International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 21s,2025
https://theaspd.com/index.php

Risk Assessment Using Geographic Information Technologies

On The Costa Verde Cliff, Magdalena Del Mar, Peru

Raul Méndez Gutiérrez!, Alberto Israel Legua Terry’, Nelly Méndez Gutiérrez’, Miqueas Gonzales
Gonzales!, Wendy Michel Acuia Caceres’, Jonathan David Cortez Chiroque®, Adalith Sayuri Loa
Gonzales’

'Universidad Nacional Federico Villarreal (UNFV), Oscar Benavides 450, Lima, Peru,
rmendez@unfv.edu.pe ORCID: https://orcid.org/0000-0001-5644-483X

’Universidad Nacional Federico Villarreal (UNFV), Oscar Benavides 450, Lima, Peru,
aleguat@unfv.edu.pe ORCID: https://orcid.org/0000-0003-0588-4530

‘Universidad Nacional Federico Villarreal (UNFV), Oscar Benavides 450, Lima, Peru,
nmendez@unfv.edu.pe ORCID: https://orcid.org/0000-0001-5524-6081

*Universidad Nacional Federico Villarreal (UNFV), Oscar Benavides 450, Lima, Peru,
2012231973@unfv.edu.pe ORCID: https://orcid.org/0000-0002-0794-8342

‘Universidad Nacional Federico Villarreal (UNFV), Oscar Benavides 450, Lima, Peru,
2014002427@unfv.edu.pe ORCID: https://orcid.org/0000-0003-1136-2579

‘Universidad Nacional Federico Villarreal (UNFV), Oscar Benavides 450, Lima, Peru,
2015023606@unfv.edu.pe ORCID: https://orcid.org/0009-0002-1931-3683

"Universidad Nacional Federico Villarreal (UNFV), Oscar Benavides 450, Lima, Peru.,
2020008123@unfv.edu.pe ORCID: https://orcid.org/0000-0003-0157-0956

Abstract

The research analyzes cliff instability, triggered by earthquakes and human activities such as inadequate construction
and irrigation. These factors increase the fragility of infrastructure and the population in high-risk seismic areas. To
prevent and mitigate risks, information and communication technologies (TICs) and geographic information systems
(GIS) were used to improve decision-making. Hazard and vulnerability levels were assessed using spatial data and
thematic maps generated with advanced tools, integrating drones and GIS. The results identify hazard levels: Very
High (0.264 < NP < 0.447), High (0.164 < NP < 0.264), Medium (0.078 < NP < 0.164), and Low (0.047 < NP
< 0.078). Vulnerability levels were Medium (0.079 < NV < 0.215) and Low (0.042 < NV < 0.079). Risk was
classified as High (0.151 < NR < 0.275), Medium (0.074 < NR<0.151), and Low (0.039 < NR < 0.074). Three-
dimensional maps made it possible to identify critical areas and exposed elements, such as roads and recreational areas.
It is concluded that TICs are essential to optimize risk management by providing accurate and timely information. In
addition, the need for land use regulation policies and prevention strategies based on comprehensive analysis, reducing
the exposure of the population and infrastructure, is highlighted. This research highlights the transformative potential
of TIC:s in risk management in vulnerable areas and the fundamental role of local authorities in promoting a culture
of prevention and adopting innovative technologies that foster more efficient management of natural hazards.

1. INTRODUCTION

The cliffs of the Costa Verde in Magdalena del Mar (Lima) constitute a highly vulnerable area due to their
combined exposure to natural and anthropogenic hazards. Previous studies document that frequent
landslides in the area have damaged road infrastructure, public spaces, and adjacent buildings (Kawamura
et al., 2019). This susceptibility is exacerbated by accelerated urbanization and high population density.
Added to these factors is the seismic threat in Lima, where a prolonged seismic silence increases the
likelihood of a large-scale event (Condori and Tavera, 2012), exacerbating the potential risk.

This study assesses landslide risks using Geographic Information Technologies (TIG) and
Communications Technologies (TIC), recognized for their effectiveness in risk management. As noted by
Garnica and Ayala (2021), Mohsan et al. (2023), and Rossi et al. (2018), these tools allow for the
identification of critical areas, the generation of 3D terrain models, and the analysis of the

geomorphological complexity of cliffs. The techniques used include: i) drone photogrammetry (Gupta and
Shukla, 2018), ii) GIS systems such as ArcGIS (Muenchow et al., 2019) and ENVI (Satriano et al., 2023),
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and iii) specialized Pix4D software (Parenti et al., 2023), which facilitate the creation of thematic hazard
maps with metric precision.

The integration of photogrammetry and artificial intelligence has proven particularly useful, as evidenced
by Schiliro et al. (2023) and Mohsan et al. (2022) in landslide monitoring. These technologies allow for
the generation of digital terrain models and high-resolution cartography, according to Yao et al. (2019)
and Zhou (2017), and are particularly relevant in seismic contexts. In fact, recent events have confirmed
the need to adopt these methods to identify vulnerable areas (Rossi et al., 2018) and support technical
and policy decisions.

This research seeks to: (1) map landslide risks using TICs and TIGs, quantifying hazard (H), vulnerability
(V), and risk (R) according to the CENEPRED framework (2017), and (2) propose mitigation strategies to
protect infrastructure and the population. The following questions arise: ;To what extent will landslide
risk assessment using Information and Communication Technologies benefit decision-making for disaster
risk prevention and reduction in the Costa Verde region of the Magdalena del Mar district? This question
leads to the following specific questions: ;How will the use of TICs contribute to identifying the levels of
landslide hazard and vulnerability in this area? How can these technologies improve disaster risk
prevention and reduction actions?

2. DATA AND METHODS

2.1. Study drea

The study area comprises the cliffs of the Costa Verde in Magdalena del Mar (Lima, Peru), a coastal sector
highly vulnerable to landslides. These events are triggered by both natural factors including seismic activity
and extreme weather conditions and human interventions, particularly construction in risk zones and
inadequate irrigation practices. Morphometrically, the cliffs are approximately 2.5 km long and 50 m wide,
marking the coastal boundary between the districts of San Miguel (north) and San Isidro (south).
Geomorphologically, the area is characterized by a system of terraces with elevations reaching 65 meters
above sea level, composed of unconsolidated alluvial deposits of gravel, coarse sand, and boulders. This
lithological composition, combined with the steep slope (35-70°), generates geotechnical instability that
favor recurrent landslides. Previous studies by the Geological, Mining and Metallurgical Institute
(INGEMMET) identify this formation as one of the areas with the highest rate of regressive erosion on
the Lima coast.

2.2. Data

The research employed a diverse set of geospatial data for the comprehensive analysis of the Costa Verde
cliffs in Magdalena del Mar. The primary data included high-resolution images captured by drones (DJI
Mavic Pro 2 and Phantom 4 Multispectral), complemented by satellite imagery, which provided detailed
coverage of the study area. As secondary sources, official digital cartographic databases obtained from
institutional platforms of the National Geographic Institute (IGN) and CENEPRED were used. The data
framework was completed with historical information on seismic activity, soil characteristics, slope
profiles, vegetation indices (NDVI), and urban occupancy patterns derived from national censuses and
previous geotechnical studies.

For the vulnerability analysis, socioeconomic and structural indicators from the 2017 National Census
(INEI) were incorporated, including population distribution by age, educational level, housing type, and
construction materials. Through systematic fieldwork, exposed elements such as road infrastructure,
pedestrian bridges, and public areas were georeferenced. All data were processed in a Geographic
Information System (GIS), using specialized software (Pix4D, ArcGIS) to generate digital elevation models
(DEMs) and thematic layers. This multimodal approach allowed for data validation using
photogrammetric techniques, ensuring accurate identification of critical areas and facilitating spatial risk
modeling by integrating conditioning and triggering factors.

2.3. Method

The research implemented the Hierarchical Analysis Process (AHP) (Saaty, 2004) to quantitatively assess
landslide susceptibility, weighting 16 conditioning factors (geomorphology, lithology, slope, soil type) and
triggering factors (seismic magnitude). Relative weights were assigned using paired comparison matrices
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standardized according to CENEPRED (2015) protocols, which allowed for the integration of qualitative
and quantitative criteria into a robust spatial model. Additionally, a non-experimental longitudinal
approach was adopted, analyzing historical earthquake series (1980-2023) and landslide records to
calibrate model parameters.

Geospatial processing combined GIS (ArcGIS) and photogrammetry (Pix4D) techniques, using
multispectral drone images (DJI Phantom 4 RTK, 2.5 cm/pixel) to generate: (i) high-precision digital
terrain models (DTMs), (ii) thematic hazard-vulnerability maps using map algebra, and (iii) risk
classification (High/Medium/Low) based on standardized thresholds. Validation included in-situ
sampling (n=45 points) and simulation of critical scenarios using predictive models (logistic regression),
obtaining cartographic tools with 92% accuracy (Kappa index=0.89) for preventive risk management.

3. METHODOLOGY

The research was based on a quantitative, evaluative, and applied design, supported by spatial analysis and
the integration of geoinformatics technologies. It followed a retrospective approach (Bernal, 2010),
analyzing historical records and secondary data, as well as a longitudinal approach, covering a four-year
period (2020-2024). The methodology was structured in three sequential phases: (1) delimitation of the
study area and bibliographic compilation; (2) in situ assessment using drones and systematic sampling;
and (3) data processing and generation of risk maps.

In the first phase, the boundaries of the study area were established and cartographic and bibliographic
inputs related to seismic hazards and anthropogenic factors were collected. The second phase involved
fieldwork to validate spatial information, identify exposed elements, and apply the SATY matrix to assess
hazard and vulnerability parameters. In the final phase, the data was integrated into ArcGIS to produce
georeferenced maps and three-dimensional models, using photogrammetric simulation techniques to
predict areas susceptible to landslides.

The methodological framework complied with international risk management standards (CENEPRED,
2017). It not only allowed for an accurate diagnosis of existing risks but also for the development of
mitigation strategies based on scientific evidence, highlighting the key role of information and
communication technologies (TICs) in disaster prevention.

4. RESULTS

The analyzed data were categorized into two main groups: (1) spatial data and (2) thematic maps, processed
using Geographic Information Systems (GIS). This facilitated the integration and analysis of georeferenced
information (Table 1), which allowed quantifying the level of hazard on the cliffs associated with seismic
activity. Thematic maps were generated that identify critical areas and establish a reference framework for
risk mitigation and management strategies in the study area.

It was determined that seismic magnitude is the main triggering factor for landslides on the cliffs of the
Costa Verde, demonstrating its direct influence on the geodynamic stability of the terrain.

Table 1. Parameters of the danger of collapse caused by earthquake.

[Factors Parameters Descriptor a]esg}lllt)tor i’;z;:ter
> 8.0 Mw 0.425
6.1 Mw <M < 7.9 Mw 0.267
‘ Magnitude 5.5 Mw <M <6.0 Mw 0.157 1.00
Trigger 3.5 Mw < M < 5.4 Mw 0.110
< 3.5 Mw 0.041
500,000 m’ < VMI 0.313
iide Huzard Mol c 50,000 m’ < VMI < 500,000 m’ 0.282
ki?esir;eent - ur?sggfe materia?l 10’0003 m_< VML 50’0003 m. 0.241 0471
500 m” < VMI < 10,000 m 0.097
'VMI < 500 m’ 0.067
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AMR < 5 m. 0.419
‘ 5 m.< AMR < 20 m. 0.299

Height of 20 m.< AMR <70 m. 0.166 0,305
material removed 70" "CAMR < 100 m. 0.078
100 m. < AMR. 0.038
10m/s <v 0.484
~ [LOm/s<v<10m/s 0.301

Speed of material |37 /U1 0 m/s 0.118 0.224
movement 1.0m/h<v<0.1 m/s 0.052
V< 1.0 m/h 0.045
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Figure 1. Spatial distribution of evaluation parameters.

Figure 1 presents: A) Section A-A' of the seismic distribution in Peru; B) Transverse seismic density profile
in the central region of Peru; C) Relative distance between the study area and the relevant seismic
epicenters; D) Mapping of geological hazards associated with landslides on the seawall of the Costa Verde

cliffs, Magdalena del Mar district.

The cartographic base corresponds to a high-resolution orthophoto generated using photogrammetric
techniques. The integrated spatial data come from official sources: the Peruvian Geophysical Institute
(IGP), the Peruvian-Japan Center for Seismic Research and Disaster Mitigation (CISMID), the Ministry
of Housing, Construction and Sanitation (MVCS), the National Center for Disaster Risk Estimation,
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Prevention and Reduction (CENEPRED), and the Geological, Mining and Metallurgical Institute
(INGEMET).

Recent high-magnitude seismic events have caused significant land loss, affecting critical infrastructure
such as roads, utility networks, and recreational areas. The spatial analysis (Figure 1) reveals a clear
interaction between natural and anthropogenic factors, increasing the area's vulnerability and
underscoring the need to implement preventive strategies. Three key parameters were established for
hazard assessment (Table 1): (1) volume of unstable material (which quantifies collapse zones and
potentially mobilizable mass), (2) height of vertical displacement (maximum distance of fall from the
original position), and (3) velocity of material displacement (movement dynamics during collapse events).
The Magdalena del Mar cliffs extend for 2.5 km with an average width of 50 m. They are located in the
central sector of the Lima coastline, bordering the districts of San Miguel (north) and San Isidro (south).
Access to the study area is via the main roads of the Costa Verde: Avenida Bertolotto, Avenida Brasil, and
Via Marbella. The analysis identified twelve of the most significant determining factors (Table 2):

a. Geomorphology: It revealed the terrain's configuration, identifying terraces with elevations of up
to 65 meters and the dynamic processes that have shaped them over time.

b. Geology: It highlighted the diversity of formations, from alluvial plains to coastal cliffs, composed
primarily of gravel, sand, and cobble deposits that reflect ancient river systems.

c. Slope: The steepest areas proved to be the most vulnerable, showing a direct correlation between
slope angle and the likelihood of landslides.

d. Soil type: The study confirmed how the mechanical properties of the soil decisively influence cliff
stability, with marked differences in behavior depending on its composition.

e. Seismic zone: The seismic data made it possible to establish vulnerability patterns, providing
urban planners with tools to prioritize areas for intervention.

f. Vegetation cover: Vegetation emerged as a key stabilizing element, where root systems act as
natural reinforcement against erosion.

g. Building density: The analysis revealed that anthropogenic pressure on the terrain can accelerate
instability processes, particularly in areas with a high concentration of structures.

h. Climatic conditions: Two critical seasonal patterns were identified: desiccation during dry periods
and constant wind erosion, both contributing to the progressive degradation of the cliffs.

i. NDVI: This index proved to be a reliable indicator of stability, with low values significantly
correlated with areas of higher risk.

. Distance to roads: Proximity to transportation routes was shown to be a compound risk factor,
where traffic vibration can accelerate instability processes.

k. Distance to water systems: Bodies of water emerged as modulating elements of stability, with
differential effects depending on their proximity and characteristics.

L. Topography: Precise topographic models have been confirmed as a fundamental tool for

preventive risk management, allowing predictive simulations of the environment and the shape of the
terrain.

Tabla 2. Valores del factor condicionante.

Parameter Descrintor: Descriptor [Parameter
arameters escriptors Weight Weight
G hol IAlluvial plain (Pl-al) 0.576 0.177
comorphology IAlluvial-torrential foothills (P-at) 0.424 '
Geology Alluvial Deposit (Qh-all) 1.00 0.154
Slope greater than 45° 0.287
From 25° to 45° 0.283
Slope From 15° to 25° 0223 0157
Slope less than 15° 0.207
, lAeolian sand and/or silt 0.453
Soil type Granular and clayey sand over gravel 0.373 0-128
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Gravel and sand conglomerate 0.174
Zone V 0.573
Seismic zone Zone IV 0.283 0.103
Zone | 0.144
Scattered trees 0.578
Low vegetation 0.212
Cover type Paved ground 0.179 0.095
Soil, sand, and/or bodies of water 0.031
Compact high-rise buildings 0.477
o ‘ Compact low-rise buildings 0.271
Building density Open high-rise buildings 0.134 0.072
Scattered buildings 0.118
\Weather conditions Dry sub-humid 1.00 0.054
0,6 to 1,0 0.319
Normalized difference (0,4 to 0,6 0.268 0.034
vegetation index 0,2 to 0,4 0.265 ’
1 0,2t00,2 0.148
, > 10 m 0.621
Distance from road 10mw30m 0379 0.021
> 5m 0.556
Distance to water source 5mto 10 m 0.278 0.016
10 m to 50 m 0.166
\Very steep 0.362
Moderately steep 0.281
Topography Moderately steep 0.195 0-009
Slightly steep 0.162

The study considered twelve conditioning parameters intrinsic to the geographic area, which positively or
negatively modulate the probability of landslides occurring. Each parameter was characterized using
weighted descriptors using Saaty's Hierarchical Analysis Process (AHP), and the interrelationships between
parameters were also established using the same methodology. To generate the resulting information
layers, a spatial model was implemented that multiplied the weights assigned to each parameter by their
respective descriptors, followed by a weighted summation that maintained the established hierarchy. This
procedure was based on the natural phenomenon risk assessment manual (CENEPRED, 2015) and
required the systematic processing of physical information about the territory.

The quantification of landslide hazard was derived from an integrated analysis of the conditioning factors,
where the susceptibility layer emerged from the spatial relationship between: (1) the twelve previously
identified conditioning parameters (60% weighting) and (2) the dynamic triggering factor (40%
weighting). This percentage distribution reflected the relative influence of each component on ground
stability, as established by the AHP model. The integration was performed using map algebra, preserving
the hierarchical structure of the descriptors.

In the assessment stage, the obtained susceptibility value was given equivalent weighting by incorporating
three additional parameters (Table 3). The final calculation of the hazard index was performed by
multiplying the weights assigned to each factor by their corresponding descriptors, followed by a
summation that respected the established order of priority. This methodological approach allowed for a
spatially explicit assessment of landslide hazard, integrating both static and dynamic components of the

system.
Table 3. Collapse hazard value matrix
T . . . . . . 01’
riggering Conditioning Susceptibility Assessment Value | Hazard Value
Factor Factor Value

Value  Weight | Value Weight | Value Weight | Value Weight | Value
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0.461 | 0.4 0.461 0.6 0.457 0.5 0.443 0.5 0.447
0.261 |04 0.245 0.6 0.266 0.5 0.254 0.5 0.264
0.158 [ 0.4 0.167 0.6 0.151 0.5 0.157 0.5 0.164
0.073 |04 0.073 0.6 0.078 0.5 0.101 0.5 0.078
0.047 0.4 0.054 0.6 0.048 0.5 0.045 0.5 0.047

The quantitative analysis (Table 4) allowed the landslide hazard to be stratified into four discrete levels:
very high, high, medium, and low, establishing objective thresholds for each category. This systematic
classification served as the basis for generating a geospatially referenced hazard map, which is configured
as a decisive tool for: (1) the precise identification of critical areas, (2) the prioritization of interventions,
and (3) the implementation of mitigation strategies based on technical evidence. The resulting cartography
integrates key terrain variables with susceptibility indicators, offering urban managers and territorial
planners a robust instrument for informed decision-making.

Table 4. Level of danger due to landslide

Danger Level Range Color
Very High 0.264 <N, £ 0.447 u
High 0.164 <N, <0.264 =
Medium 0.078 <N, <0.164 m
Low 0.047 <N, <0.078 =

Vulnerability to cliff collapses triggered by significant earthquakes was determined by three key factors: (i)
geographic conditions, (ii) anthropogenic pressure, and (iii) event recurrence. Effective mitigation requires
avoiding high-risk areas, regulating activities that compromise terrain stability, and implementing land-use
planning policies based on technical criteria. Both local authorities and the population played a leading
role by adopting preventive measures, such as reviewing geotechnical studies and hiring specialists for risk
assessments. These actions not only reduced exposure to hazards but also strengthened the community's
resilience to potential future events.

The descriptor/parameter weights were calculated using AHP (CENEPRED, 2017), using: (a) 2017 census
data (population, housing, indigenous communities) and (b) INEI-PREDIMID geospatial records,
ensuring national coverage and methodological consistency.

Table 5. Weight of parameters and descriptors of the conditioning factor.

) ., ) Descriptor [Parameter
Dimension  [Parameters [Descriptors Weight Weight

Ages O to 5 and over 65 0.472
Ages 6 to 11 and 60 to 64 0.292

Age group Ages 12 to 17 and 45 t0 59 0.123 0.313
Social Ages 18 to 29 and 30 to 44 0.113
Fragility Mental or intellectual or visual 0.705
o To use arms and legs 0.153

Disability [To hear and/or speak 0.089 225
Does not have 0.053
No level and/or Initial 0.502
‘ Primary 0.263

Education level Secondary 0.135 0.152
Social University and/or other 0.100
Resilience Does not have 0.417
) SIS 0.261

Type of insurance ESSALUD 0.172 0.134
FFAA - PNP and/or other 0.150

Economic Predominant wall |Adobe and/or other material 0.645 0.104
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Fragility and roof material ~ [Thatched roofing and/or wood 0.158
'Wood, corrugated iron 0.097
Brick, concrete, and/or block 0.059
More than 10 floors 0.753
Number of floors 2.t 10 floors 0.134 0.041
3 to 5 floors 0.071
1 to 2 floors 0.042
Hut, cabin 0.715
) Housing on a villa and/or tenement 0.146
Type of housing Apartment in a building 0.087 021
Economic Detached house 0.052
Resilience Economically inactive population 0.449
Economically Unemployed 0.265
active population  [Employed 0.171 0-010
Economically active population 0.115

The vulnerability assessment (Table 5) considered two complementary dimensions: (i) fragility,
represented by demographic factors (age, disability) and housing conditions (construction materials,
building height), and (ii) resilience, determined by social capital (educational level, insurance coverage)
and economic capacity (sectoral diversification, labor force participation). Regarding the economic
component, it was identified that exposure to risks is exacerbated by critical infrastructure located in high-
hazard zones, while adaptability depended on productive diversification and the strength of the labor
market.

The infrastructure elements located in the potential impact zone included the Circuito de la Costa Verde
highway, secondary road network, bicycle paths, pedestrian bridges, and recreational areas. Vulnerability
due to exposure was quantified through a spatial analysis that compared: (1) the precise location of each
element with (2) previously mapped hazard levels. This methodology allowed for the assignment of specific
vulnerability indices for each component, prioritizing those located in areas classified as high or very high
risk according to the criteria established in the modeling phase.

Table 6. Level of Vulnerability to Landslide

Vulnerability Level Range Color
Medium 0.079 < Ny <0.215 m
Low 0.042 <Ny <0.079 =

Following the identification and analysis phase, the hazard and vulnerability components were
systematically integrated to quantify risk values, following the conceptual framework R = f (P, V), where
risk (R) is defined as a function of hazard (P) and vulnerability (V) (Table 7). The analytical results (Table
6) allowed for the assessment of the potential impacts and consequences associated with landslide events,
classifying risk into three discrete levels: high, medium, and low, using objective thresholds based on the
distribution of the calculated values.

The final result was a geospatially explicit risk map (Figure 2), which synthesizes the complex interactions
between hazard and vulnerability factors. This technical instrument is a decisive tool for: (i) prioritizing
areas for urgent intervention, (ii) optimizing resources for preventive management, and (iii) formulating
public policies based on scientific evidence, particularly relevant for territorial planning in areas highly
susceptible to landslides.

Table 7. Level of risk of collapse

Risk Level Range Color
High 0.151 < Ng < 0.275 =
Medium 0.074 <Ny <0.151 =
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Figure 2. Cartographic production of hazard, vulnerability and risk

5. DISCUSSION

The study identified areas at high risk associated with both natural hazards (seismic activity) and
anthropogenic hazards (constructions in cliff areas). The results demonstrate that the integration of
Information and Communication Technologies (TICs)—including drones, remote sensing, and
Geographic Information Systems (GIS)—represents an innovative and robust approach to comprehensive
risk management. This methodology has proven particularly effective in the phases of hazard
identification, spatial analysis, and mitigation measure design, optimizing decision-making processes.
The research aligns with recent scientific advances by Muenchow et al. (2019), Albanwan et al. (2024),
Garnica and Ayala (2021), Mohsan et al. (2023), and Rossi et al. (2018), which highlight the value of
geoinformatics tools in risk assessment. Specifically, the application of the Analysis Hierarchy Process
(AHP) to weigh conditioning and triggering factors is consistent with the findings of Ozioko and Igwe
(2020), validating the effectiveness of multicriteria methods in GIS environments for vulnerability
analysis. These academic contributions, combined with the high-resolution risk maps generated in this
study (which incorporate multiple spatial variables), reinforce the strategic role of geoinformatics in
resilient urban planning and preventive disaster management. The hazard identification results are
consistent with the approaches of Tavera (2017), confirming the usefulness of Geographic Information
Systems (GIS) in assessing seismic scenarios. This study implemented the CENEPRED methodology using
a multicriteria approach to identify areas with high and very high hazard levels. This is consistent with the
approaches of Yao et al. (2019) and Zhou (2017), who highlight the need to use spatial analysis methods

4637


https://theaspd.com/index.php

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 21s,2025
https://theaspd.com/index.php

to analyze threats in urban emergencies. The methods used in the project, such as the integration of spatial
data, thematic maps and three-dimensional analysis, reflect an innovative approach. Compared to
previous studies by Gupta and Shukla (2018), where the use of photogrammetry and digital elevation
models is prioritized, this research consolidates a methodology adapted to local conditions. The
incorporation of sixteen (16) parameters of which one (01) corresponds to the triggering factor, three (03)
to evaluation parameters and twelve (12) to conditioning factors, to analyze the hazard, including
characteristics such as slope, soil type and geology, responds to the complexity of the cliff system and eight
(08) parameters for vulnerability. To obtain the hazard level (HL): Very High with 0.264 < HL < 0.447;
High with 0.164 < HL < 0.264; Medium with 0.078 < HL < 0.164; Low with 0.047 < NP < 0.078. In
addition, the vulnerability level (LV) values were determined: Medium with 0.079 <NV <0.215 and Low
with 0.042 < NV < 0.079. Also, the risk level (RL) was determined: High with 0.151 < NR < 0.275;
Medium with 0.074 < NR <0.151 and Low with 0.039 < NR < 0.074.

The analysis revealed that the interaction between steep slopes (>45°), unstable geological materials, and
recent seismic activity (MW >6.0) explains 78% of the variability in landslide events, consistent with
Ozioko and Igwe (2020), who emphasize the interaction of geological and geomorphological variables.
Furthermore, the incorporation of climate and infrastructure data (NDVI, building density) allows for a
more comprehensive risk assessment. The use of drones and GIS provided highly accurate topographic
data and useful three-dimensional models for identifying critical areas. According to studies by Zhou
(2027) and Garnica and Ayala (2021), these technologies stand out for their cost-effectiveness and ability
to access complex areas. This approach overcame the limitations of traditional two-dimensional methods,
corroborating the relevance of using three-dimensional analysis for risk assessment.

The generated thematic maps, by identifying hazard and vulnerability levels, offer a fundamental tool for
planning and decision-making. This validates the hypothesis that TICs significantly benefit prevention
and risk reduction actions. Furthermore, the results suggest that stricter land-use regulations and the
implementation of real-time monitoring systems could improve disaster response capacity. Despite these
advances, some challenges remain, such as the need to calibrate models for potential future climate change
or seismic events. Future studies could integrate artificial intelligence to improve prediction and
monitoring, as suggested by recent research by Albanwan et al. (2024) and Xia et al. (2023).

This study establishes a replicable methodological paradigm that combines multicriteria analysis (MCA),
advanced geospatial technologies, and probabilistic modeling. Field validation demonstrated an 89%
effectiveness in predicting landslide zones, exceeding international risk management standards. These
advances, published on an interactive web platform, represent a substantial contribution to resilient urban
planning in vulnerable coastal environments, particularly in regions with high seismic activity and
increasing anthropogenic pressure.

6. CONCLUSIONS

Landslide risk assessment on the Green Coast of the Magdalena del Mar district, using Information and
Communication Technologies (TICs), proved to be a crucial tool for disaster prevention and reduction.
It allowed for the identification of key factors such as slope, soil type, geology, human activities, and
earthquakes, integrating high-precision geospatial information using Geographic Information Systems
(GIS) and three-dimensional data obtained from drones.

The integration of these technologies not only improved the accuracy of identifying risk areas but also
provided a solid basis for informed decision-making. This reinforces the need to adopt technological
approaches and promote risk mitigation policies, ensuring the protection of people, infrastructure, and
the environment. The analysis of the levels of danger due to collapse using TIC allowed to characterize
the critical conditions in the cliffs of the Costa Verde to collapse, and the danger level (NL) was
determined: Very High with 0.264 < NP < 0.447; High with 0.164 < NP < 0.264; Medium with 0.078 <
NP < 0.164; Low with 0.047 < NP < 0.078. Values of the vulnerability level (LV) were also determined:
Medium with 0.079 < NV < 0.215 and Low with 0.042 < NV < 0.079. Also exposed elements such as
roads, pedestrian bridges, houses and recreational areas, factors such as the slope, fill soils with low
cohesion and alterations due to construction and inadequate irrigation systems, were determining factors
in the analysis. Furthermore, the incorporation of data-generated thematic maps made it possible to
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visualize the interactions between these factors more effectively than traditional two-dimensional
approaches. It highlights the importance of considering geospatial models for planning, prioritizing critical
areas in prevention strategies.

The use of TIC in assessing risk levels allowed for the optimization of landslide prevention and mitigation
actions. Using tools such as drones and GIS, precise topographic data and three-dimensional models were
generated that identified and determined the risk level (RL): High with 0.151 < RL < 0.275; Medium with
0.074 < RL <0.151; and Low with 0.039 < RL < 0.074. This analysis underscores the need to implement
strategies to minimize the exposure of infrastructure and people to risk. Furthermore, the results highlight
the fundamental role of local authorities in promoting a culture of prevention and in adopting innovative
technologies that foster more efficient disaster management.
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