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Abstract

Study proposes a new method for predicting the remaining useful life (RUL) of lithium-ion batteries using the Extreme
Learning Machine (ELM) algorithm by employing advanced feature extraction techniques to identify critical
parameters influencing battery degradation. The model captures intricate patterns in battery health, enabling precise
RUL prediction by analyzing voltage, current, temperature, and capacity data. A correlation investigation executed
in this paper emphasizes the importance of designated variables, for example, discharge capacity dwindle and inner
resistance, in identifying lifecycle of the battery. The ELM is an advanced machine learning algorithm, which has
high speed for problem-solving capability, and is used to design a vigorous prognostic approach. Experiment-based
results analysis validates that the suggested method accomplishes higher correctness and computational speed compared
to conventional approaches. The algorithm's enactment is authenticated via several performance matrices (i.e., AE,
MAPE and R®), validating model’s reliable enactment in concrete actual circumstances. Presented study delivers an
appreciated algorithm for BLI health diagnosis, augmenting the consistency and reliability of BLI in EVs, RES, and
further uses. The outcomes emphasize the impending of AI/ML methods in evolving analytical maintenance for ESS.
Keywords - Artificial Intelligence, Feature extraction, Remaining-Useful-Life (RUL), Lithium-lon Battery (BLI),
Online Monitoring, Health Indicator,

ED Energy density

ESS  Energy storage system

AE Absolute Energy

MAPE Mean absolute percentage error
BLI  Lithium-ion battery

RUL  Remaining useful life

ELM Extreme Learning Machine
Al Artificial Intelligence

ML  Machine Learning

EV Electric Vehicles

SDR  Self-discharge rate

PM Predictive maintenance
FNN  Feedforward neural network
CA Correlation analysis

HI health indicators

HMS Health monitoring systems
RE Renewable energy

HL Hidden layer

LSS  Least-squares solution

BP Backpropagation
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EMS Energy management systems
MPGI Moore-Penrose generalized inverse

1. INTRODUCTION

BLIs have developed as the support of contemporary ESS due to their great ED, low SDR, and long cycle
life [1]. Their extensive usage by several electronics, EVs, aerospace applications, and large-scale grid ESS.
Although these leads, the enactment and security of BLI, deteriorate gradually, hovering trepidations
about their consistency and durability [2]. A few strategic encounters in this area is to precisely evaluation
the RUL of BLI—a parameter that envisages how long the BLI can endure to operate excellently before
demanding renewal. Appropriate and particular BLI’s RUL assessment not only confirms the harmless
process of BLI-powered arrangements but also enables PM, price reserves, and finest reserve managing.
Elderly in BLIs consequences in capability dwindle and augmented inner resistance because of embryonic
chemical-physical progressions. These deprivation instruments are frequently multifarious and
pretentious by a diversity of influences for example rate of charge discharge, temperature, ecological
circumstances, and practice outlines. Subsequently, modest practical or instruction-based methodologies
are inadequate to apprehend the particulars of BLIs deterioration. The upward attentiveness in data-
driven procedures has enabled the engagement of ML methods for BLI’s RUL calculation, amid which
the ELM outlooks out owing to its debauched-learning swiftness, negligible anthropological involvement,
and robust simplification competencies. ELM, a single-layer FNN, is known for its capability to acquire
nonlinear dealings from data with great proficiency, creation it predominantly appropriate for
instantaneous BLIs health monitoring applications.

In this study, a novel method is proposed to BLI’s RUL assessment by incorporating variable finding,
variable CA, and the usage of non-electrical HI with an ELM algorithm. Dissimilar conformist methods
that depend on deeply on electrical signals such as voltage, current, and inner resistance, this investigation
presents a innovative standpoint through combining non-electrical signals—factors that are repeatedly
unnoticed nevertheless can deliver evocative acumens into the BLI’s degradation procedure.

Through accumulative number of industrialized coincidences, transportation catastrophes, and
unfluctuating disastrous actions in air-company crosswise numerous countries, in several circumstances
the foundation was sketched back to unnoticed BLI failures or thermal runaway incidents [3-5]. These
instances highlight the critical essential for vigorous and pre-emptive BLI’s HMS. In aeronautics, for
occurrence, BLI are utilized in acute methods fluctuating from alternative illumination to avionics. A
catastrophe to identify primary cryptograms of deprivation can prime to severe circumstances.
Comparable jeopardies happen for EVs and ER storage systems, where undiagnosed BLI catastrophes or
breakdown can consequence in organization collapses, monetary fatalities, and ecological dangers.

The projected approach is alienated into numerous significant phases. Primarily, collected data from BLI’s
testing or actual arrangements is composed, comprising electrical and non-electrical indicators.
Thereafter, pre-processing procedure is implemented to remove the nonlinearity and spikes.
Consequently, significant variables are mined, and CA is accomplished to comprehend the
interdependencies midst these variables. The useful Hls are recognized commencing the greatest
dominant variables, helping as a participation to the ELM algorithm, which is accomplished to envisage
the BLI’s RUL.

The ELM discriminate itself commencing outmoded NN through arbitrarily allocating involvement of
weights and biases in HL, shadowed through systematically calculating the yield weights at output utilizing
a LSS. This not only hurries the training procedure nonetheless also moderates the jeopardy of indigenous
minima, a conjoint concern in BP-based algorithms. The debauched-learning swiftness of ELM marks it
predominantly alluring for solicitations where instantaneous handling is indispensable, such as in-aircraft
BLI’s 24/7-hour care or vigorous EMS.

Numerous significant influences are completed in presented study: 1) Outline of the usage of non-
electrical signals in BLI’s RUL calculation, which supplements a innovative measurement to HM. 2)
Highlight the prominence of data-driven variable extraction and assortment thereafter CA in enlightening
approache enactment. 3) Exploiting the processing competence of ELM for rapid and precise BLI’s RUL
assessment, creation the algorithm appropriate for entrenched arrangements and instantaneous
solicitations. 4) Listing down a perilous cavity in BLI’s protection and PM, presented study has
undeviating insinuations for the consistency and efficacy of approaches that hinge on on BLIs.
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In deduction, the emergent requirement on BLIs transversely miscellaneous solicitations demands for
cannier and nonviolent HMS. Through coincidences and method catastrophes pleasant supplementary
predominant because of insufficient BLI’s HM, there is a strong requirement for inventive methodologies
that drive outside outmoded rehearses. Through applying progressive signal handing out, variables
production, and the control of ELM, proposed approach intentions to provide a vigorous, accessible, and
real-world resolution for BLI’s RUL assessment. The amalgamation of non-electrical HIs arrangements
this work separately and unfastens novel boulevards for investigation in BLI’s monitoring, with the
impending to augment protection, moderate interruption, and encompass the functioning life cycle of
precarious structures wide-reaching.

The presented paper is organized as follow: Section-1 represents the introduction and section-2 Brief
Information about Globally Available Energy Storage (ES) Database. Methodologies is mentioned in
section-3, which includes data collection, Extreme Learning Machine (ELM) Model Formulation,
Performance Analysis. Section-4 shows the results and discussion. And finally, section-4 represents the
conclusion.

2. Brief Information about Globally Available Energy Storage (ES) Database

In this section we covers various measurements of the installation in the global ES database, which include
the following information: 1) per year ES installation, 2) cumulative sum of ES installation, 3) by
application, rated power of ES installation, 4) by application, rated capacity of ES installation. The broad
category of selected technologies includes electrochemical battery and chemical storage, electro-
mechanical energy storage (i.e., compressed air energy storage, flywheel, and pumped hydro storage) and
thermal energy storage (Heat thermal storage, Latent heat: Sensible heat)

Table 1. Energy Storage Installations (Electro-chemical battery & chemical storage, Electro-mechanical
energy storage, and thermal energy storage)

Total available with Operational status
Data Source Total Rated Power | Units Total Rated Power | Units

(kW) Count (kW) Count
Demonstration Projects | 14583 16 3790 5
EIA-860 (2021) 26846300 625 3944300 280
EU Data 6520400 61 3193800 47
GESDB 180880121 1635 163193235 1310
Total 214261404 2337 170335125 1642

Table 2. Technology-1 (Electro-chemical battery and chemical storage: electro-chemical capacitor, flow
battery, hydrogen storage, lead-acid battery, lithium-ion battery, Nickel-based battery, Sodium based
battery, Zinc based Battery)

Total available with Operational status
Data Source Total Rated Power | Units Total Rated Power | Units

(kW) Count (kW) Count
Demonstration Projects | 14533 14 3740 4
EIA-860 (2021) 26622300 619 3881300 276
EU Data 96150 25 47950 19
GESDB 4117008 1007 1801837 742
Total 30849991 1665 5734827 1041

Table 3. Technology-2 (Electro-mechanical energy storage: compressed air energy storage, flywheel, and

pumped hydro storage)
Total available with Operational status
Data Source Total Rated Power | Units Total Rated Power | Units
(kW) Count kW) Count
Demonstration Projects | - -
EIA-860 (2021) 224000 7 63000 4
EU Data 6409850 34 3133850 27
GESDB 173841154 414 159200644 367
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Total [ 180475004 455 162397494 [ 398

Table 4. Technology-3 (Thermal energy storage: Heat thermal storage, Latent heat: ice and liquid air
energy storage, Sensible heat: Child water, concrete blocks, rocks, sand-like particles, molten salt)

Total available with Operational status
Data Source Total Rated Power | Units Total Rated Power | Units
(kW) Count kW) Count
Demonstration Projects | - - - -
EIA-860 (2021) - - - -
EU Data 12000 1 12000 1
GESDB 2921959 214 2190754 201
Total 2933959 215 2202754 202

As per the literature, technology-1 (Electro-chemical battery and chemical storage) is a key contributor to
managing moderate demand. The technology-1 includes the following type of battery storage: 1) electro-
chemical capacitor, 2) Flow battery (i.e., Hydrogen-bromine flow battery, Iron-chromium flow battery,
Vanadium redox flow battery, Zinc-bromine flow battery, Zinc-iron flow battery, Zinc-nickel oxide flow
battery), 3) hydrogen storage, 4) Lead-acid battery (i.e., Advanced lead-acid battery, Hybrid lead-acid
battery/electro-chemical capacitor, lead-carbon battery, Valve regulated lead-acid battery), 5) Lithium-ion
battery (i.e., Lithium polymer battery, Lithium-ion titanate battery, Lithium-iron phosphate battery,
Lithium-manganese oxide battery, Lithium-nickel-cobalt-aluminum battery, Lithium-nickel-manganese-
cobalt battery), 6) Nickel-based battery (i.e., Nickel-cadmium battery, Nickel-iron battery, Nickel-metal
hydride battery), and 7) Sodium based battery (i.e., Sodium-ion battery, Sodium-nickel-chloride battery,
Sodium-sulfur battery)

3. METHODOLOGY

3.1 Data Collection

Data Collection is an important step in the development of an Al/machine learning model for RUL
prediction and estimation of LIB using ELM. Precise, relevant and widespread data is mandatory for
proper learning and endorsing the acceptable performance of the dynamic RUL estimation model. For
this study, real-time experimental data is collected from NASA [6], which includes comprehensive
information of recorded impedance, Ah value, current, voltage, temperature, and resistance for both
charging and discharging conditions of the battery for four categories of batteries. Both charging and
discharging procedures are performed at constant current (CC) mode at 1.5 A and 2 A, respectively.
The tedious process of charging & discharging set-ups is clogged when the batteries touch end-of-life
(EOL) criteria (i.e., 30% rated capacity of the battery. The collected data is used for feature extraction and
Al/machine learning model development using ELM. The recorded qualities during charging condition
have been represented in Figure 1, 2 and 3.

Battery terminal voltage and time relationship Current measured and time relationship
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Figure 1: Terminal voltage versus time Figure 2: Current measured versus time
representation during charging condition representation during charging condition
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3.2 Extreme Learning Machine (ELM) Model Formulation [7]

The ELM provides a fast and efficient learning algorithm used for training single-layer feedforward neural
networks (SLFNs). Unlike traditional neural networks that require iterative tuning of weights through
backpropagation, ELM randomly assigns input weights and biases to determine the output weights
analytically. This inimitable methodology meaningfully diminishes training time although preserving
virtuous oversimplification enactment.

ELM enlargement succession instigates by choosing the numeral of HN and adjusting input weights and
biases indiscriminately. Once the HL output milieu is premeditated by means of an activation function,
the output weights are calculated by means of the MPGI. The methodology empowers more rapidly
training and circumvents communal concerns approximating indigenous minima.

ELMs have extended attractiveness in modern years, in meadows for instance classification, regression,
and variables extraction and selection, particularly for enormous datasets where swiftness is essential.
Investigators have also anticipated discrepancies like kernel-based ELM and connected consecutive ELM
to improve tractability and enactment.

Generally, the uncomplicatedness, swiftness, and efficiency of ELM create them a dominant
unconventional to outmoded learning methods. By means of the continuing enlargement, ELMs are
expected to show a progressively significant protagonist in actual ML solicitations.

The precise demonstration and step-wise-step implementation for the ELM algorithm is as follow:

Let us have training dataset with its target value as an output:
[(1‘,0}1 eR",0 eR",i=1,2,..,N] 1

Where, li=input (battery parameters such as capacity, voltage, current, etc.), Oi=output (RUL), N=number
of total training samples, n=no. of input variables, m=no. of output variables
The output of the ELM:

JO=2B, b (D=HDP @)
Where, 4,(I)=g(w, eI +b,) =activation function, w,=weight vector for input neurons (j), b, =bias of j
neurons, B =weight of output neuron, H € RV =output at hidden layer, B € R*" =output weight, and
B=HO, 3)

H*® =moore-penrose pseudoinverse of H matrix, O € RV target output

3.3 Feature Extraction

Online health assessment of a battery is a challenging task due to its dynamic condition. Generally, the
capacity of a battery depends on internal resistance and capacitance, which is too hard to measure an
exact and precise value during dynamic conditions such as the running condition of EVs and operation.
So, here is a health indicator, which is derived from the measured voltage during charging and discharging
conditions with respect to time.

T

()DV max T(i)DVmin

| 4
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where, T, ... = time at high voltage magnitude, 7,,,,;, = time at low voltage magnitude and i= cycle

number
Now, a vector of these calculated TI for 168 cycle of discharging condition has been formulated as:
Tl =[TLy) Tly) Tl e T 1T 5)

This vector (Eq. 5) is used as a input feature for RUL estimation of the battery.

3.4 Performance Analysis
In this paper, the performance analysis is executed by using Absolute error (AE), root mean squared
(0 <%RMSE <£0.5), degree of fitness (0 < R* <1)and MAPE, which are computed as follows:

n

RMSE = |3 (4h - ARy /n (6)

i=1

R? =1—(2(Ah—27i)2 zn(Ah—Z"h)zj (7)
AERUL = ‘AR _PRULJ \ (8)
MAPE = (n)Y, 4 -P A4 %100 (9)

RUL |K / B ‘ RUL  RUL /‘ RUL U

where, Ah=estimated capacity after transformation (predicted)

4 RESULTS AND DISCUSSION

After extraction of features, correlation analysis is performed, which provide the validation of the usability
of the extracted features for online health monitoring and RUL estimation of the battery.

An indirect feature using time w.r.t the voltage measurement is used for this study to evaluate the feature
matrix 77,,, (as shown in Eq. 4 and 5). The extracted feature matrix is correlated with respect to the
actual battery capacity as shown in Figures 4 and 5, respectively. The correlation indicates that both figures
are looking similar and not too different. The curves shown in Fig. 4 follow the same pattern as the curves
are available in Fig. 5.

Extracted HI Degradation Curve Actual Capacity Degradation Curve
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Figure 4: Extracted HI degradation Curve Figure 5: Actual Battery Capacity Curve

The correlation analysis of both figures is tabulated in Table 5 by using Pearson Correlation, which
indicates a high acceptability limit of the extracted feature for RUL estimation of the battery.

Table 5. Correlation Analysis Representation

Time Pearson
Correlation

Before 0.9944

Transformation
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After
Transformation

0.9985

After the correlation analysis (CA), the performance demonstration of the extracted feature for capacity
evaluation is performed, as shown in Table 6. The performance for evaluation of capacity is analyzed for
the different values of lambda (used in Box-Cox transformation), and R? and MAPE are computed for
NASA battery-5. Demonstrated result shows the high value of R?, which allow us to use extracted feature
for RUL estimation.

Table 6. Feature’s Performance Analysis

Battery Lamb | MAPE | R2
used da
B#5 1.125 | 0.099 | 0.998

Based on the performance analysis of the extracted feature, ELM model is developed to estimate the RUL
using new feature matrix instead of actual capacity (Ah) of the battery and validation results are tabulated
in Table 7 for various cycles.

Table 3. ELM based RUL estimation

Cycle Measured ANN- ELM- AE AEg v Proposed approach

number RUL based based Acceptability
RUL[1] RUL

20 115 114 113 1 2 Less

42 105 100 104 5 1 More

122 85 84 84 1 1 Same

198 65 60 63 5 2 More

274 45 40 42 5 3 More

5 CONCLUSIONS

This study presents an efficient approach for estimating the RUL of lithium-ion batteries using the ELM
model. By employing non-electrical data for feature extraction, a robust health indicator was developed,
offering a unique perspective beyond conventional electrical signals. The extracted features were found
to have a strong correlation with the actual capacity of the battery, validating their effectiveness for
predictive maintenance. Additionally, a brief overview of the Globally Available Energy Storage (ES)
Database provides context to the broader landscape of energy storage research and its growing importance.
The proposed ELM model was evaluated using the NASA battery dataset and demonstrated superior
performance as compared to existing models from the literature.

Going forward, future work may focus on integrating multi-source data, including temperature,
mechanical stress, and environmental conditions, to enhance prediction accuracy. Furthermore, adaptive
or hybrid models combining ELM with other ML techniques could be explored to improve robustness in
real-world applications. Expanding the model's applicability to different battery chemistries and
configurations will also be valuable. The results from this study provide a foundation for further
development of intelligent, data-driven battery health management systems.
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