat, and insulin resistance (Papalou et al., 2019). Meta-analytic and 
systematic reviews report associations between urinary phthalate metabolites and impaired insulin sensitivity or 
T2D, and between BPA or persistent organic pollutants and diabetes risk, with experimental models 
demonstrating rapid non-genomic effects on β-cells and interference with insulin signaling (Radke et al., 2019; 
Farrugia et al., 2021; Papalou et al., 2019). Although exposure–outcome certainty varies by chemical, the 
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mechanistic plausibility—via receptor-mediated hormonal disruption and oxidative stress—aligns with observed 
epidemiology (Papalou et al., 2019; Farrugia et al., 2021). 
These hormonal pathways do not operate in isolation: they integrate with redox and inflammatory signaling. For 
example, glucocorticoids can increase ceramide synthesis, worsening insulin resistance downstream of stress 
kinases; melatonin–β-cell signaling interfaces with cAMP/PKA and K_ATP channel activity; and EDC-PPARγ 
activation skews adipocyte endocrine function (adiponectin↓, leptin↑), reinforcing inflammatory loops (Li et al., 
2022; Karamitri & Jockers, 2019; Papalou et al., 2019). In exposome terms, mixtures of psychosocial stress, 
circadian disruption, and chemical exposures can therefore exhibit additivity or synergy at shared hormonal and 
inflammatory nodes that regulate insulin action and secretion. 
 
7.3. Epigenetic Modifications and Gene Expression 
Epigenetic mechanisms—DNA methylation at cytosine–guanine dinucleotides (CpGs), post-translational histone 
modifications, chromatin remodeling, small and long non-coding RNAs, and epitranscriptomic marks such as 
N^6-methyladenosine (m^6A)—provide a biologically plausible route by which the exposome (diet, physical 
activity, pollutants, psychosocial stressors) can induce durable, tissue-specific shifts in gene expression without 
altering DNA sequence. In type 2 diabetes (T2D), human data from pancreatic islets, skeletal muscle, adipose 
tissue, liver, and blood now consistently show epigenetic dysregulation linked to impaired insulin secretion and 
insulin resistance and, critically, demonstrate that many marks are dynamic and modifiable by lifestyle or 
environmental change (e.g., exercise, diet, weight loss). (Ling & Rönn, 2019). 
 
7.3.1. Epigenetic alterations in human pancreatic islets 
Epigenome-wide analyses in human islets reveal thousands of differentially methylated CpG sites in donors with 
T2D, often located in enhancers and regions bound by β-cell transcription factors. These changes correlate with 
altered expression of genes that govern mitochondrial dynamics and stimulus-secretion coupling (e.g., 
RHOT1/MIRO1, TBC1D4, FOXP1) and with impaired insulin secretion; experimental silencing of RHOT1 
in β-cells reduces ATP/ADP ratio, Ca^2+ flux, respiration, and insulin release—implicating methylation-linked 
mitochondrial dysfunction in T2D pathogenesis (Rönn et al., 2023). Earlier work mapped 1,649 differentially 
methylated CpGs across 853 genes in T2D islets, including TCF7L2, FTO, and KCNQ1; >100 targets showed 
concordant methylation–expression shifts, and functional assays confirmed direct effects on β-cell exocytosis and 
glucagon secretion (Dayeh et al., 2014). These studies collectively support a causal chain from islet methylation 
changes → transcriptional remodeling → secretory defects. (Rönn et al., 2023; Dayeh et al., 2014). 
 
7.3.2. Blood DNA methylation markers that predict incident T2D 
Because obtaining islets in vivo is impractical, blood DNA methylation has been tested as a risk biomarker. In 
the EPIC-Norfolk prospective cohort, an epigenome-wide association study (EWAS) identified CpGs whose 
methylation levels at baseline predicted future T2D independent of conventional risk factors; results overlapped 
with loci such as ABCG1 and TXNIP, which have repeatedly emerged across cohorts and ethnicities as predictive 
of incident T2D (Cardona et al., 2019; Fraszczyk et al., 2022; Dayeh et al., 2016). Although tissue specificity 
limits mechanistic inference from blood, convergence on lipid metabolism (ABCG1, SREBF1) and 
redox/glucose-sensing (TXNIP) pathways strengthens biological plausibility. 
 
7.3.3. Lifestyle and environmental modulation of the epigenome 
Exposures central to the T2D exposome rapidly remodel epigenetic marks. A single session of high-intensity 
exercise induces promoter hypomethylation at PPARGC1A (PGC-1α), PDK4, and PPARδ in human muscle, 
with concomitant transcriptional activation; intensity matters (no effect at ~40% VO₂max), demonstrating dose–
response and reversibility (Barrès et al., 2012; McGee & Hargreaves, 2017). Weight-loss/bariatric surgery is 
likewise followed by widespread, depot-specific methylation reprogramming in adipose tissue and blood, 
paralleling improvements in insulin sensitivity—again indicating plasticity of diabetes-relevant epigenetic marks 
in response to environmental change (Talukdar et al., 2022; Fraszczyk et al., 2020). 
Ambient pollutants can also reshuffle methylomes: controlled and observational studies show short-term traffic-
related particulate exposure reduces repeated-element methylation in blood, and broader reviews document 
pollutant-linked methylation and histone changes across candidate loci and pathways (Baccarelli & Bollati, 2009; 
Madrigano et al., 2009; Rider et al., 2019). Although diabetes-specific mediation remains under active study, 
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these findings cement a mechanistic bridge from environmental toxicants to gene regulation relevant for 
metabolic disease. 
 
7.3.4. Non-coding RNAs and epitranscriptomics 
Diabetes-relevant microRNAs (miRNAs) add a layer of post-transcriptional control. miR-375, one of the most 
abundant β-cell miRNAs, restrains exocytosis and insulin secretion; its intra-islet abundance and export to HDL 
respond to glucose and secretory cues, and circulating miR-375 is a candidate biomarker of β-cell stress/death 
(Eliasson, 2017; Sedgeman et al., 2019; Erener et al., 2013). In insulin-target tissues, the miR-29 family promotes 
insulin resistance by dampening AKT signaling and reducing GLUT4 (SLC2A4) and oxidative metabolism; miR-
29 antagonism improves hepatic and muscle insulin sensitivity in preclinical models (He et al., 2007; Hung et 
al., 2019; Dalgaard, 2022). 
Beyond DNA and miRNA, m6A/m6Am RNA modifications orchestrated by “writers” (METTL3/14), “erasers” 
(FTO/ALKBH5), and “readers” (e.g., IGF2BP proteins) regulate RNA stability, splicing, and translation in β-
cells, liver, and adipose tissue. Dysregulated m^6A machinery is reported in human diabetic islets and liver; in 
mouse models, hepatocyte Mettl3 deletion improves insulin sensitivity and reduces lipogenesis, highlighting 
epitranscriptomic control of metabolic programs (Benak et al., 2023). 
 
7.3.5. Diet–microbiome–epigenome crosstalk 
Microbiota-derived short-chain fatty acids (SCFAs)—especially butyrate—are endogenous histone deacetylase 
(HDAC) inhibitors and/or histone acyl donors that reshape chromatin accessibility and inflammatory tone. 
Butyrate and propionate inhibit HDAC activity at physiologic concentrations, upregulate PGC-1α and 
mitochondrial antioxidant genes in myotubes/endothelium, and promote epithelial barrier and anti-
inflammatory programs, mechanistically linking fiber-rich diets and microbial metabolism to host epigenetic 
regulation relevant to T2D (Chang et al., 2014; Silva et al., 2018; Chriett et al., 2019; Korsten et al., 2023; 
Nshanian et al., 2025). 
Implication for the exposome framing: Taken together, these findings show that lifestyle and environmental 
exposures leave measurable, often reversible, epigenetic “footprints” in insulin-secreting and insulin-responsive 
tissues that track with mitochondrial function, inflammation, and glucose homeostasis. This mechanistic 
plasticity provides both (i) biomarkers for exposure and early disease risk (e.g., blood methylation panels) and (ii) 
intervention targets (exercise, diet, pollutant mitigation) to re-tune gene expression networks toward metabolic 
resilience. (Ling & Rönn, 2019; Cardona et al., 2019; Rönn et al., 2023). 
 
7.4. Gut Microbiome Alterations 
7.4.1. Diabetes-associated dysbiosis and functional signatures 
Across diverse cohorts, T2D is linked to reduced abundance of butyrate-producing taxa (e.g., Faecalibacterium, 
Roseburia) and enrichment of opportunistic/pathobiont lineages, though effect sizes vary by geography, 
medication use, and diet. Functionally, T2D microbiomes display decreased SCFA-biosynthetic capacity and 
increased microbial pathways for branched-chain amino acids (BCAAs) and trimethylamine (TMA) production, 
metabolites tied to insulin resistance and cardiometabolic risk (Gurung et al., 2020; Pedersen et al., 2016; Barlow 
et al., 2023). 
Mechanistically, multiple gut–host axes are implicated. First, fewer SCFA producers → lower colonic butyrate 
→ weaker HDAC inhibition/G-protein–coupled receptor (GPR41/43) signaling, diminished GLP-1 secretion, 
impaired epithelial barrier, and heightened mucosal inflammation—processes that foster hepatic and peripheral 
insulin resistance. Second, lipopolysaccharide (LPS) translocation (“metabolic endotoxemia”) activates innate 
immunity and disrupts insulin signaling. Third, microbial BCAA biosynthesis associates with elevated circulating 
BCAAs, mTOR/S6K activation, and insulin resistance in muscle; colonization of germ-free mice with Prevotella 
copri increases BCAAs and worsens glucose tolerance (Pedersen et al., 2016). 
 
7.4.2. Interventional and causality-oriented evidence 
Causality is supported by human and animal interventions. In a randomized, controlled crossover study, fecal 
microbiota transplantation (FMT) from lean donors improved peripheral insulin sensitivity in individuals with 
metabolic syndrome, particularly those with low baseline diversity—demonstrating transferable insulin-sensitizing 
functions (Vrieze et al., 2012). In an open-label, mechanistically rich trial in T2D, a high-fiber diet tailored to 
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enrich acetate- and butyrate-producing consortia increased fecal SCFAs, restored SCFA producers (e.g., 
Faecalibacterium prausnitzii, Roseburia), elevated GLP-1, and significantly improved HbA1c relative to control, 
linking diet → microbiota → metabolite → endocrine pathways (Zhao et al., 2018). Medication is a major 
modifier: metformin consistently reshapes the gut community (e.g., increases Escherichia/Shigella, Akkermansia), 
confounding cross-sectional T2D–microbiome associations and likely mediating part of its glucose-lowering effect 
via microbial pathways (Forslund et al., 2015; Wu et al., 2017). 
 
7.4.3. Exposome influences on the microbiome 
Dietary patterns (fiber vs. ultra-processed foods), artificial sweeteners, and environmental stressors modulate 
microbiota composition and function. Artificial sweeteners can induce glucose intolerance in a microbiome-
dependent manner in humans and mice, underscoring how non-nutritive additives in the diet interact with 
microbial pathways to influence glycemic control (Suez et al., 2014). More broadly, the exposome can act on the 
microbiome to alter SCFA production, bile acid pools (FXR/TGR5 signaling), barrier integrity, and 
immunometabolic axes that converge on insulin sensitivity. 
Within an exposome framework, the gut microbiome is both a mediator and a modifier of 
lifestyle/environmental effects on T2D. Microbial metabolites (SCFAs, BCAAs, bile acids) interface directly with 
host epigenetic and endocrine mechanisms—e.g., SCFA-driven HDAC inhibition and incretin release—providing 
mechanistic levers for prevention (fiber-rich, minimally processed diets; selective prebiotics/probiotics; exposure 
reduction) and therapy (microbiome-targeted interventions, medication–microbiome synergy). (Gurung et al., 
2020; Zhao et al., 2018; Forslund et al., 2015). 
 

 
Table 2. Biological Mechanisms Linking Exposome to Type 2 Diabetes (Elaborated) 

Mechanism Pathway / Biomarkers Representative Exposures Mechanistic Link 
to T2D (brief) 

Evidence 

Oxidative 
stress 

↑ROS; lipid peroxidation 
(MDA, F₂-isoprostanes/8-
iso-PGF₂α); protein 
carbonyls; DNA oxidation 
(8-OHdG); antioxidant 
status (GSH/GSSG, SOD, 
catalase, GPx); 
NOX2/mitochondrial ROS 

Air pollution 
(PM₂.₅/ozone/NO₂), 
tobacco smoke; 
processed/high-
fructose/high-fat diets; 
heavy metals (As, Cd); sleep 
loss 

Excess ROS 
impairs insulin 
receptor signaling 
(IRS/PI3K/AKT), 
damages β-cells 
(low antioxidant 
reserves), and 
amplifies 
inflammatory 
cascades—driving 
insulin resistance 
and β-cell failure 

Reviews/meta: 
oxidative stress is 
central to T2D 
pathogenesis and 
complications; 
hyperglycemia and 
mitochondrial 
dysfunction 
amplify ROS; β-cell 
vulnerability 
documented. 
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Inflammatio
n 

Cytokines: TNF-α, IL-6, IL-
1β; NF-κB, JNK, IKKβ 
activation; hs-CRP; immune 
cell infiltration (M1 
macrophages in adipose) 

Adiposity/overnutrition; 
air pollution; heavy metals; 
psychosocial stress; 
endotoxemia (LPS) 

Chronic low-grade 
inflammation 
disrupts insulin 
signaling (serine 
phosphorylation of 
IRS), alters 
adipokines 
(↓adiponectin, 
↑leptin, resistin), 
and promotes 
hepatic 
gluconeogenesis 
and lipotoxicity 

Seminal 
frameworks and 
updates link 
nutrient/exposure-
triggered NF-
κB/JNK signaling 
to insulin 
resistance and 
T2D; integrative 
human+animal 
evidence. 

Epigenetic 
modification
s 

DNA methylation (e.g., 
PPARGC1A, TXNIP, 
ABCG1 loci); histone marks 
(H3K27ac/H3K9me3); 
chromatin remodeling; non-
coding RNAs (miR-29, miR-
375) 

Maternal 
diet/overnutrition or 
undernutrition; endocrine 
disruptors/toxins; 
persistent stress; early-life 
famine/overnutrition 

Stable, exposure-
responsive 
epigenetic changes 
in islets, liver, 
muscle, adipose 
alter metabolic 
gene programs → 
reduced 
mitochondrial 
function, impaired 
insulin 
secretion/sensitivit
y; some marks are 
reversible with 
lifestyle 

Authoritative 
reviews in humans 
show altered 
methylation/histo
ne patterns in 
obesity/T2D 
tissues; epigenetics 
is a key link from 
environment to 
phenotype. 

Endocrine 
disruption 

Insulin/GLUT4 pathway 
(IRS-1/AKT); estrogen 
receptor (ER) and PPARγ 
signaling; cortisol/HPA-axis 
dysregulation; β-cell Ca²⁺ 
handling 

BPA and analogs, 
phthalates, 
organophosphate/pyrethro
id pesticides 

EDCs 
mimic/hijack 
hormone signaling: 
reduce insulin 
sensitivity and 
secretion; promote 
adipogenesis; alter 
hepatic 
lipid/glucose 
metabolism; 
pregnancy 
exposure programs 
maternal/offspring 
glucose intolerance 

Experimental and 
translational 
studies: BPA 
impairs glucose 
tolerance, increases 
insulin resistance 
and lipids; 
pregnancy 
exposure has 
lasting metabolic 
effects; reviews 
consolidate 
endocrine and 
metabolic impacts. 

Microbiome 
alterations 

Community structure (α/β 
diversity); butyrate 
producers (e.g., Roseburia, 
Faecalibacterium); SCFAs 
(acetate/propionate/butyrat
e); LPS (metabolic 
endotoxemia); bile acids 

Dietary patterns (low fiber, 
high fat/sugar), antibiotics, 
emulsifiers; infections; early-
life feeding 

Dysbiosis reduces 
SCFA-mediated 
GLP-1 signaling 
and gut barrier 
integrity; 
↑LPS/TLR4 
activation → 
inflammation; 
altered bile acid 
pools affect hep 

 

 
8. Public Health and Policy Implications 
8.1. Preventive strategies targeting lifestyle behaviors 
High-impact diabetes prevention at the population level starts with evidence-based lifestyle programs and 
supportive food and activity environments. The U.S. Diabetes Prevention Program (DPP) randomized trial 
established that intensive lifestyle change (dietary quality, ≥150 min/week physical activity, ~7% weight loss) cut 
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incident T2D by 58% over 2.8 years versus placebo, outperforming metformin (31% reduction) among adults 
with impaired glucose tolerance; risk reductions persisted (27% for lifestyle; 18% for metformin) over 15 years 
in the DPP Outcomes Study, albeit attenuated, underscoring the need for durable delivery models. These trials 
are the foundation for health-system and payer adoption (e.g., the U.S. Medicare Diabetes Prevention Program) 
and for guideline recommendations to screen at-risk adults and refer those with prediabetes to proven preventive 
interventions. Scaling requires reimbursement, quality standards, culturally tailored curricula, and hybrid/virtual 
delivery to improve reach and adherence, particularly in underserved groups. (Knowler et al., 2002; Diabetes 
Prevention Program Research Group, 2015; CMS MDPP program; USPSTF 2021 recommendation). 
Fiscal and regulatory nutrition policies can shift diets toward diabetes-protective patterns at population scale. 
Taxes on sugar-sweetened beverages (SSBs) have repeatedly reduced purchases of taxed drinks (e.g., Mexico’s 1 
peso/L excise tax ≈10% price increase led to a ~6% average decline in year 1, with larger reductions over time 
and among lower-income households; Berkeley, CA saw ~10% declines in SSB sales and increased water sales 
after a 1 ¢/oz tax). Such policies can be paired with healthy-food subsidies, procurement standards (schools, 
hospitals), front-of-pack labeling, trans-fat elimination (REPLACE), and sodium targets—elements the WHO 
identifies as highly cost-effective “Best Buys” for NCD prevention. (Colchero et al., 2016; Madsen, 2019; 
CDC/WHO Best Buys & REPLACE). 
Built-environment and transport policies that make active choices the easy choices—safe walking/cycling 
networks, connected land-use, greenspace and park investments—raise routine physical activity and deliver double 
dividends for cardiometabolic health and air-pollution mitigation. WHO’s Global Action Plan on Physical 
Activity (GAPPA) details cross-sector actions to reduce physical inactivity by 15% by 2030; systematic reviews 
show that park renovations, pocket parks, and cycling/walking infrastructure measurably increase population 
activity. Co-benefits include lower traffic emissions, noise, and heat exposure, reinforcing the exposome focus on 
multisector determinants. (WHO GAPPA; Zhang et al., 2022). 
 
8.2. Reducing environmental pollutant exposure at the population level 
Air-quality regulation remains a cornerstone for diabetes-relevant exposure control. WHO’s 2021 Air Quality 
Guidelines recommend annual PM₂.₅ ≤5 µg/m³ and NO₂ ≤10 µg/m³ to minimize cardiometabolic risk. In 2024 
the U.S. EPA tightened the annual PM₂.₅ standard from 12 to 9 µg/m³—projected to avert thousands of 
premature deaths and reduce chronic disease burden. Cities and countries operationalize these standards through 
emissions controls (industry, power, transport), low-/ultra-low-emission zones, electrified transit, and clean-
household energy transitions (to cut household PM₂.₅ in settings reliant on solid fuels). (WHO 2021 AQG; U.S. 
EPA 2024 PM₂.₅ rule; WHO household energy guidance). 
Noise and light-at-night (LAN) policies are increasingly relevant given links to metabolic dysregulation. WHO’s 
Environmental Noise Guidelines (2018) set health-based exposure recommendations and call for transport-noise 
action plans (speed reductions, quiet road surfaces/tires, barriers, and façade insulation). For outdoor LAN, 
municipalities can adopt “dark-sky” ordinances (full cut-off fixtures, lower correlated color temperature, adaptive 
dimming) and use physiology-informed metrics such as melanopic equivalent daylight illuminance (CIE S 026) 
to minimize circadian disruption while maintaining safety. (WHO 2018 noise guidelines; EEA noise directive; 
DarkSky/IDA guidance; CIE S 026). 
Heat-risk management is now essential for diabetes prevention and control because heat amplifies glycemic 
instability, dehydration risk, and cardiometabolic stress. WHO and regional partners recommend Heat-Health 
Action Plans (HHAPs) with early warnings, targeted outreach to high-risk patients (including people with T2D), 
cooling access, workplace protections, and long-term urban-form solutions (cool roofs/pavements, shade trees). 
EPA’s Urban Heat Island Compendium and WHO/EEA briefs summarize effective, scalable measures; national 
guidance (e.g., India’s National Action Plan on Heat-Related Illnesses) illustrates institutionalization. (WHO 
HHAP guidance; EEA/Climate-ADAPT; U.S. EPA compendium; MoHFW India). 
Chemical exposure control requires both source-specific regulation and biomonitoring-informed policy. The EU 
HBM4EU initiative has shown how human biomonitoring can inform regulatory action (e.g., PFAS, phthalates, 
bisphenols), while in the U.S. the 2024 EPA National Primary Drinking Water Regulation set enforceable PFAS 
limits (MCLs of 4 ppt for PFOA and PFOS, with hazard index for mixtures), plus Superfund designations to 
accelerate remediation—policies expected to curb internal PFAS loads over time. (HBM4EU policy briefs and 
synthesis; U.S. EPA 2024 PFAS rules). 
 
8.3. Health equity considerations in exposome research and action 
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The exposome emphasizes that social and environmental risks cluster: communities with fewer resources often 
face higher PM₂.₅, traffic-related NO₂, heat-island intensity, noise, and LAN, compounding lifestyle barriers (food 
deserts, unsafe streets) and generating disproportionate diabetes risk. Large U.S. analyses document higher PM₂.₅ 
exposures among people of color across income strata; urban heat-island intensity also disproportionately affects 
marginalized neighborhoods, reinforcing thermal stress and sleep disruption. Equity-centered policy uses 
screening and mapping tools (e.g., EPA EJSCREEN; the Climate & Economic Justice Screening Tool 
methodology) to direct investments—tree canopy, cooling, clean mobility, indoor air quality upgrades, and 
diabetes-prevention services—toward the most burdened areas, consistent with “Health in All Policies.” (Tessum 
et al., 2021; Hsu et al., 2021; EPA EJSCREEN; CEJST methodology; WHO HiAP/Helsinki Statement). 
Equitable diabetes prevention also relies on removing access barriers. Policy levers include universal coverage for 
DPP-like programs (e.g., MDPP), transportation and childcare supports, culturally and linguistically tailored 
delivery, and integration with social services. The USPSTF’s 2021 recommendation to screen adults aged 35–70 
years with overweight/obesity and “offer or refer” to effective preventive interventions provides a payer-agnostic 
entry point; CMS coverage and allowance of distance-learning delivery can help close gaps, but uptake remains 
uneven—requiring targeted financing and community partnerships. (USPSTF 2021; CMS MDPP and program 
updates; implementation analyses). 
 
8.4. Translating exposome findings into policy and practice 
Turning exposome science into action entails (i) better exposure measurement, (ii) causal inference for mixtures, 
and (iii) governance that links evidence to regulation and clinical/public-health workflows. National Academies 
reports have outlined modernization of risk assessment and exposure science, advocating the integration of 
biomonitoring, high-resolution spatiotemporal exposure models, and systems approaches to support timely 
decisions. Europe’s HBM4EU demonstrates policy-facing indicators (e.g., reference values, risk contextualization) 
that regulators can directly use; the U.S. Human Health Exposure Analysis Resource (HHEAR) provides shared 
laboratory and data-science infrastructure to harmonize biospecimen assays and link omics-enabled exposure 
profiling with health outcomes across cohorts. Health Impact Assessment (HIA) and “Health in All Policies” 
frameworks operationalize cross-sector decision-making so that transport, housing, energy, and lighting choices 
are evaluated for metabolic and broader NCD impacts before implementation. (National Academies 2017; 
HBM4EU indicators and synthesis; NIEHS HHEAR; WHO HiAP). 
Finally, sustained implementation requires robust surveillance and evaluation. Pollution-and-health assessments 
(e.g., Lancet Commission updates) keep attention on disease and economic burdens; pairing health surveillance 
with regulatory monitoring (air/noise/heat/chemical dashboards) and open data enables adaptive management 
and accountability. Embedding geocoded exposure metrics into electronic health records could support risk-
stratified screening (e.g., earlier diabetes screening in high-exposure neighborhoods) and targeted referral to 
prevention services—an exemplar of exposome-informed precision public health. (Lancet Commission update; 
WHO/EEA heat-health surveillance resources). 
 
9. Future Directions in Exposome and T2D Research 
9.1. Integrating Big Data and Artificial Intelligence 
The next decade of type 2 diabetes (T2D) exposome research will be defined by data integration at scale—linking 
high‐frequency personal sensing, geospatial exposures, biospecimen biomonitoring, and health records—together 
with fit-for-purpose machine learning (ML) and causal inference. Several international platforms already point 
the way. In Europe, EXPANSE is building a continent-wide urban exposome with >55 million residents, 
standardized exposure models (air/noise/greenspace/food environment), and analytic pipelines that explicitly 
support cardiometabolic research (van Nunen et al., 2023; Hoek et al., 2023). In the U.S., HHEAR (the NIEHS 
Human Health Exposure Analysis Resource) provides centralized laboratory analysis of chemicals and 
multi-omics plus a data center that harmonizes exposure and health datasets for hypothesis generation and 
replication (HHEAR Program, 2024a; 2024b; 2024c). Methodologically, exposome-specific roadmaps emphasize 
federation of data (bringing algorithms to the data) and interoperability/FAIR data standards to address privacy, 
governance, and reproducibility across jurisdictions (Zheng et al., 2023; Manrai et al., 2022; Wilkinson et al., 
2016). These are essential for multi-site T2D studies where exposures (e.g., air pollution, endocrine disruptors) 
and covariates (diet, activity, access to care) vary systematically by place and time. 
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On the analytics side, future T2D work should treat exposures as correlated mixtures and environments as 
complex systems. Established mixture methods—Bayesian Kernel Machine Regression (BKMR) for nonlinear, 
high-order interactions; weighted quantile sum (WQS) regression for “bad-actor” identification; and quantile 
g-computation for directional-agnostic joint effects—are increasingly used to model cardiometabolic risk (Bobb 
et al., 2015; Carrico et al., 2015; Keil et al., 2020; Schmidt et al., 2020). Causal extensions (e.g., BKMR–causal 
mediation) can decompose how mixtures act through adiposity, inflammation or epigenetic intermediates on 
glycemia (Devick et al., 2022). In parallel, domain reviews outline how AI/ML—including deep representation 
learning for high-dimensional exposure panels, graph models for exposure networks, and semi-supervised 
learning for sparse chemicals—can accelerate signal discovery if paired with rigorous validation and transparency 
(Isola et al., 2024; Baccarelli et al., 2023). To keep models clinically meaningful, reporting frameworks from 
clinical AI should be adopted—TRIPOD-ML for prediction modeling and CONSORT-AI/SPIRIT-AI for 
trial-adjacent designs—together with strict external validation across places and subpopulations (Collins et al., 
2023; Liu et al., 2020; Riveros et al., 2020). Finally, target-trial emulation and modern causal design should be 
embedded into ML pipelines so that associations between exposome features and T2D are distinguished from 
intervention-relevant effects (Hernán & Robins, 2020; Hernán & Robins, 2016; Fu et al., 2023). 
 
9.2. Longitudinal and Multi-generational Studies 
Life-course and intergenerational designs are indispensable to disentangle how time-varying exposures program 
T2D risk. The NIH ECHO program brings together dozens of pregnancy/birth cohorts with harmonized 
assessments of environmental, behavioral, and social determinants, plus linkable biospecimens for multi-omics—
an ideal substrate for exposome-to-glycemia pathways from in utero through adolescence (ECHO, 2025; Park 
et al., 2024). Multi-generation cohorts such as ALSPAC (G0 mothers, G1 offspring, and growing G2 
grandchildren) enable tests of cross-generation effects and timing (periconceptional vs. second/third trimester) 
relevant to later metabolic disease (Boyd et al., 2013; Lawlor et al., 2019). Human “natural experiments” 
demonstrate lasting epigenetic marks after early-life adversity: individuals conceived during the Dutch Hunger 
Winter show persistent DNA methylation differences (e.g., IGF2), with mediation analyses linking famine 
exposure to higher adult BMI and triglycerides via specific CpGs including TXNIP (Heijmans et al., 2008; Tobi 
et al., 2014; Tobi et al., 2018). Clinically, intrauterine hyperglycemia and maternal obesity increase offspring T2D 
risk independent of genetics, as shown in sibling-comparison studies in the Pima and in multiethnic cohorts 
(Dabelea et al., 2000; Dabelea et al., 2008). 
 
 
9.3. Personalized Prevention and Precision Public Health 
Evidence increasingly supports risk-stratified prevention that joins genetics, lifestyle, and environmental 
exposures. Large prospective cohorts show that high diet quality lowers T2D risk across all genetic risk strata, 
arguing that lifestyle remains beneficial even at high polygenic risk (Merino et al., 2022). For prediction, 
polyexposure scores (capturing diet, activity, sleep, psychosocial stress, neighborhood context, and 
environmental chemicals) can match or outperform polygenic scores for T2D classification in multi-ancestry 
populations, underscoring the preventive leverage of modifiable factors (Akhtari et al., 2023; He et al., 2021). A 
precision-environmental-health framework proposes tailoring interventions to exposure profiles (e.g., 
air-pollution reduction + shift-work scheduling + sleep/ALAN mitigation) while embedding implementation science 
for equitable uptake (Baccarelli et al., 2023; Khoury et al., 2016). 
 
9.4. Addressing Methodological Gaps and Biases 
Future exposome–T2D work must directly confront measurement error, batch effects, selection bias, and 
transportability. Exposure misclassification (e.g., spatial smoothing of PM₂.₅, single-time-point chemicals) 
typically biases effects toward the null and inflates uncertainty; prospective designs should incorporate repeat 
measures, calibration sub-studies, and measurement-error correction (Edwards & Keil, 2017; Samoli et al., 2020; 
Katsouyanni, 2022). In multi-omics, batch effects can overwhelm true biological signal; recent benchmarking 
shows that careful design (randomization across plates) plus post-hoc harmonization (e.g., ComBat variants, 
TAMPOR) improves downstream differential analyses and predictive modeling (Yu et al., 2023; Yu et al., 2024; 
Dammer et al., 2023). To detect hidden confounding, negative controls (exposure or outcome) should be 
routine, and DAG-based study specification with target-trial emulation should mitigate immortal-time and 
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prevalent-user biases when linking exposures to diabetes onset or control (Lipsitch et al., 2010; Hernán & Robins, 
2020; Fu et al., 2023). For highly correlated exposures, mixture methods (BKMR, WQS, quantile g-computation) 
reduce model misspecification, and causal extensions can parse mediated pathways (Bobb et al., 2015; Carrico 
et al., 2015; Keil et al., 2020; Devick et al., 2022). Finally, external validity and equity require transparent 
reporting (STROBE; GREEN under development), a priori transportability plans, and inclusion of 
under-represented populations to avoid widening disparities (von Elm et al., 2007; GREEN guideline in 
development; Bareinboim & Pearl, 2016; Westreich et al., 2017). 
 
10. Conclusion: 
Understanding type 2 diabetes through the lens of the exposome highlights the intricate interactions between 
environmental exposures, lifestyle determinants, biological processes, and social inequities. Evidence synthesized 
in this review demonstrates that factors such as oxidative stress, chronic inflammation, hormonal imbalance, 
epigenetic modifications, and gut microbiome alterations serve as key mechanistic pathways linking exposures to 
T2D development. At the same time, socioeconomic and educational disparities modify risk trajectories, 
underscoring the importance of equity-focused interventions. Emerging technologies—including geospatial 
analytics, wearable sensors, and multi-omics platforms—are revolutionizing exposure assessment and enabling 
personalized risk profiling. However, significant challenges remain, including methodological biases, fragmented 
data integration, and limited translation of findings into clinical and policy frameworks. Future research should 
prioritize longitudinal and multi-generational approaches, harness artificial intelligence to manage big data, and 
move toward precision public health strategies tailored to individual and community needs. Ultimately, 
advancing an exposome-informed paradigm has the potential not only to deepen mechanistic understanding of 
T2D but also to shape proactive, equitable, and evidence-based prevention and policy measures to curb the global 
diabetes epidemic. 
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