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Abstract 

Study proposes a new method for predicting the remaining useful life (RUL) of lithium-ion batteries using the Extreme 

Learning Machine (ELM) algorithm by employing advanced feature extraction techniques to identify critical 

parameters influencing battery degradation. The model captures intricate patterns in battery health, enabling precise 

RUL prediction by analyzing voltage, current, temperature, and capacity data. A correlation investigation executed 

in this paper emphasizes the importance of designated variables, for example, discharge capacity dwindle and inner 

resistance, in identifying lifecycle of the battery. The ELM is an advanced machine learning algorithm, which has 

high speed for problem-solving capability, and is used to design a vigorous prognostic approach. Experiment-based 

results analysis validates that the suggested method accomplishes higher correctness and computational speed compared 

to conventional approaches. The algorithm's enactment is authenticated via several performance matrices (i.e., AE, 

MAPE and R2), validating model’s reliable enactment in concrete actual circumstances. Presented study delivers an 

appreciated algorithm for BLI health diagnosis, augmenting the consistency and reliability of BLI in EVs, RES, and 

further uses. The outcomes emphasize the impending of AI/ML methods in evolving analytical maintenance for ESS. 
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ED Energy density 

ESS Energy storage system 

AE Absolute Energy 

MAPE Mean absolute percentage error 

BLI Lithium-ion battery 

RUL Remaining useful life 

ELM Extreme Learning Machine 

AI Artificial Intelligence 

ML Machine Learning 

EV Electric Vehicles 

SDR Self-discharge rate 

PM Predictive maintenance 

FNN Feedforward neural network 

CA Correlation analysis 

HI health indicators 

HMS Health monitoring systems 

RE Renewable energy 

HL Hidden layer 

LSS Least-squares solution 

BP Backpropagation 
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EMS Energy management systems 

MPGI Moore-Penrose generalized inverse 

 

1. INTRODUCTION 

BLIs have developed as the support of contemporary ESS due to their great ED, low SDR, and long cycle 

life [1]. Their extensive usage by several electronics, EVs, aerospace applications, and large-scale grid ESS. 

Although these leads, the enactment and security of BLI, deteriorate gradually, hovering trepidations 

about their consistency and durability [2]. A few strategic encounters in this area is to precisely evaluation 

the RUL of BLI—a parameter that envisages how long the BLI can endure to operate excellently before 

demanding renewal. Appropriate and particular BLI’s RUL assessment not only confirms the harmless 

process of BLI-powered arrangements but also enables PM, price reserves, and finest reserve managing. 

Elderly in BLIs consequences in capability dwindle and augmented inner resistance because of embryonic 

chemical-physical progressions. These deprivation instruments are frequently multifarious and 

pretentious by a diversity of influences for example rate of charge discharge, temperature, ecological 

circumstances, and practice outlines. Subsequently, modest practical or instruction-based methodologies 

are inadequate to apprehend the particulars of BLIs deterioration. The upward attentiveness in data- 

driven procedures has enabled the engagement of ML methods for BLI’s RUL calculation, amid which 

the ELM outlooks out owing to its debauched-learning swiftness, negligible anthropological involvement, 

and robust simplification competencies. ELM, a single-layer FNN, is known for its capability to acquire 

nonlinear dealings from data with great proficiency, creation it predominantly appropriate for 

instantaneous BLIs health monitoring applications. 

In this study, a novel method is proposed to BLI’s RUL assessment by incorporating variable finding, 

variable CA, and the usage of non-electrical HI with an ELM algorithm. Dissimilar conformist methods 

that depend on deeply on electrical signals such as voltage, current, and inner resistance, this investigation 

presents a innovative standpoint through combining non-electrical signals—factors that are repeatedly 

unnoticed nevertheless can deliver evocative acumens into the BLI’s degradation procedure. 

Through accumulative number of industrialized coincidences, transportation catastrophes, and 

unfluctuating disastrous actions in air-company crosswise numerous countries, in several circumstances 

the foundation was sketched back to unnoticed BLI failures or thermal runaway incidents [3-5]. These 

instances highlight the critical essential for vigorous and pre-emptive BLI’s HMS. In aeronautics, for 

occurrence, BLI are utilized in acute methods fluctuating from alternative illumination to avionics. A 

catastrophe to identify primary cryptograms of deprivation can prime to severe circumstances. 

Comparable jeopardies happen for EVs and ER storage systems, where undiagnosed BLI catastrophes or 

breakdown can consequence in organization collapses, monetary fatalities, and ecological dangers. 

The projected approach is alienated into numerous significant phases. Primarily, collected data from BLI’s 

testing or actual arrangements is composed, comprising electrical and non-electrical indicators. 

Thereafter, pre-processing procedure is implemented to remove the nonlinearity and spikes. 

Consequently, significant variables are mined, and CA is accomplished to comprehend the 

interdependencies midst these variables. The useful HIs are recognized commencing the greatest 

dominant variables, helping as a participation to the ELM algorithm, which is accomplished to envisage 

the BLI’s RUL. 

The ELM discriminate itself commencing outmoded NN through arbitrarily allocating involvement of 

weights and biases in HL, shadowed through systematically calculating the yield weights at output utilizing 

a LSS. This not only hurries the training procedure nonetheless also moderates the jeopardy of indigenous 

minima, a conjoint concern in BP-based algorithms. The debauched-learning swiftness of ELM marks it 

predominantly alluring for solicitations where instantaneous handling is indispensable, such as in-aircraft 

BLI’s 24/7-hour care or vigorous EMS. 

Numerous significant influences are completed in presented study: 1) Outline of the usage of non- 

electrical signals in BLI’s RUL calculation, which supplements a innovative measurement to HM. 2) 

Highlight the prominence of data-driven variable extraction and assortment thereafter CA in enlightening 

approache enactment. 3) Exploiting the processing competence of ELM for rapid and precise BLI’s RUL 

assessment, creation the algorithm appropriate for entrenched arrangements and instantaneous 

solicitations. 4) Listing down a perilous cavity in BLI’s protection and PM, presented study has 

undeviating insinuations for the consistency and efficacy of approaches that hinge on on BLIs. 
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In deduction, the emergent requirement on BLIs transversely miscellaneous solicitations demands for 

cannier and nonviolent HMS. Through coincidences and method catastrophes pleasant supplementary 

predominant because of insufficient BLI’s HM, there is a strong requirement for inventive methodologies 

that drive outside outmoded rehearses. Through applying progressive signal handing out, variables 

production, and the control of ELM, proposed approach intentions to provide a vigorous, accessible, and 

real-world resolution for BLI’s RUL assessment. The amalgamation of non-electrical HIs arrangements 

this work separately and unfastens novel boulevards for investigation in BLI’s monitoring, with the 

impending to augment protection, moderate interruption, and encompass the functioning life cycle of 

precarious structures wide-reaching. 

The presented paper is organized as follow: Section-1 represents the introduction and section-2 Brief 

Information about Globally Available Energy Storage (ES) Database. Methodologies is mentioned in 

section-3, which includes data collection, Extreme Learning Machine (ELM) Model Formulation, 

Performance Analysis. Section-4 shows the results and discussion. And finally, section-4 represents the 

conclusion. 

2. Brief Information about Globally Available Energy Storage (ES) Database 

In this section we covers various measurements of the installation in the global ES database, which include 

the following information: 1) per year ES installation, 2) cumulative sum of ES installation, 3) by 

application, rated power of ES installation, 4) by application, rated capacity of ES installation. The broad 

category of selected technologies includes electrochemical battery and chemical storage, electro- 

mechanical energy storage (i.e., compressed air energy storage, flywheel, and pumped hydro storage) and 

thermal energy storage (Heat thermal storage, Latent heat: Sensible heat) 

Table 1. Energy Storage Installations (Electro-chemical battery & chemical storage, Electro-mechanical 

energy storage, and thermal energy storage) 

 

Data Source 

Total available with Operational status 

Total Rated Power 

(kW) 

Units 

Count 

Total Rated Power 

(kW) 

Units 

Count 

Demonstration Projects 14583 16 3790 5 

EIA-860 (2021) 26846300 625 3944300 280 

EU Data 6520400 61 3193800 47 

GESDB 180880121 1635 163193235 1310 

Total 214261404 2337 170335125 1642 

 

Table 2. Technology-1 (Electro-chemical battery and chemical storage: electro-chemical capacitor, flow 

battery, hydrogen storage, lead-acid battery, lithium-ion battery, Nickel-based battery, Sodium based 

battery, Zinc based Battery) 

 

Data Source 

Total available with Operational status 

Total Rated Power 

(kW) 

Units 

Count 

Total Rated Power 

(kW) 

Units 

Count 

Demonstration Projects 14533 14 3740 4 

EIA-860 (2021) 26622300 619 3881300 276 

EU Data 96150 25 47950 19 

GESDB 4117008 1007 1801837 742 

Total 30849991 1665 5734827 1041 

 

Table 3. Technology-2 (Electro-mechanical energy storage: compressed air energy storage, flywheel, and 

pumped hydro storage) 

 

Data Source 

Total available with Operational status 

Total Rated Power 

(kW) 

Units 

Count 

Total Rated Power 

(kW) 

Units 

Count 

Demonstration Projects - - - - 

EIA-860 (2021) 224000 7 63000 4 

EU Data 6409850 34 3133850 27 

GESDB 173841154 414 159200644 367 
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Total 180475004 455 162397494 398 

 

Table 4. Technology-3 (Thermal energy storage: Heat thermal storage, Latent heat: ice and liquid air 

energy storage, Sensible heat: Child water, concrete blocks, rocks, sand-like particles, molten salt) 

 

Data Source 

Total available with Operational status 

Total Rated Power 

(kW) 

Units 

Count 

Total Rated Power 

(kW) 

Units 

Count 

Demonstration Projects - - - - 

EIA-860 (2021) - - - - 

EU Data 12000 1 12000 1 

GESDB 2921959 214 2190754 201 

Total 2933959 215 2202754 202 

 

As per the literature, technology-1 (Electro-chemical battery and chemical storage) is a key contributor to 

managing moderate demand. The technology-1 includes the following type of battery storage: 1) electro- 

chemical capacitor, 2) Flow battery (i.e., Hydrogen-bromine flow battery, Iron-chromium flow battery, 

Vanadium redox flow battery, Zinc-bromine flow battery, Zinc-iron flow battery, Zinc-nickel oxide flow 

battery), 3) hydrogen storage, 4) Lead-acid battery (i.e., Advanced lead-acid battery, Hybrid lead-acid 

battery/electro-chemical capacitor, lead-carbon battery, Valve regulated lead-acid battery), 5) Lithium-ion 

battery (i.e., Lithium polymer battery, Lithium-ion titanate battery, Lithium-iron phosphate battery, 

Lithium-manganese oxide battery, Lithium-nickel-cobalt-aluminum battery, Lithium-nickel-manganese- 

cobalt battery), 6) Nickel-based battery (i.e., Nickel-cadmium battery, Nickel-iron battery, Nickel-metal 

hydride battery), and 7) Sodium based battery (i.e., Sodium-ion battery, Sodium-nickel-chloride battery, 

Sodium-sulfur battery) 

 

3. METHODOLOGY 

3.1 Data Collection 

Data Collection is an important step in the development of an AI/machine learning model for RUL 

prediction and estimation of LIB using ELM. Precise, relevant and widespread data is mandatory for 

proper learning and endorsing the acceptable performance of the dynamic RUL estimation model. For 

this study, real-time experimental data is collected from NASA [6], which includes comprehensive 

information of recorded impedance, Ah value, current, voltage, temperature, and resistance for both 

charging and discharging conditions of the battery for four categories of batteries. Both charging and 

discharging procedures are performed at constant current (CC) mode at 1.5 A and 2 A, respectively. 

The tedious process of charging & discharging set-ups is clogged when the batteries touch end-of-life 

(EOL) criteria (i.e., 30% rated capacity of the battery. The collected data is used for feature extraction and 

AI/machine learning model development using ELM. The recorded qualities during charging condition 

have been represented in Figure 1, 2 and 3. 

 

  

Figure 1: Terminal voltage versus time 

representation during charging condition 

Figure 2: Current measured versus time 

representation during charging condition 



International Journal of Environmental Sciences 

ISSN: 2229-7359 

Vol. 10 No. 6s, 2024 

https://theaspd.com/index.php 

 

1027  

j 

DVI 

 

 

Fig. 3. Battery capacity (Ah) 

 

3.2 Extreme Learning Machine (ELM) Model Formulation [7] 

The ELM provides a fast and efficient learning algorithm used for training single-layer feedforward neural 

networks (SLFNs). Unlike traditional neural networks that require iterative tuning of weights through 

backpropagation, ELM randomly assigns input weights and biases to determine the output weights 

analytically. This inimitable methodology meaningfully diminishes training time although preserving 

virtuous oversimplification enactment. 

ELM enlargement succession instigates by choosing the numeral of HN and adjusting input weights and 

biases indiscriminately. Once the HL output milieu is premeditated by means of an activation function, 

the output weights are calculated by means of the MPGI. The methodology empowers more rapidly 

training and circumvents communal concerns approximating indigenous minima. 

ELMs have extended attractiveness in modern years, in meadows for instance classification, regression, 

and variables extraction and selection, particularly for enormous datasets where swiftness is essential. 

Investigators have also anticipated discrepancies like kernel-based ELM and connected consecutive ELM 

to improve tractability and enactment. 

Generally, the uncomplicatedness, swiftness, and efficiency of ELM create them a dominant 

unconventional to outmoded learning methods. By means of the continuing enlargement, ELMs are 

expected to show a progressively significant protagonist in actual ML solicitations. 

The precise demonstration and step-wise-step implementation for the ELM algorithm is as follow: 

Let us have training dataset with its target value as an output: 
[( I ,O ) I  Rn ,O  Rm ,i = 1, 2, ..... , N ] (1) 

i  i i i 

Where, Ii=input (battery parameters such as capacity, voltage, current, etc.), Oi=output (RUL), N=number 

of total training samples, n=no. of input variables, m=no. of output variables 

The output of the ELM: 
L 

f (I ) =  j • hj (I ) = H (I ) 
j =1 

(2) 

Where, hj (I ) = g(wj • I + bj ) =activation function, wj =weight vector for input neurons (j), bj =bias of j 

neurons,  =weight of output neuron, H  RNL =output at hidden layer,   RLm =output weight, and 

 = H O , (3) 

H =moore-penrose pseudoinverse of H matrix, O  RNm target output 

 

3.3 Feature Extraction 

Online health assessment of a battery is a challenging task due to its dynamic condition. Generally, the 

capacity of a battery depends on internal resistance and capacitance, which is too hard to measure an 

exact and precise value during dynamic conditions such as the running condition of EVs and operation. 

So, here is a health indicator, which is derived from the measured voltage during charging and discharging 

conditions with respect to time. 

TI
(i ) 

= T
(i) DV max 

− T
(i ) DV min (4) 
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Raw (1) (2) (3) (i) 

  

where, T(i) DV max = time at high voltage magnitude, T(i) DV min = time at low voltage magnitude and i= cycle 

number 

Now, a vector of these calculated TI for 168 cycle of discharging condition has been formulated as: 

TI = [TI  ,TI  ,TI  ,.......,TI  ]T (5) 

This vector (Eq. 5) is used as a input feature for RUL estimation of the battery. 

 

3.4 Performance Analysis 

In this paper, the performance analysis is executed by using Absolute error (AE), root mean squared 

(0  %RMSE  0.5), degree of fitness (0  R2  1) and MAPE, which are computed as follows: 
 

RMSE = 

 

R2 = 1 − 
 


n 

( Ah − Ah)2 

 

 


n 

( Ah − Ah)2 
 

(6)  

 
(7) 

 i =1 

AE
RUL 

= A
RUL 

− P
RUL 

i =1  

(8) 

MAPE = 

(1 n)

n 

A − P A 
 

*100 (9) 
RUL   

 
 

i =1 

RUL RUL RUL  
 

 
 

where, Ah =estimated capacity after transformation (predicted) 

 

4 RESULTS AND DISCUSSION 

After extraction of features, correlation analysis is performed, which provide the validation of the usability 

of the extracted features for online health monitoring and RUL estimation of the battery. 

An indirect feature using time w.r.t the voltage measurement is used for this study to evaluate the feature 

matrix TIRaw (as shown in Eq. 4 and 5). The extracted feature matrix is correlated with respect to the 

actual battery capacity as shown in Figures 4 and 5, respectively. The correlation indicates that both figures 

are looking similar and not too different. The curves shown in Fig. 4 follow the same pattern as the curves 

are available in Fig. 5. 
 

Figure 4: Extracted HI degradation Curve Figure 5: Actual Battery Capacity Curve 

 

 

The correlation analysis of both figures is tabulated in Table 5 by using Pearson Correlation, which 

indicates a high acceptability limit of the extracted feature for RUL estimation of the battery. 

 

Table 5. Correlation Analysis Representation 

Time Pearson 

Correlation 

Before 
Transformation 

0.9944 

( Ah − Ah)2  n 
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After 

Transformation 

0.9985 

 

After the correlation analysis (CA), the performance demonstration of the extracted feature for capacity 

evaluation is performed, as shown in Table 6. The performance for evaluation of capacity is analyzed for 

the different values of lambda (used in Box-Cox transformation), and R2 and MAPE are computed for 

NASA battery-5. Demonstrated result shows the high value of R2, which allow us to use extracted feature 

for RUL estimation. 

 

Table 6. Feature’s Performance Analysis 

Battery 

used 

Lamb 

da 

MAPE R2 

B#5 1.125 0.099 0.998 

 

Based on the performance analysis of the extracted feature, ELM model is developed to estimate the RUL 

using new feature matrix instead of actual capacity (Ah) of the battery and validation results are tabulated 

in Table 7 for various cycles. 

Table 3. ELM based RUL estimation 

Cycle 

number 

Measured 

RUL 

ANN- 

based 

RUL [1] 

ELM- 

based 

RUL 

AEANN AEELM Proposed approach 

Acceptability 

20 115 114 113 1 2 Less 

42 105 100 104 5 1 More 

122 85 84 84 1 1 Same 

198 65 60 63 5 2 More 

274 45 40 42 5 3 More 

 

 

5 CONCLUSIONS 

This study presents an efficient approach for estimating the RUL of lithium-ion batteries using the ELM 

model. By employing non-electrical data for feature extraction, a robust health indicator was developed, 

offering a unique perspective beyond conventional electrical signals. The extracted features were found 

to have a strong correlation with the actual capacity of the battery, validating their effectiveness for 

predictive maintenance. Additionally, a brief overview of the Globally Available Energy Storage (ES) 

Database provides context to the broader landscape of energy storage research and its growing importance. 

The proposed ELM model was evaluated using the NASA battery dataset and demonstrated superior 

performance as compared to existing models from the literature. 

Going forward, future work may focus on integrating multi-source data, including temperature, 

mechanical stress, and environmental conditions, to enhance prediction accuracy. Furthermore, adaptive 

or hybrid models combining ELM with other ML techniques could be explored to improve robustness in 

real-world applications. Expanding the model's applicability to different battery chemistries and 

configurations will also be valuable. The results from this study provide a foundation for further 

development of intelligent, data-driven battery health management systems. 
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