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Abstract: Huge contributors of pollution of air and water around industrial areas are industrial clusters, but the 
difficulty of determining the contamination origin in the area is not an easy task since the nature of emissions is 
relatively complicated and industrial operations are overlapping. Traditional monitoring networks can be dependable, 
but they are typically limited in spatial resolution and can be expensive to operate, which is not sufficient to accomplish 
source-level attribution within highly industrialized areas. This research suggests a source attribution AI-based pollution 
framework, which combines satellite images with deep learning models to detect, classify, and track industrial emissions 
of pollution. A convolutional neural network (CNN) was trained using Sentinel-2 and Landsat-8/9 multispectral 
data, as well as using derived indexes like aerosol optical depth (AOD), land surface temperature (LST) and vegetation 
stress indicators to identify patterns of pollution, and match them to areas of industrial activity. Such methodology 
was proven to be effective on the example of several industrial clusters, such as petrochemical and steel, as well as 
textile hubs where the hotspots of emissions were observed with great precision. Findings indicate that remote sensing 
with AI can be used to identify the source of pollution and map its location up to 87 percent. The paper notes the 
opportunities of using geospatial intelligence with machine learning to facilitate real-time environmental monitoring, 
policy compliance and sustainable industrial management. 
Keywords: AI-driven pollution attribution, Industrial clusters, Satellite imagery, Deep learning, Remote sensing, 
Environmental monitoring 
 
I. INTRODUCTION 
The world has thrived on industrialization as one of the pillars of economic growth and social 
development, and, however, the high growth rate has caused a substantial degradation of the 
environment. Industrial clusters, specifically, have become centralized in terms of production and energy 
consumption, most of the time emitting intricate combinations of pollutants into the immediate 
atmosphere, soil and water system. In contrast to isolated factories, clusters produce overlapping 
emissions across several sources, such as power plants, refineries, chemical processing units, steelworks, 
and textile manufacturing facilities, and source-level attribution is challenging in this case. Conventional 
pollution surveillance systems are highly dependent on manual sampling and ground-based sensor 
networks which, despite being accurate, have inherent spatial limitations, are costly and inefficient to 
logistically support. The shortcomings pose significant inadequacies in determining the pollution 
hotspots, measuring the intensity of the emissions, and control of regulatory compliance on the source 
level. As concern about communal health, climatic change as well as long term industrial administration 
grows, there is an immediate demand of enhanced methodologies, which can provide trustworthy, big 
scale, and near-real-time source attribution. It is in this regard that the artificial intelligence (AI) and 
remote sensing (RS) technologies come in as revolutionary tools. AI-based models are capable of 
processing large volumes of data and identifying complex spatial patterns and offer source-intensive 
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information, whereas satellite images can feature extensive spatial coverage, update regularly and offer 
cost-effective monitoring of the environment. 
Over the past few years, satellite remote sensing and deep learning have been converged, which has 
contributed greatly to the abilities of environmental monitoring systems. Sentinel-2, Landsat-8/9 and 
MODIS satellites can offer essential parameters, including aerosol optical depth (AOD), land surface 
temperature (LST), normalized difference vegetation index (NDVI) and surface reflectance properties, 
using multispectral and hyperspectral satellite data. Not only are these parameters a way of capturing the 
physical state of the environment, but they also provide proxies of industrial activity and dispersion of 
pollution. As an example, the presence of high AOD levels along an industrial belt could be related to 
high levels of particulate matter emission whereas the localized high in LST could be associated with 
thermal emissions release of factories. Deep learning models, especially convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs) are most effective at processing such high-dimensional 
data in order to learn spatial-temporal features and detect patterns that cannot be easily learned by other 
traditional methods of statistics. With a combination of these AI models and geospatial data, researchers 
can go beyond the stage of identifying pollution and attribute emissions to individual industrial sources 
or clusters. This is the necessary shift towards attaching blame to address the issue of policy 
implementation, enforcement of regulations, and planning sustainable development of the industrial 
sector. In spite of these encouraging developments, there are still a number of challenges related to 
attributing pollution sources. The dissimilarity of industrial clusters, which harbour numerous emission 
sources operating in a tight locality causes overlapping signatures in remote sensing information resulting 
in the inability to separate individual contributions. The changing aspects of atmospheric conditions (e.g., 
the speed of the wind, humidity, and temperature inversion) also make it difficult to spread and capture 
pollutants in space. Deep learning models need large  odellin datasets to be trained, which can be hard 
to find in the environmental literature because of the challenge of getting credible ground truth data in 
a wide range of industrial settings. Moreover, the majority of existing research has been devoted to urban 
air quality estimation or regional climate  odelling, where a research gap exists, namely, research that 
concentrates on source attribution in terms of industrial clusters. This work attempts to fuse that gap by 
creating an AI-informed framework that blends remote sensing signals with deep learning algorithms to 
precisely detect and attribute the sources of pollution in the chosen industrial clusters. This way it will 
not just aid in the development of environmental informatics, but also develop actionable intelligence 
among policymakers, regulators, and the industries themselves. The suggested framework focuses on 
scalability, flexibility, and openness, which is why it is applicable to national-level systems of monitoring 
and international climate commitments. 
 
II. RELEATED WORKS 
The convergence of artificial intelligence, remote sensing, and industrial pollution studies has been 
gradually increasing over the past few years, especially owing to the pressing global need to have more 
resilient and scalable pollution surveillance systems. Conventional methods of environmental monitoring 
have mostly been based on the use of ground sensors and localized measures of air quality, which in spite 
of being reliable, cannot represent the spatial heterogeneity of pollution emission of large-scale industrial 
clusters. Initial research has highlighted the value of remote sensing platforms like MODIS, Landsat, and 
Sentinel-2 platforms to measure atmospheric and surface parameters pertaining to pollution and has 
shown that multispectral indices like aerosol optical depth (AOD), land surface temperature (LST), and 
vegetation stress indices can be useful proxies to the dispersion of pollutants [1]. To illustrate, Gupta et 
al. used Landsat-based indices to determine the hotspots of the particle matter in petrochemical clusters 
in South Asia and found that satellite data could be used to add to ground-based monitoring systems to 
give a better picture of air quality in industries [2]. In the same vein, Zhang and co-authors used MODIS 
AOD data to urban industrial areas in China and formulated regression equations that linked satellite-
retrieved AOD variables to PM 2.5 levels, which indicated the utility of satellite- based pollution indices 
[3]. Although these attempts made remote sensing in environmental monitoring a possibility, they were 
mostly confined to detection, but not source attribution. 
The introduction of artificial intelligence, specifically deep learning has achieved major milestones in 
deriving meaningful features of complex remote sensing data. To classify the patterns of pollutant, to 
predict the dispersion of pollutants, and to improve the spatio-temporal resolution of the emission data, 
convolutional neural networks (CNNs), long short-term memory (LSTM) networks, and hybrid 
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architectures have been used [4]. As an example, Li et al. showed that CNN-based models that were 
trained on Sentinel-2 images were more accurate at predicting plumes of sulfur dioxide (SO 2 ) emitted 
by coal-fired power plants compared to more traditional regression models [5]. Chien et al. also tested 
LSTM networks with MODIS time-series predicting NO 2 over industrial areas in Taiwan, and claimed 
prediction errors of less than 85% [6]. These deep learning architectures are especially effective in the 
context of source attribution, where pollution signature is nonlinear, overlapping, and embedded in high 
dimensional satellite images. Nevertheless, the availability of labeled ground-truth datasets to train AI 
models is one of the ongoing issues that Qi et al. note, since different industries, geographic regions, and 
climatic conditions contaminate the environment in different ways, and generalizing proves challenging 
[7]. According to more recent bibliometric analysis, including that of Santos et al., there is an increasing 
yet still disconnected body of research on AI-enabled pollution monitoring that demands more integrated 
frameworks that unite geospatial, atmospheric, and industrial streams of data [8]. The industrial clusters 
offer a special scenario in the context of attributing sources of pollution due to the presence of a variety 
of industries in a geographically constrained region. Special industrial belt studies have found intricate 
relations among type of emissions, meteorological dispersion and land cover reactions. To elucidate the 
importance of thermal indicators in the attribution of pollution, Singh and Kumar revealed high spatial 
correlations between Sentinel derived anomalies of surface temperature and the dispersion of particulate 
matter in the example regions of steel and thermal power clusters in India [9]. Likewise, Huang et al. 
examined a case of an industrial cluster in the Pearl River Delta region of China, where high-resolution 
Sentinel-2 data fused with urban emissions inventories was useful to identify textile-intensive subregions 
as disproportionate sources of NO 2 [10]. Hyperspectral imagery has also been tried in gaseous pollutant 
sensors; Chen et al. were able to employ EO-1 Hyperion data to track petrochemical complexs methane 
emissions, proving that hyperspectral sensors can classify emission types [11]. Although these promising 
case studies exist, the majority of the existing works do not go far enough to attribute pollution to specific 
industries within clusters, and this is where AI-powered attribution models are aimed at filling the existing 
gap. 
Recent developments in UAV based remote sensing have also offered some helpful parallels in terms of 
monitoring pollution. Oberski et al. combined UAV multispectral images and spatial clustering 
algorithms to determine sources of macroplastic and particulate pollution in urban-industrial areas with 
high spatial accuracy in the hotspots [12]. Even though they have a better resolution than satellites, UAVs 
are not feasible at regional or nation-wide levels because of their limited coverage and high operational 
expenses. This has led researchers like Radhakrishnan et al. to suggest hybrid models that involve the use 
of satellite images to detect events at large scale and UAVs to validate the results at smaller scales therefore 
forming a multi-tier monitoring systems [13]. Besides, recent research on geospatial prioritization methods 
like the Analytical Hierarchy Process (AHP) combined with GIS has been used in the context of industrial 
pollution vulnerability analysis implying that spatial prioritization can be transferred into the context of 
more specific interventions source attribution models [14]. Also, the fusion of health and environmental 
databases has been considered as a parallel direction of source attribution. An example of such studies is 
Petit and Vuillerme who demonstrated that the association of health outcomes of farming and industrial 
communities with geospatial indicators of pollution might reveal the concealed connections between 
emissions and public health cost [15]. These interdisciplinary steps support the necessity of AI-based 
attribution models that should not be restricted to environmental data but include socioeconomic, 
health, and regulatory data to conduct the whole analysis. Taken together, these studies draw a reliable 
basis on how AI-based pollution source attribution models are to be designed. Although satellite remote 
sensing has already shown its potential when it comes to identifying the dynamics of large-scale pollution, 
as well as AI techniques have demonstrated that they can provide the necessary power when working with 
high-dimensional data, the combination of the two methods in individual cases (i.e., source attribution 
in industrial clusters) is still in its infancy. Three significant gaps identified in the reviewed literature 
include: (i) the lack of dedicated AI-RS models specifically designed to process source-level attribution in 
complex industrial regions, (ii) the unavailability of large-scale ground-truth data to boost the training and 
validation of deep learning models, and (iii) the fact that hybrid models have not been used extensively 
to process attribution tasks based on multispectral, hyperspectral, and UAV data. The proposed study 
provides answers to these gaps by proposing a new AI-based attribution system, which uses deep learning 
architecture that is trained on satellite images to identify, categorize, and assign pollution throughout the 
chosen industrial clusters. The study goes beyond technological innovation to provide the practical 
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contributions needed by the policymakers, regulators, and industries at large by placing this framework 
in the larger context of sustainable industrial management, environmental justice, and climate 
governance. 
 
III. METHODOLOGY 
3.1 Research Design 
The research employs a mixed-method, spatial–temporal design that integrates remote sensing data, deep 
learning algorithms, and ground-truth validation. The objective is to characterize industrial pollution not 
only at the detection level but also at the source attribution level, by associating pollution hotspots with 
specific industrial activities within clusters. The framework follows a three-tier approach: (i) acquisition 
and preprocessing of satellite imagery, (ii) development of an AI-driven attribution model using deep 
learning, and (iii) spatial validation of detected hotspots against industrial activity records and field 
measurements [16]. 
3.2 Study Area 
The study focuses on three representative industrial clusters in India: (a) Jamnagar (petrochemical hub, 
Gujarat), (b) Durgapur (steel and coal-intensive industries, West Bengal), and (c) Tirupur (textile and 
dyeing units, Tamil Nadu). These clusters were selected based on their high emission intensities, diverse 
industrial compositions, and documented environmental concerns [17]. 
Table 1: Study Area Characteristics 

Region Dominant 
Industries 

Major Emissions Surrounding Land 
Use 

Climatic 
Conditions 

Jamnagar Oil refineries, 
Petrochemicals 

SO₂, NOx, VOCs Coastal belt, semi-arid 
agriculture 

Hot & dry, coastal 
humidity 

Durgapur Steel, Power plants PM2.5, SO₂, CO Urban-industrial mix, 
forest patches 

Sub-humid, high 
rainfall 

Tirupur Textile, Dyeing units NO₂, organic 
dyes, effluents 

River-fed agriculture Tropical monsoon 

3.3 Data Sources and Acquisition 
Multispectral and hyperspectral remote sensing datasets were acquired for a three-year period (2022–
2024). The key datasets included: 
• Sentinel-2 MSI (10–20 m, 13 bands) for vegetation and aerosol indicators. 
• Landsat-8/9 OLI-TIRS (30 m, 11 bands) for surface temperature and pollution plumes. 
• MODIS Terra/Aqua (1 km, daily coverage) for long-term aerosol optical depth. 
• Ancillary data such as meteorological records, industrial emission inventories, and land use maps were 
used for contextual validation [18]. 
Table 2: Remote Sensing Datasets and Derived Indices 

Dataset Resolution Temporal Coverage Derived Indices/Parameters 
Sentinel-2 10–20 m 2022–2024 NDVI, NDSI, AOD proxies 
Landsat-8/9 30 m 2022–2024 LST, SAVI, pollution plumes 
MODIS 1 km 2022–2024 Aerosol Optical Depth (AOD), time-series trends 

3.4 Deep Learning Framework 
To attribute pollution to industrial sources, a Convolutional Neural Network (CNN) was trained using 
labeled imagery derived from emission inventories and ground stations. Features included: 
• Spectral signatures (reflectance in visible–infrared bands). 
• Spatial features (hotspot clustering, plume dispersion patterns). 
• Temporal dynamics (time-series fluctuations of emissions). 
The CNN was combined with an LSTM (Long Short-Term Memory) module to capture temporal 
dependencies in emission trends [19]. Training was conducted using 70% of the dataset, with 20% used 
for validation and 10% for testing. The model performance was evaluated using accuracy, F1-score, and 
confusion matrices. 
3.5 Preprocessing and Spatial Analysis 
Satellite data underwent the following preprocessing steps: 
• Atmospheric correction (Sen2Cor for Sentinel; LEDAPS for Landsat). 
• Cloud masking and radiometric calibration. 
• Layer stacking of spectral bands. 
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• Spatial interpolation using Kriging in ArcGIS to generate emission heatmaps [20]. 
Ground GPS data from monitoring stations were integrated to validate spectral anomalies, while emission 
inventories were georeferenced to enable industrial–pollution source matching. 
3.6 Model Validation and Performance Assessment 
Validation followed a three-stage process: 
1. Cross-validation against ground air quality monitoring stations. 
2. Industrial inventory check for cross-matching predicted hotspots with actual industries. 
3. Confusion matrix analysis to measure model performance. 
Table 3: Model Evaluation Metrics 

Metric Jamnagar (Petrochemical) Durgapur (Steel) Tirupur (Textile) 
Accuracy (%) 88.2 85.7 87.4 
Precision (%) 86.5 83.9 85.2 
Recall (%) 89.1 84.6 86.7 
F1-Score (%) 87.8 84.2 85.9 

3.7 Ethical and Environmental Considerations 
All industrial and satellite data were obtained from publicly available or government-licensed datasets. No 
invasive field testing was conducted without prior approvals. Confidential industrial emission records 
were anonymized before inclusion. The study follows FAIR (Findable, Accessible, Interoperable, 
Reusable) data principles to ensure transparency and replicability [21]. 
3.8 Limitations and Assumptions 
• Attribution accuracy depends on the quality of emission inventories and ground-truth datasets. 
• Overlapping plumes may introduce classification errors in clusters with mixed industries. 
• Temporal resolution of satellite imagery (5–16 days) may limit detection of short-lived emissions 
[22][23]. 
 
IV. RESULT AND ANALYSIS 
4.1 Overview of Model Performance 
The AI-driven attribution framework successfully identified pollution hotspots across the three industrial 
clusters with high accuracy. The CNN–LSTM model achieved an overall classification accuracy of 87%, 
with Jamnagar showing the highest detection consistency due to the strong spectral signatures of 
petrochemical emissions. Durgapur, being coal and steel dominated, presented challenges due to 
overlapping plumes, while Tirupur’s textile emissions were detected with moderate precision owing to 
their diffuse dispersion patterns. 
Table 4: Model Performance Across Industrial Clusters 

Region Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
Jamnagar 88.2 86.5 89.1 87.8 
Durgapur 85.7 83.9 84.6 84.2 
Tirupur 87.4 85.2 86.7 85.9 

4.2 Spatial Distribution of Hotspots 
Hotspot analysis revealed distinct pollution patterns unique to each cluster. In Jamnagar, emission 
concentrations were highest around refinery belts, spreading towards the coastal line. Durgapur exhibited 
dense hotspots along steel plant corridors and coal-fired power stations, while Tirupur showed localized 
hotspots along riverbanks where textile dyeing and effluent discharge were concentrated. 

 
Figure 1: Attribution Modelling [24] 
Table 5: Identified Hotspot Zones and Source Attribution 

Region Hotspot Area (km²) Primary Source Identified Secondary Contributors 
Jamnagar 82.6 Refineries, Petrochemical Units Transport Corridors 
Durgapur 74.3 Steel Plants, Power Stations Coke Ovens, Brick Kilns 
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Tirupur 65.8 Textile Dyeing Clusters Small-Scale Industrial Units 
4.3 Correlation with Remote Sensing Indices 
Remote sensing indices showed clear deviations in polluted areas compared to cleaner zones. NDVI values 
were consistently lower in hotspot regions, suggesting vegetation stress due to air pollutants. LST values 
were elevated near emission-heavy zones such as Jamnagar’s refinery complexes and Durgapur’s power 
plants, while AOD levels strongly corresponded with identified emission plumes. 
Table 6: Remote Sensing Indices in Hotspot Areas 

Region Avg. NDVI Avg. LST (°C) Avg. AOD Pollution Attribution Confidence (%) 
Jamnagar 0.42 34.5 0.76 89.3 
Durgapur 0.48 33.2 0.71 85.6 
Tirupur 0.51 32.1 0.65 84.8 

4.4 Temporal Trends 
The temporal analysis revealed that emission intensity peaked during the summer months in all three 
clusters, coinciding with high production cycles and reduced atmospheric dispersion. In Tirupur, textile-
related emissions spiked during pre-monsoon months, while Jamnagar and Durgapur showed year-round 
persistence of elevated emission levels, reflecting their continuous industrial operations. 

 
Figure 2: Steps of Using Predictive AI 
 
4.5 DISCUSSION OF KEY FINDINGS 
The findings establish a direct connection between industrial activity and detectable emission signatures 
using satellite-based AI models. Jamnagar demonstrated strong petrochemical emission footprints easily 
traceable through AOD and LST anomalies, while Durgapur presented challenges due to overlapping 
particulate emissions but still yielded consistent classification through AI-assisted attribution. Tirupur 
showed the added value of combining vegetation stress indices with emission mapping, particularly in 
identifying diffuse textile effluent discharges. The strong correlation between AI predictions and ground-
truth validation demonstrates the robustness of the framework, making it a scalable tool for nationwide 
industrial monitoring. 
 
V. CONCLUSION 
As the current paper has shown, artificial intelligence and satellite-based remote sensing can offer a 
sustainable, inexpensive, and efficient mechanism of identifying the sources of pollution in industrial 
clusters, which can be viewed as one of the most urgent issues in the modern environmental monitoring 
systems. Using deep learning models, namely a hybrid CNNLSTM architecture trained on multispectral 
and hyperspectral satellite data, the study managed to discover the relationship between spectral anomaly 
and industrial emissions, which allows overcoming the detection stage and focusing on attributing the 
source. As the case studies of Jamnagar, Durgapur and Tirupur reveal, this framework is flexible enough 
to be applied to a broad range of industrial settings, including petrochemical, steel, and textile clusters, 
with unique patterns of emissions, which were precisely mapped, classified, and compared to ground-
truth inventories. The findings indicate a high level of spatial coherence between the detected hotspots 
and the existing industrial operations, and also a high level of accuracy ranging over 85 percent, and also 
highlight the prospect of combining indices like NDVI, LST, and AOD in order to render them more 
interpretable. It is important to note that the temporal analysis revealed unique pattern of intensities of 
pollution based on seasonal changes which on the one hand supports the fact that AI-based models can 
be used to monitor the dynamics of emissions across time. These results have major implications in both 
environmental governance and industrial management: to policymakers, the model offers a more 
evidence-based instrument to rank regulatory interventions, enforce compliance, and develop adaptive 
strategies to reduce emissions in high-risk clusters, and to researchers, it creates new opportunities to 
introduce to attribution models multimodal data, such as UAV imagery and IoT sensor networks, to 
improve its granularity and reliability. Although the framework is highly scalable, the study has also 
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indicated a few limitations that include reliance on emission inventories, overlapping plumes in densely 
industrialized areas, and the time limits of satellite revisit cycles all of which present opportunities to 
improve the framework. Future studies would need to include the combination of AI-based attribution 
with atmospheric dispersion models and health impact analysis to give a comprehensive view of the 
footprint of industrial pollution, and also extend the approach to transborder industrial corridors where 
transboundary emissions can be a problem in policy. In general, the paper highlights the paradigmatic 
potential of AI integration with RS in responding to the pressing collective requirement of sustainable 
industrial surveillance, which provides a roadmap on how sophisticated computational models and 
geospatial intelligence can be used to reinforce environmental responsibility, ecosystem health, and 
enhance long-term climate and development objectives. 
 
REFERENCES 
[1] Y. Zhang, H. Wang, and L. Liu, “Satellite remote sensing of air pollution: Advances, challenges, and perspectives,” Remote 
Sensing of Environment, vol. 261, pp. 112482, 2021. 
[2] R. Gupta, A. Sharma, and P. Roy, “Assessing particulate matter hotspots using Landsat imagery: A case of petrochemical 
clusters in South Asia,” Environmental Monitoring and Assessment, vol. 194, no. 6, pp. 425–437, 2022. 
[3] X. Zhang, J. Huang, and Y. Wang, “Satellite-based PM2.5 estimation over industrial regions using MODIS AOD,” 
Atmospheric Environment, vol. 280, pp. 119090, 2022. 
[4] F. Qi, T. Li, and H. Sun, “Deep learning applications in air pollution monitoring and prediction: A review,” Environmental 
Pollution, vol. 306, pp. 119359, 2022. 
[5] H. Li, Z. Chen, and K. Zhang, “CNN-based detection of sulfur dioxide plumes from coal-fired power plants using Sentinel-2 
imagery,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 188, pp. 186–198, 2022. 
[6] C. Chien, W. Hsu, and T. Lee, “Forecasting industrial NO₂ emissions using MODIS and LSTM deep learning,” Ecological 
Indicators, vol. 142, pp. 109230, 2023. 
[7] M. Qi, L. Liu, and S. Yang, “Data challenges in AI-driven environmental monitoring: Ground-truth scarcity and model 
generalization,” Environmental Modelling & Software, vol. 158, pp. 105547, 2022. 
[8] C. A. G. Santos, R. M. da Silva, and P. S. Bhanja, “Bibliometric review of AI-enabled pollution monitoring: Current status 
and future directions,” Environmental Science and Pollution Research, vol. 31, pp. 22925–22944, 2024. 
[9] A. Singh and V. Kumar, “Remote sensing-based analysis of steel and coal clusters in India: Linking LST anomalies with 
particulate emissions,” Environmental Research Letters, vol. 16, no. 12, pp. 125006, 2021. 
[10] J. Huang, C. Li, and P. Zhao, “Attribution of NO₂ emissions in the Pearl River Delta using Sentinel-2 and urban inventories,” 
Science of the Total Environment, vol. 858, pp. 159723, 2023. 
[11] Y. Chen, S. Li, and G. Zhou, “Detection of methane emissions from petrochemical complexes using hyperspectral EO-1 
Hyperion imagery,” Remote Sensing, vol. 13, no. 9, pp. 1793, 2021. 
[12] T. Oberski, B. Walendzik, and M. Szejnfeld, “Monitoring industrial pollution with UAV multispectral imagery: Hotspot 
detection and validation,” Sustainability, vol. 17, no. 5, pp. 1997, 2025. 
[13] T. Radhakrishnan, D. Ghosh, and R. Prasanna, “AHP-GIS based assessment of pollution vulnerability in industrial zones,” 
Environmental Science and Pollution Research, vol. 31, no. 14, pp. 21797–21810, 2024. 
[14] N. Petit and N. Vuillerme, “Linking industrial pollution and community health through administrative datasets: A scoping 
review,” JMIR Public Health and Surveillance, vol. 11, pp. e45672, 2025. 
[15] P. J. Landrigan et al., “The Minderoo-Monaco Commission on Plastics and Human Health,” Annals of Global Health, vol. 
89, no. 1, pp. 23, 2023. 
[16] E. Brandes, M. Henseler, and P. Kreins, “Identifying hotspots for pollution contamination in industrial soils: A spatial 
modeling approach,” Environmental Research Letters, vol. 16, no. 10, pp. 104021, 2021. 
[17] C. Bian, L. Yang, and X. Zhao, “Industrial activity expansion and its impact on environmental quality in the Yangtze River 
Basin,” Land, vol. 13, no. 7, pp. 908, 2024. 
[18] A. Danilov and E. Serdiukova, “Automatic detection of pollution plumes using satellite imagery and machine learning,” 
Sensors, vol. 24, no. 16, pp. 5089, 2024. 
[19] M. de Souza, R. Lamparelli, and T. Franco, “Mapping agricultural and industrial plastic waste generation using time-series 
approaches,” ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. X-3-2024, pp. 101–108, 
2024. 
[20] L. Lucas, C. Brown, and D. Robertson, “Gaps in water and air quality modeling for industrial pollution systems,” Water, 
vol. 17, no. 8, pp. 1200, 2025. 
[21] L. Rosati, F. Carraturo, and V. Spagnuolo, “Remote sensing indicators for detecting anthropogenic pollution impacts,” 
Water, vol. 16, no. 18, pp. 2637, 2024. 
[22] F. Cavazzoli, R. Ferrentino, and C. Scopetani, “Analysis of micro- and nanopollutants in industrial environments: 
Techniques and risks,” Environmental Monitoring and Assessment, vol. 195, no. 12, pp. 1483, 2023. 
[23] B. Futa, J. Gmitrowicz-Iwan, and I. Parašotas, “Innovative monitoring strategies for sustainable industrial zones,” 
Sustainability, vol. 16, no. 21, pp. 9481, 2024. 
[24] S. Fuyao, W. Liangjie, and L. Xiang, “Accuracy assessment of cropland and industrial datasets in satellite-based monitoring,” 
Remote Sensing, vol. 17, no. 11, pp. 1866, 2025. 
[25] R. Râpă , E. Cârstea, and C. Predescu, “Trends in industrial plastic and pollutant management for sustainable development,” 
Recycling, vol. 9, no. 2, pp. 30, 2024. 
 
 


