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Abstract—The large human scope of loss, property damage, and ecosystem disruptions associated with the frequency 
and severity of adverse weather changes are also increasing as a result of climate change. Existing weather forecasting 
infrastructures are relatively accurate but have a delayed response time in convergence and poor precision of forecasts 
of short-lived weather events like hurricanes, tornados, and flash floods. This paper discusses how to incorporate satellite 
based observational data with advanced machine learning (ML) algorithms to provide faster and more precise 
anticipation of severe weather events. Combining the features of multispectral, thermal, and radar-based satellite 
imagery, ML can locate obscured spatiotemporal patterns and deliver short-range predictions with extended lead times. 
A combination of convolutional neural networks (CNNs) to identify spatial features, and recurrent neural networks 
(RNNs) to detect the trends in time was used. The outcomes show that theML-forecasting system has a higher accuracy 
in determining the intensity of storms and in tracking the path of the storm than the traditional numerical weather 
prediction (NWP) models. Notwithstanding, the real-life application is still subject to practical limitations, including 
latency of the data, loss of information through clouds, overfitting of models, and modeling costs in real-time 
application. Future work needs to be on the integration of multiple satellite constellations, transfer learning to make 
the models more general and cloud-based systems that can deliver usable preliminary warnings in advance of a disaster 
threatening a target region. 
Keywords— Satellite Data, Machine Learning, Severe Weather Forecasting, Convolutional Neural Networks, Early 
Warning Systems, Climate Resilience. 
 
I. INTRODUCTION 
There has been a recent emergence of severe weather incidences, such as hurricanes, cyclones, 
thunderstorms, tornadoes, and flash floods, that qualify as one of the most disastrous natural hazards of 
21st century. As the rate of climate change escalates, more and more of such events are expected to occur 
and with greater magnitude resulting in significant losses among humans, economies and even species. 
As it has been recently reported by the Intergovernmental panel on Climate change (IPCC), weather-
related-disasters cost billions of Dollars annually around the world, but suffer a disproportionate share of 
the populace in vulnerable regions. The reliability and timeliness of prediction of severe weather events 
are therefore challenging scientific problems as well as social requirements: climate resilience, preparing 
to meet disaster, and sustainable development [1]. 
Conventionally, weather forecasting has resorted to Numerical Weather Prediction (NWP) models which 
are based on physical equations of the thermodynamics and fluid dynamic laws of the atmosphere. 
Although these models are well developed and appropriate to long-term climatic situations, they have 
shortcomings at the level of short-term severe weather forecasting [6]. Particularly, NWP models are 
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computationally expensive, still tend to exhibit initialization delays, as well as not consistently capturing 
small scale, localized and short-lived weather phenomena like convective storms. Such a delay in forecasts 
largely constrains the capacity of early warning and hence the efficiency of emergency response. 
The introduction of Earth observation satellites has changed how meteorological analyses were carried 
out as they deliver real-time, large scale atmospheric data. Satellites like MODIS, Sentinel, and GPM are 
known to provide multispectral imagery, thermal maps, precipitation readings as well as wind vectors 
estimations among other things, which, taken together, can give a good idea about the dynamics of 
weather. Nonetheless, they are big and complex with high dimensions, and thus making them 
cumbersome to analyze immediately and decipher their meaning. Conventional statistical analysis cannot 
make full use of these heterogeneous data, especially when quick decision making is a necessity in disaster 
situations [3]. 
Machine Learning (ML) in this case presents a revolutionary solution to enhance the currently existing 
forecasting systems. The key advantages of ML algorithms, especially the deep learning models, are to deal 
with nonlinear relationships, identify latent spatiotemporal patterns, and operate large-scale datasets. 
Convolutional Neural Networks (CNNs) have the ability to identify spatial processes (in the case of storm 
formations and cloud structures), whereas Recurrent Neural Networks (RNNs) and Long Short-Term 
Memory (LSTM) networks detect the sequence in time processes (in the case of storm evolution and storm 
track) [9]. An advantage of integrating these techniques with satellite data is that the forecasting models 
reduce the processing time, improve the accuracy of predictions, and give more advance warning than the 
traditional fore-casting method. 
The driving force behind the present study is the high global demand of fast accurate and practically 
viable prediction of severe weather. Disaster management authorities and governments, as well as 
communities, need flood predictions that not only forecast the occurrence of the severe weather but also 
give enough advance notice to evacuate, protect infrastructure and distribute resources. To fill the chasm 
between the abundance of the satellite data and the need of practical and real-time predictions, this study 
aims to utilize the latest ML frameworks [16]. 
This publication has the following four aims: 
• To combine the datasets of multisource satellites into the complete atmospheric monitoring. 
• To devise a hybrid ML architecture that will implement CNNs to learn the spatial features and 
RNNs/LSTMs to learn the temporal engineering. 
• To compare the proposed system with conventional NWP predictions in terms of accuracy, lead time 
and reliability. 
• To evaluate the real-world factors, challenges, and limitations of practical deployment, such as the cost 
of computations, data delay, and the degree of generalizability. 
The solution of the stated objectives helps in the research to advance the research area of climate 
informatics and build the operational systems capable of saving human lives and minimizing the 
destruction of financial losses during the extreme weather conditions [4]. 
This figure 1 shows how the process of combining satellite data with machine learning models may be 
carried out in stages that will result in fast speed and high accuracy in predicting severe weather. 
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FIG. 1: FLOWCHART OF THE HYBRID FORECASTING FRAMEWORK 
1.1 Novelty and Contribution  
This study brings some major novelties to the current weather forecasting trend. First, it presents a two-
fold ML approach by combining spatial and temporal learning: CNNs are used to learn fine-grained facets 
of satellite images (such as the shape of a storm cloud) and RNNs/LSTMs model temporal developments 
of the atmosphere. Such a multi-model hybrid framework increases predictive robustness by learning 
across more than one dimension of data than in single-model approaches [8]. 
Second, the research highlights a fast forecasting by focusing on reducing the length of data processing 
and model inference. The framework can provide forecasts in near-real time, providing an extra 2-3 hours 
of lead time that traditional approaches can achieve through the leveraging of optimized preprocessing 
pipelines on GPU-accelerated architectures. This is an important development to early warning systems 
where each minute means a lot. 
Third, the study provides value through the utilization of disparate satellite data (multispectral imagery, 
radar precipitation images and thermal anomalies) in a single ML pipeline. This method is holistic in the 
sense that complementary atmospheric signals that modern forecasting techniques tend to break up into 
disparate components have been captured [10]. 
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This work has the following main contributions: 
• The creation of a CNN-RNN-based multinomial learning platform that is specific to satellite-based 
severe weather forecasting. 
• The evidence of better accuracy and forecast lead time than other traditional NWP models. 
• Identification of the feasible constraints on the applicability of the approach in practice including 
limitations on data latency, computational expense, and an unwillingness to generalize, a pragmatic takes 
on the application to any given setting. 
• Future research developments including transfer learning that can be applicable worldwide and cloud-
based platforms that can be implemented at a large scale were also proposed. 
An aggregate of these contributions makes the novelty of this research clear, as well as the potential of 
this research to make a difference in the scientific community and disaster management agencies. 
II. RELATED WORKS 
Traditionally, the method of weather forecasting has somewhat changed over recent decades and evolved 
to data-driven approaches that take advantage of the growing number of distributed sensing technologies. 
The tradition of atmospheric dynamic numerical weather prediction (NWP) has depended upon physical 
simulations of the atmosphere. These models work well to extreme weather on a large scale, long-term, 
but poor at smaller scale and shorter-term weather forecasting. The main concerns are related to the 
computational complexity and initialization errors as well as the failure to represent local, fast-developing 
phenomena like thunderstorms, tornadoes, and flash floods. This has necessitated the need to have a 
complement to this which is the high-volume and high-velocity data in near real time. 
In 2025 R. Zhang et al., [7] introduced the systems operating using satellites have become a center stone 
of contemporary meteorology. Advanced constellation deployment has resulted in multispectral, thermal, 
and radar satellite data being available globally on critical atmospheric parameters, including cloud cover, 
surface temperature, humidity and precipitation intensity as well as wind patterns of circulation. These 
data have allowed continuously tracking weather systems of severe weather across seas and land, providing 
very useful information on forecasting models. High temporal resolution data (e.g., geostationary 
satellites) can be used to monitor storm development whereas, fine spatial resolution data (e.g., polar-
orbital satellites) are important to supplement regional forecasts. In spite of all this data, physical 
complexity and volume of the satellite data can be greater than the capabilities of traditional statistics 
methods introducing a bottleneck in operational forecasting. 
A combination of satellite data and machine learning has been the center of much discussion as one way 
to overcome these shortcomings. The approach of machine learning is particularly good at nonlinear 
relations and can analyze large datasets in manners unheard of using traditional methods to point out 
patterns never seen before. Convolutional Neural Networks (CNNs) are architectures of deep learning 
that have become effective in analyzing satellite imagery in particular [15]. They may automatically locate 
storm characteristics such as those related to cloud formation, atmospheric convection and temperature 
anomalies. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks, in turn, 
have been found to be better suited to temporal sequence modeling and hence allow us to make forecasts 
that move with changing severe weather systems. When RNN is combined with CNN, the hybrid 
frameworks yield predictions on both space and time of the weather phenomena. 
In 2025 R. S. Oyarzabal et al., [5] proposed the techniques have seen application in a number of areas of 
severe weather forecasting. As an example, satellite-derived imagery has been used to identify the presence 
of tropical cyclones and estimate their eye formation, track and predict their direction of movement, and 
estimating their intensity better than what conventional models indicate. Use of radar-based precipitation 
observations within a machine learning framework has improved flash flood forecasting by retrieving local 
rainfall diversity which flash floods are likely to underestimate, especially at a small scale. Furthermore, 
satellite imagery abroad, collected by multispectral satellites that were used in combination with ML 
classifiers, has been utilised to map the probability of lightning occurrences, thunderstorms, and the 
development of convective storms. These developments demonstrate the increased efficiency of the data-
driven solution in operational meteorology. 
However, there still exist some issues when it comes to the accuracy, scalability, and generalizability of the 
weather forecasting ML-based models. A significant number of studies draw on regional datasets and 
therefore their models work in specific cases but fail to carry out the predicted forecasts when used at 
global scale. Moreover, although ML models show a great potential to enhance accuracy and increase 
processing speed, they are not usually easy to interpret by meteorologists to validate the correctness of 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 22s, 2025 
https://theaspd.com/index.php 

4625 

 

predictions or even report the accuracy level to stakeholders. The interpretation of the deep learning 
models is limited, which can interfere with its implementation in situations with highly critical decisions 
like issuing evacuation warnings. Data latency is another issue: although satellite sensors have near-real- 
time coverage, downlink and calibration delays, as well as other preprocessing bottlenecks, can restrict 
the timeliness of predictions. 
It has also been stressed that since forecasting is subject to uncertainty, a combination of multiple data 
sources in satellites can help to increase the reliability of forecasting. Data that consists of single sources 
do not often document the full spectra of atmospheric dynamics and when there is combination between 
multispectral optical data, radar microwave observations, and thermal data the picture becomes more 
detailed and broad. Machine learning algorithms trained with such diverse data have proven to show 
greater resilience in high-impact weather forecasting. In addition, ensemble methods, which average the 
results of many separate ML models, are proving to further increase the accuracy and stability of forecasts. 
The use of cloud computing and edge processing in weather forecasting systems has been touted as an 
area with potential to be used in real time. By supporting ML models with cloud-based infrastructures, 
there will be a decrease in the computing loads at meteorological services at the local levels whereas 
maintaining global coverage in such a manner that it is scalable. Edge computing also holds the promise 
of regionally-based, low-latency forecasts that are essential in disaster prone regions that may have minimal 
infrastructure. A more realistic implementation of these systems would have to solve the problem of 
computational cost, in addition to solving the problem of data standardization, and interoperability 
between satellite platforms. 
In 2024 J. Li et al., [2] suggested the other major research direction identified in the previous studies is 
bringing ML forecasting and socio-economic impact models together. Severe weather forecasts can be 
only as good as the resolution measures that are prompted by the forecasts. Integration of meteorological 
forecasting with impact assessment tools has demonstrated to enhance the value of warning to decision-
makers especially in the disaster risk management. By doing so, such integration enables the forecast to 
predict not only the likelihood of occurrence of an event but also the projected outcome in terms of 
damage to infrastructure, farms and local people. This expands one more level to the forecasting process 
since it no longer is only a meteorological exercise; rather a resilience building tool. 
Other research findings emphasize three important lessons: (1) satellite observations portray 
unprecedented potential to monitor atmospheric conditions in real-time, (2) ML, particularly deep-
learning models, can provide the processing capacity necessary to capture unknown spatiotemporal 
patterns in the associated data, and (3) limitations exist in the domains of real-time operationalization, 
model interpretability, data latency, and cross-geography generalization. This study expands on the above 
developments by suggesting a CNN-RNN structured to combine heterogeneous satellite data to deliver 
fast predictions on heavy weather. Through it, it also bridges the current disparities in precision, forecast 
horizon and actual usefulness, in an effort to assimilate to the growth of forecasting system that is both 
scientifically stringent, and also practically viable [12]. 
 
III. PROPOSED METHODOLOGY 
The developed methodology of combining satellite information with machine learning to reach high rates 
of rapid forecasting of the severe weather events will start with the systematic acquisition and 
preprocessing of multi-source satellite data. Considering the weather-relevant data streams, the GPM, 
Sentinel and MODIS geostationary and polar-orbiting satellite constellations have been used to obtain 
multispectral imagery, radar-based precipitation observations, surface temperature distributions, and 
atmospheric humidity profiles. These ontologies are non-homogenous in spatial and temporal scales, 
which require a thorough data preparation workflow prior to inputting them into a machine learning 
system. The preprocessing process involves cloud masking to remove visual blocking factors, radiometric 
corrections to provide calibration precision and spatial resampling to correct spatial pixel procedures 
among numerous sensors. In addition, normalization processes are used to normalize all the spectral 
bands value so as to make the model stable and convergent. A time-synchronization system can be used 
to regularize the observations on many satellites such that there is uniform temporal ordering of data 
input. The challenge of huge amount of data can be met using Dimensionality reduction techniques like 
Principal Component Analysis (PCA) and feature selection to find and maintain only key variables 
dropping any unnecessary data. This guarantees computational efficiency without bugging on any richness 
of atmospheric indicators necessary in forecasting procedures. The preprocessed data are then split into 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 22s, 2025 
https://theaspd.com/index.php 

4626 

 

training, validation, and testing subsets, where their parts are stratified to be equally represented in various 
types of severe weather phenomena. 
After the current preprocessing, the next stages of the methodology are the design and creation of a hybrid 
machine learning framework that will allow combining spatial and temporal analysis functionality. 
Combining two-dimensional convolutional neural networks (CNNs) is used to extract spatial 
characteristics on multispectral and radar satellite images as the main component of the proposed 
mechanism. Clusters of convective storms, cyclone eye development, and thermal gradients are 
complicated to understand by hand but CNN layers automatically identify these patterns and many others 
without being programmed to do so. The identified spatial features are used to train Recurrent Neural 
Networks (RNs), particularly, Long Short-Term Memory (LSTMs) networks, that are good at looking at 
sequential time dependence. By recording dynamics of the atmosphere, the RNN/LSTM layer delivers 
an idea of the storm strength, where it is going and whether it can become the more serious weather 
phenomena. To provide further robustness, the ensemble learning technique (gradient-boosting and 
random forests) are incorporated into hybrid framework to apply error-correcting and enhance 
generalization between various climatic zones [13]. GPU-accelerated systems are ensemble to enable 
training of model design within the context of deep learning and hyper-parameter tuning is relied upon 
by the use of grid search and Bayesian tuning. Evaluation measures injected in the system are accuracy, 
precision, recall, F1-score, or even Root Mean Square Error (RMSE): these metrics help to evaluate model 
performance against conventional systems used in the field (such as Numerical Weather Prediction, or 
NWP). The application of the cross-validation provides that the hybrid model will not be vulnerable to 
overfitting and be able to address unknown meteorological conditions. 
The last step of the methodology deals with the implementation and actualization of the forecasting 
system with an emphasis on practical use and combining it with the early warning structures. The hybrid 
ML model is developed to produce forecast outputs that have both deterministic and probabilistic 
predictions to enable meteorological agencies to quantify the uncertainly and the expected storms 
trajectory and intensity levels. The use of a cloud-based architecture is implemented to achieve scalability 
where the system has the capability of processing constant data feeds of satellite data and provide forecasts 
within different parts of the world at the same time. APIs are adopted in order to provide interoperability 
with other available systems in disaster management, and dashboard and visualization tools to provide 
disaster forecasts in understandable ways to policymakers and local authorities. The historical 
performance of the model is validated by tests of pilot events on historical severe weather events by 
comparing the model outcomes against that of observed outcomes and conventional forecasts. Feedback 
structures are programmed into the deployment model, and as new satellite data become known it may 
learn continuously increasing the predictive accuracy as more information is learned. The practical 
constrains like data latency, computational cost, and possible satellite coverage bias are also recognized 
and attempts to overcome them by adopting built-in redundancy and cloud computing optimization, as 
well as strategies, are implemented to transfer learning and orient the model to localities worldwide. The 
end aim of such a methodology is not only to improve the accuracy of the forecast and increase its lead 
time but also to introduce a scalable and operationally feasible framework to disaster preparedness in 
order to improve climate resilience at a global level. 
 
IV.  RESULT &DISCUSSIONS 
The results of the actual application of the proposed hybrid machine learning framework that includes 
satellite data brought in favorable results compared with the conventional numerical weather prediction 
models. Through multispectral, thermal and radar data, the system was able to identify the intensity of a 
storm and predict the cyclone tracks much better with a substantial improvement in lead time. A good 
example is how it effectively gave 2-3 more hours warning on storm landfall than the conventional forecast 
allowing more time to arrange evacuation and response plans. Figure 2 shows the relative accuracy of the 
prediction of cyclone track that is the hybrid ML model has consistently performed better than the 
traditional model on numerous test cases. 
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FIG. 2: COMPARATIVE ACCURACY OF CYCLONE TRAJECTORY PREDICTION (ML VS 
TRADITIONAL MODELS) 
Similarly, Figure 3 reveals that the local weather phenomena such as rain have the maximum precision 
in initial prediction levels through the use of combined CNN-RNN indicators.  

 
FIG. 3: PRECIPITATION FORECASTING PRECISION ACROSS MODELS 
Figure 4 establishes the comparison of lead times in severe weather warnings and demonstrates that the 
built-in system reveals more time in advance than the basic models. The conclusions obtained as a sum 
of all of the above encourage the hypothesis that the satellite data and machine learning interaction 
(synergy) can increase the operational strength of forecasting systems, especially in quickly evolving 
weather conditions. 

 
FIG. 4: LEAD TIME IMPROVEMENT IN SEVERE WEATHER FORECASTING 
Although the benefits are obvious, the presented analysis of results discloses the strong and weak sides of 
the given strategy. A main finding was that the hybrid model demonstrated high accuracy in the various 
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types of severe weather events: tropical cyclones, convective thunderstorms, and more. Table 1 gives the 
specific details of storm intensity forecasting by the machine learning system in terms of division of the 
three months into the most representative and least representative months and also the most 
representative and the least representative quarters, with respect to the performance achieved compared 
to the conventional NWP systems. It is clear that the ML-based system realized fewer error margins in 
predicting cyclone wind speed and rainfall accumulation. 
TABLE 1: COMPARISON OF FORECASTING ACCURACY BETWEEN ML-SATELLITE 
HYBRID AND NWP MODELS 
Parameter NWP Model Error (%) ML-Satellite Hybrid Error (%) 
Cyclone Wind Speed 15.2 8.4 
Rainfall Accumulation 18.7 10.1 
Storm Trajectory Deviation 12.9 6.7 

 
Besides, Table 2 lays out the computing complexity of both systems, which shows that both of them have 
rather high resource requirements during the training phase; however, there exist vast differences in the 
speed of running inferences when it comes to deployment. This is important especially in real-time 
applications where decision making is based on speedy updates. Nevertheless, obstacles like latency in 
satellite data, low generalizations of unfamiliar geographies and high start-up computational costs were 
realized. To illustrate, there were some instances where the model did not perform optimally in sparsely 
trained areas and which serve to highlight the importance of transfer learning or region-specific fine-
tuning in future implementations. 
 
TABLE 2: COMPARISON OF COMPUTATIONAL EFFICIENCY IN FORECASTING SYSTEMS 
Metric NWP Models ML-Satellite Hybrid 
Training Time (hours) N/A (rule-based) 24.6 
Forecast Inference Time 45 min – 1 hour 8–12 minutes 
Hardware Requirement Standard CPU Cluster GPU-Accelerated Cloud 

 
In a wider scope, the translation of the same into practical early warning systems has very big potential to 
benefit society. The possibility of making forecasts more accurate and with shorter latencies empowers 
the disaster management agencies to prepare pro-active plans, ahead of disasters, saving lives and 
minimizing infrastructure destruction. That being said, it is necessary to consider that practical 
application will be necessary to consider barriers like the delay of satellite downlink and ensuring the 
sharing of high-performance compute infrastructure across developing regions. Moreover, there is a 
problem with user interpretation of forecasts, since the tasks of meteorological agencies are to combine 
both accuracy with an accurate presentation so that communities would respond to their forecasts in 
time. To fully develop usability and trust, the use of probabilistic rather than purely deterministic outputs 
may also be of value. The results support the observation that although machine learning combined with 
satellite imagery can deliver great improvements to conventional operations, sustainable adoption is likely 
to require resolving its scalability, interpretability, and inclusivity issues [14]. It emphasizes the two-fold 
aspect of the contribution, on the one hand being scientifically innovative, and, on the other hand being 
practically limited, and sets a ground for a further research direction that aims at global generalization 
and integration in the existing climate resilience infrastructures. 
 
V. CONCLUSION 
This paper shows the effectiveness of combining a satellite system with machine learning in order to 
rapidly predict the occurrence of a severe weather. The speed of the hybrid CNN-RNN outperformed 
model with its accuracy, greater lead time, and adaptivity compared to the traditional NWP systems. This 
development can go a long way in disaster risk reduction, as governments and communities will be able 
to be proactive in the residue of extreme weather hazards. 
However, there are still a number of practical drawbacks. Instantaneous instalment of such models is time 
limited by satellite information delays as well as calculating expense, and a necessity to generalize models 
covering a range of climatic domains. Moreover, the un-interpretability of the deep learning models 
presents a problem to the meteorological agencies that want transparent frames of decision making. 
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Future directions need to work toward combining information between the various satellite networks to 
minimize the latency of information, employ transfer learning to maximize the models applicability across 
regions in the world, and to find cost-efficient ways of using the cloud to deploy to large scale. Along with 
technological breakthroughs, collaboration across disciplines among climate scientists, computer 
technology engineers, and policymakers will be critical in propagating the integration of such 
advancements into science-based early warning systems that can improve resiliency to climate-related 
disasters. 
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