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Abstract 
The research analyzes cliff instability, triggered by earthquakes and human activities such as inadequate construction 
and irrigation. These factors increase the fragility of infrastructure and the population in high-risk seismic areas. To 
prevent and mitigate risks, information and communication technologies (TICs) and geographic information systems 
(GIS) were used to improve decision-making. Hazard and vulnerability levels were assessed using spatial data and 
thematic maps generated with advanced tools, integrating drones and GIS. The results identify hazard levels: Very 
High (0.264 ≤ NP ≤ 0.447), High (0.164 ≤ NP < 0.264), Medium (0.078 ≤ NP < 0.164), and Low (0.047 ≤ NP 
< 0.078). Vulnerability levels were Medium (0.079 ≤ NV < 0.215) and Low (0.042 ≤ NV < 0.079). Risk was 
classified as High (0.151 ≤ NR < 0.275), Medium (0.074 ≤ NR < 0.151), and Low (0.039 ≤ NR < 0.074). Three-
dimensional maps made it possible to identify critical areas and exposed elements, such as roads and recreational areas. 
It is concluded that TICs are essential to optimize risk management by providing accurate and timely information. In 
addition, the need for land use regulation policies and prevention strategies based on comprehensive analysis, reducing 
the exposure of the population and infrastructure, is highlighted. This research highlights the transformative potential 
of TICs in risk management in vulnerable areas and the fundamental role of local authorities in promoting a culture 
of prevention and adopting innovative technologies that foster more efficient management of natural hazards. 
 
1. INTRODUCTION 
The cliffs of the Costa Verde in Magdalena del Mar (Lima) constitute a highly vulnerable area due to their 
combined exposure to natural and anthropogenic hazards. Previous studies document that frequent 
landslides in the area have damaged road infrastructure, public spaces, and adjacent buildings (Kawamura 
et al., 2019). This susceptibility is exacerbated by accelerated urbanization and high population density. 
Added to these factors is the seismic threat in Lima, where a prolonged seismic silence increases the 
likelihood of a large-scale event (Condori and Tavera, 2012), exacerbating the potential risk. 
This study assesses landslide risks using Geographic Information Technologies (TIG) and 
Communications Technologies (TIC), recognized for their effectiveness in risk management. As noted by 
Garnica and Ayala (2021), Mohsan et al. (2023), and Rossi et al. (2018), these tools allow for the 
identification of critical areas, the generation of 3D terrain models, and the analysis of the 
geomorphological complexity of cliffs. The techniques used include: i) drone photogrammetry (Gupta and 
Shukla, 2018), ii) GIS systems such as ArcGIS (Muenchow et al., 2019) and ENVI (Satriano et al., 2023), 
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and iii) specialized Pix4D software (Parenti et al., 2023), which facilitate the creation of thematic hazard 
maps with metric precision. 
The integration of photogrammetry and artificial intelligence has proven particularly useful, as evidenced 
by Schilirò et al. (2023) and Mohsan et al. (2022) in landslide monitoring. These technologies allow for 
the generation of digital terrain models and high-resolution cartography, according to Yao et al. (2019) 
and Zhou (2017), and are particularly relevant in seismic contexts. In fact, recent events have confirmed 
the need to adopt these methods to identify vulnerable areas (Rossi et al., 2018) and support technical 
and policy decisions. 
This research seeks to: (1) map landslide risks using TICs and TIGs, quantifying hazard (H), vulnerability 
(V), and risk (R) according to the CENEPRED framework (2017), and (2) propose mitigation strategies to 
protect infrastructure and the population. The following questions arise: ¿To what extent will landslide 
risk assessment using Information and Communication Technologies benefit decision-making for disaster 
risk prevention and reduction in the Costa Verde region of the Magdalena del Mar district? This question 
leads to the following specific questions: ¿How will the use of TICs contribute to identifying the levels of 
landslide hazard and vulnerability in this area? How can these technologies improve disaster risk 
prevention and reduction actions? 
 
2. DATA AND METHODS  
2.1. Study área 
The study area comprises the cliffs of the Costa Verde in Magdalena del Mar (Lima, Peru), a coastal sector 
highly vulnerable to landslides. These events are triggered by both natural factors including seismic activity 
and extreme weather conditions and human interventions, particularly construction in risk zones and 
inadequate irrigation practices. Morphometrically, the cliffs are approximately 2.5 km long and 50 m wide, 
marking the coastal boundary between the districts of San Miguel (north) and San Isidro (south). 
Geomorphologically, the area is characterized by a system of terraces with elevations reaching 65 meters 
above sea level, composed of unconsolidated alluvial deposits of gravel, coarse sand, and boulders. This 
lithological composition, combined with the steep slope (35-70°), generates geotechnical instability that 
favor recurrent landslides. Previous studies by the Geological, Mining and Metallurgical Institute 
(INGEMMET) identify this formation as one of the areas with the highest rate of regressive erosion on 
the Lima coast. 
 
2.2. Data 
The research employed a diverse set of geospatial data for the comprehensive analysis of the Costa Verde 
cliffs in Magdalena del Mar. The primary data included high-resolution images captured by drones (DJI 
Mavic Pro 2 and Phantom 4 Multispectral), complemented by satellite imagery, which provided detailed 
coverage of the study area. As secondary sources, official digital cartographic databases obtained from 
institutional platforms of the National Geographic Institute (IGN) and CENEPRED were used. The data 
framework was completed with historical information on seismic activity, soil characteristics, slope 
profiles, vegetation indices (NDVI), and urban occupancy patterns derived from national censuses and 
previous geotechnical studies. 
For the vulnerability analysis, socioeconomic and structural indicators from the 2017 National Census 
(INEI) were incorporated, including population distribution by age, educational level, housing type, and 
construction materials. Through systematic fieldwork, exposed elements such as road infrastructure, 
pedestrian bridges, and public areas were georeferenced. All data were processed in a Geographic 
Information System (GIS), using specialized software (Pix4D, ArcGIS) to generate digital elevation models 
(DEMs) and thematic layers. This multimodal approach allowed for data validation using 
photogrammetric techniques, ensuring accurate identification of critical areas and facilitating spatial risk 
modeling by integrating conditioning and triggering factors. 
2.3. Method 
The research implemented the Hierarchical Analysis Process (AHP) (Saaty, 2004) to quantitatively assess 
landslide susceptibility, weighting 16 conditioning factors (geomorphology, lithology, slope, soil type) and 
triggering factors (seismic magnitude). Relative weights were assigned using paired comparison matrices 
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standardized according to CENEPRED (2015) protocols, which allowed for the integration of qualitative 
and quantitative criteria into a robust spatial model. Additionally, a non-experimental longitudinal 
approach was adopted, analyzing historical earthquake series (1980-2023) and landslide records to 
calibrate model parameters.  
Geospatial processing combined GIS (ArcGIS) and photogrammetry (Pix4D) techniques, using 
multispectral drone images (DJI Phantom 4 RTK, 2.5 cm/pixel) to generate: (i) high-precision digital 
terrain models (DTMs), (ii) thematic hazard-vulnerability maps using map algebra, and (iii) risk 
classification (High/Medium/Low) based on standardized thresholds. Validation included in-situ 
sampling (n=45 points) and simulation of critical scenarios using predictive models (logistic regression), 
obtaining cartographic tools with 92% accuracy (Kappa index=0.89) for preventive risk management. 
 
3. METHODOLOGY 
The research was based on a quantitative, evaluative, and applied design, supported by spatial analysis and 
the integration of geoinformatics technologies. It followed a retrospective approach (Bernal, 2010), 
analyzing historical records and secondary data, as well as a longitudinal approach, covering a four-year 
period (2020-2024). The methodology was structured in three sequential phases: (1) delimitation of the 
study area and bibliographic compilation; (2) in situ assessment using drones and systematic sampling; 
and (3) data processing and generation of risk maps. 
In the first phase, the boundaries of the study area were established and cartographic and bibliographic 
inputs related to seismic hazards and anthropogenic factors were collected. The second phase involved 
fieldwork to validate spatial information, identify exposed elements, and apply the SATY matrix to assess 
hazard and vulnerability parameters. In the final phase, the data was integrated into ArcGIS to produce 
georeferenced maps and three-dimensional models, using photogrammetric simulation techniques to 
predict areas susceptible to landslides. 
The methodological framework complied with international risk management standards (CENEPRED, 
2017). It not only allowed for an accurate diagnosis of existing risks but also for the development of 
mitigation strategies based on scientific evidence, highlighting the key role of information and 
communication technologies (TICs) in disaster prevention. 
 
4. RESULTS 
The analyzed data were categorized into two main groups: (1) spatial data and (2) thematic maps, processed 
using Geographic Information Systems (GIS). This facilitated the integration and analysis of georeferenced 
information (Table 1), which allowed quantifying the level of hazard on the cliffs associated with seismic 
activity. Thematic maps were generated that identify critical areas and establish a reference framework for 
risk mitigation and management strategies in the study area.  
It was determined that seismic magnitude is the main triggering factor for landslides on the cliffs of the 
Costa Verde, demonstrating its direct influence on the geodynamic stability of the terrain. 
Table 1. Parameters of the danger of collapse caused by earthquake. 

Factors Parameters Descriptor 
Descriptor 
Weight 

Parameter 
Weight 

 
Trigger 

Magnitude 

> 8.0 Mw 0.425 

1.00 
6.1 Mw ≤ M ≤ 7.9 Mw 0.267 
5.5 Mw ≤ M ≤ 6.0 Mw 0.157 
3.5 Mw ≤ M ≤ 5.4 Mw 0.110 
< 3.5 Mw 0.041 

Landslide Hazard 
Assessment 

Volume of 
unstable material 

500,000 m3 < VMI 0.313 

0.471 

50,000 m3 < VMI ≤ 500,000 m3 0.282 
10,000 m3 < VMI ≤ 50,000 m3 0.241 
500 m3 < VMI ≤ 10,000 m3 0.097 

VMI ≤ 500 m3 0.067 
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Height of 
material removed 

AMR ≤ 5 m. 0.419 

0.305 

5 m.< AMR ≤ 20 m. 0.299 
20 m.< AMR ≤ 70 m. 0.166 
70 m. < AMR ≤ 100 m. 0.078 

100 m. < AMR. 0.038 

Speed of material 
movement 

10 m/s < v 0.484 

0.224 

1.0 m/s < v ≤ 10 m/s 0.301 
0.1 m/s < v ≤ 1.0 m/s 0.118 
1.0 m/h < v ≤ 0.1 m/s 0.052 
v ≤ 1.0 m/h 0.045 

 

 
Figure 1. Spatial distribution of evaluation parameters. 
Figure 1 presents: A) Section A-A' of the seismic distribution in Peru; B) Transverse seismic density profile 
in the central region of Peru; C) Relative distance between the study area and the relevant seismic 
epicenters; D) Mapping of geological hazards associated with landslides on the seawall of the Costa Verde 
cliffs, Magdalena del Mar district. 
The cartographic base corresponds to a high-resolution orthophoto generated using photogrammetric 
techniques. The integrated spatial data come from official sources: the Peruvian Geophysical Institute 
(IGP), the Peruvian-Japan Center for Seismic Research and Disaster Mitigation (CISMID), the Ministry 
of Housing, Construction and Sanitation (MVCS), the National Center for Disaster Risk Estimation, 
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Prevention and Reduction (CENEPRED), and the Geological, Mining and Metallurgical Institute 
(INGEMET). 
Recent high-magnitude seismic events have caused significant land loss, affecting critical infrastructure 
such as roads, utility networks, and recreational areas. The spatial analysis (Figure 1) reveals a clear 
interaction between natural and anthropogenic factors, increasing the area's vulnerability and 
underscoring the need to implement preventive strategies. Three key parameters were established for 
hazard assessment (Table 1): (1) volume of unstable material (which quantifies collapse zones and 
potentially mobilizable mass), (2) height of vertical displacement (maximum distance of fall from the 
original position), and (3) velocity of material displacement (movement dynamics during collapse events). 
The Magdalena del Mar cliffs extend for 2.5 km with an average width of 50 m. They are located in the 
central sector of the Lima coastline, bordering the districts of San Miguel (north) and San Isidro (south). 
Access to the study area is via the main roads of the Costa Verde: Avenida Bertolotto, Avenida Brasil, and 
Via Marbella. The analysis identified twelve of the most significant determining factors (Table 2): 
a. Geomorphology: It revealed the terrain's configuration, identifying terraces with elevations of up 
to 65 meters and the dynamic processes that have shaped them over time. 
b. Geology: It highlighted the diversity of formations, from alluvial plains to coastal cliffs, composed 
primarily of gravel, sand, and cobble deposits that reflect ancient river systems. 
c. Slope: The steepest areas proved to be the most vulnerable, showing a direct correlation between 
slope angle and the likelihood of landslides. 
d. Soil type: The study confirmed how the mechanical properties of the soil decisively influence cliff 
stability, with marked differences in behavior depending on its composition. 
e. Seismic zone: The seismic data made it possible to establish vulnerability patterns, providing 
urban planners with tools to prioritize areas for intervention. 
f. Vegetation cover: Vegetation emerged as a key stabilizing element, where root systems act as 
natural reinforcement against erosion. 
g. Building density: The analysis revealed that anthropogenic pressure on the terrain can accelerate 
instability processes, particularly in areas with a high concentration of structures. 
h. Climatic conditions: Two critical seasonal patterns were identified: desiccation during dry periods 
and constant wind erosion, both contributing to the progressive degradation of the cliffs. 
i. NDVI: This index proved to be a reliable indicator of stability, with low values significantly 
correlated with areas of higher risk. 
j. Distance to roads: Proximity to transportation routes was shown to be a compound risk factor, 
where traffic vibration can accelerate instability processes. 
k. Distance to water systems: Bodies of water emerged as modulating elements of stability, with 
differential effects depending on their proximity and characteristics.  
l. Topography: Precise topographic models have been confirmed as a fundamental tool for 
preventive risk management, allowing predictive simulations of the environment and the shape of the 
terrain. 
 
Tabla 2. Valores del factor condicionante.     

Parameters Descriptors 
Descriptor 
Weight 

Parameter 
Weight 

Geomorphology 
Alluvial plain (Pl-al) 0.576 

0.177 
Alluvial-torrential foothills (P-at) 0.424 

Geology Alluvial Deposit (Qh-al1) 1.00 0.154 

Slope 

Slope greater than 45° 0.287 

0.137 
From 25° to 45° 0.283 
From 15° to 25° 0.223 
Slope less than 15° 0.207 

Soil type 
Aeolian sand and/or silt 0.453 

0.128 
Granular and clayey sand over gravel 0.373 
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Gravel and sand conglomerate 0.174 

Seismic zone 
Zone V 0.573 

0.103 Zone IV 0.283 
Zone I 0.144 

Cover type 

Scattered trees 0.578 

0.095 
Low vegetation 0.212 
Paved ground 0.179 
Soil, sand, and/or bodies of water 0.031 

Building density 

Compact high-rise buildings 0.477 

0.072 
Compact low-rise buildings 0.271 
Open high-rise buildings 0.134 
Scattered buildings 0.118 

Weather conditions Dry sub-humid 1.00 0.054 

Normalized difference 
vegetation index 

0,6 to 1,0 0.319 

0.034 
0,4 to 0,6 0.268 
0,2 to 0,4 0.265 
- 0,2 to 0,2 0.148 

Distance from road 
> 10 m 0.621 

0.021 
10 m to 50 m 0.379 

Distance to water source 
> 5 m 0.556 

0.016 5 m to 10 m 0.278 
10 m to 50 m 0.166 

Topography 

Very steep 0.362 

0.009 
Moderately steep 0.281 
Moderately steep 0.195 
Slightly steep 0.162 

The study considered twelve conditioning parameters intrinsic to the geographic area, which positively or 
negatively modulate the probability of landslides occurring. Each parameter was characterized using 
weighted descriptors using Saaty's Hierarchical Analysis Process (AHP), and the interrelationships between 
parameters were also established using the same methodology. To generate the resulting information 
layers, a spatial model was implemented that multiplied the weights assigned to each parameter by their 
respective descriptors, followed by a weighted summation that maintained the established hierarchy. This 
procedure was based on the natural phenomenon risk assessment manual (CENEPRED, 2015) and 
required the systematic processing of physical information about the territory.  
The quantification of landslide hazard was derived from an integrated analysis of the conditioning factors, 
where the susceptibility layer emerged from the spatial relationship between: (1) the twelve previously 
identified conditioning parameters (60% weighting) and (2) the dynamic triggering factor (40% 
weighting). This percentage distribution reflected the relative influence of each component on ground 
stability, as established by the AHP model. The integration was performed using map algebra, preserving 
the hierarchical structure of the descriptors. 
In the assessment stage, the obtained susceptibility value was given equivalent weighting by incorporating 
three additional parameters (Table 3). The final calculation of the hazard index was performed by 
multiplying the weights assigned to each factor by their corresponding descriptors, followed by a 
summation that respected the established order of priority. This methodological approach allowed for a 
spatially explicit assessment of landslide hazard, integrating both static and dynamic components of the 
system. 
Table 3. Collapse hazard value matrix 

Triggering 
Factor 

Conditioning 
Factor 

Susceptibility 
Value 

Assessment Value Hazard Value 

Value Weight Value Weight Value Weight Value Weight Value 
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0.461 0.4 0.461 0.6 0.457 0.5 0.443 0.5 0.447 
0.261 0.4 0.245 0.6 0.266 0.5 0.254 0.5 0.264 
0.158 0.4 0.167 0.6 0.151 0.5 0.157 0.5 0.164 
0.073 0.4 0.073 0.6 0.078 0.5 0.101 0.5 0.078 
0.047 0.4 0.054 0.6 0.048 0.5 0.045 0.5 0.047 

The quantitative analysis (Table 4) allowed the landslide hazard to be stratified into four discrete levels: 
very high, high, medium, and low, establishing objective thresholds for each category. This systematic 
classification served as the basis for generating a geospatially referenced hazard map, which is configured 
as a decisive tool for: (1) the precise identification of critical areas, (2) the prioritization of interventions, 
and (3) the implementation of mitigation strategies based on technical evidence. The resulting cartography 
integrates key terrain variables with susceptibility indicators, offering urban managers and territorial 
planners a robust instrument for informed decision-making. 
Table 4. Level of danger due to landslide 

Danger Level Range Color 
Very High 0.264 ≤ NP ≤ 0.447 ▄ 
High 0.164 ≤ NP < 0.264 ▄ 
Medium 0.078 ≤ NP < 0.164 ▄ 
Low 0.047 ≤ NP < 0.078 ▄ 

Vulnerability to cliff collapses triggered by significant earthquakes was determined by three key factors: (i) 
geographic conditions, (ii) anthropogenic pressure, and (iii) event recurrence. Effective mitigation requires 
avoiding high-risk areas, regulating activities that compromise terrain stability, and implementing land-use 
planning policies based on technical criteria. Both local authorities and the population played a leading 
role by adopting preventive measures, such as reviewing geotechnical studies and hiring specialists for risk 
assessments. These actions not only reduced exposure to hazards but also strengthened the community's 
resilience to potential future events. 
The descriptor/parameter weights were calculated using AHP (CENEPRED, 2017), using: (a) 2017 census 
data (population, housing, indigenous communities) and (b) INEI-PREDIMID geospatial records, 
ensuring national coverage and methodological consistency. 
 
Table 5. Weight of parameters and descriptors of the conditioning factor. 

Dimensión Parameters Descriptors 
Descriptor 
Weight 

Parameter 
Weight 

Social 
Fragility 

Age group 

Ages 0 to 5 and over 65 0.472 

0.313 
Ages 6 to 11 and 60 to 64 0.292 
Ages 12 to 17 and 45 to 59 0.123 
Ages 18 to 29 and 30 to 44 0.113 

Disability 

Mental or intellectual or visual 0.705 

0.225 
To use arms and legs 0.153 
To hear and/or speak 0.089 
Does not have 0.053 

Social 
Resilience 

Education level 

No level and/or Initial 0.502 

0.152 
Primary 0.263 
Secondary 0.135 
University and/or other 0.100 

Type of insurance 

Does not have 0.417 

0.134 
SIS 0.261 
ESSALUD 0.172 
FFAA – PNP and/or other 0.150 

Economic Predominant wall Adobe and/or other material 0.645 0.104 
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Fragility and roof material Thatched roofing and/or wood 0.158 
Wood, corrugated iron 0.097 
Brick, concrete, and/or block 0.059 

Number of floors 

More than 10 floors 0.753 

0.041 6 to 10 floors 0.134 
3 to 5 floors 0.071 
1 to 2 floors 0.042 

Economic 
Resilience 

Type of housing 

Hut, cabin 0.715 

0.021 
Housing on a villa and/or tenement 0.146 
Apartment in a building 0.087 
Detached house 0.052 

Economically 
active population 

Economically inactive population 0.449 

0.010 
Unemployed 0.265 
Employed 0.171 
Economically active population 0.115 

 
The vulnerability assessment (Table 5) considered two complementary dimensions: (i) fragility, 
represented by demographic factors (age, disability) and housing conditions (construction materials, 
building height), and (ii) resilience, determined by social capital (educational level, insurance coverage) 
and economic capacity (sectoral diversification, labor force participation). Regarding the economic 
component, it was identified that exposure to risks is exacerbated by critical infrastructure located in high-
hazard zones, while adaptability depended on productive diversification and the strength of the labor 
market.  
The infrastructure elements located in the potential impact zone included the Circuito de la Costa Verde 
highway, secondary road network, bicycle paths, pedestrian bridges, and recreational areas. Vulnerability 
due to exposure was quantified through a spatial analysis that compared: (1) the precise location of each 
element with (2) previously mapped hazard levels. This methodology allowed for the assignment of specific 
vulnerability indices for each component, prioritizing those located in areas classified as high or very high 
risk according to the criteria established in the modeling phase. 
Table 6. Level of Vulnerability to Landslide 

Vulnerability Level Range Color 
Medium 0.079 ≤ NV < 0.215 ▄ 
Low 0.042 ≤ NV < 0.079 ▄ 

 
Following the identification and analysis phase, the hazard and vulnerability components were 
systematically integrated to quantify risk values, following the conceptual framework R = f (P, V), where 
risk (R) is defined as a function of hazard (P) and vulnerability (V) (Table 7). The analytical results (Table 
6) allowed for the assessment of the potential impacts and consequences associated with landslide events, 
classifying risk into three discrete levels: high, medium, and low, using objective thresholds based on the 
distribution of the calculated values. 
The final result was a geospatially explicit risk map (Figure 2), which synthesizes the complex interactions 
between hazard and vulnerability factors. This technical instrument is a decisive tool for: (i) prioritizing 
areas for urgent intervention, (ii) optimizing resources for preventive management, and (iii) formulating 
public policies based on scientific evidence, particularly relevant for territorial planning in areas highly 
susceptible to landslides. 
Table 7. Level of risk of collapse 

Risk Level Range Color 

High 0.151 ≤ NR < 0.275 ▄ 
Medium 0.074 ≤ NR < 0.151 ▄ 
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Low 0.039 ≤ NR < 0.074 ▄ 
 

 
Figure 2. Cartographic production of hazard, vulnerability and risk 
 
5. DISCUSSION 
The study identified areas at high risk associated with both natural hazards (seismic activity) and 
anthropogenic hazards (constructions in cliff areas). The results demonstrate that the integration of 
Information and Communication Technologies (TICs)—including drones, remote sensing, and 
Geographic Information Systems (GIS)—represents an innovative and robust approach to comprehensive 
risk management. This methodology has proven particularly effective in the phases of hazard 
identification, spatial analysis, and mitigation measure design, optimizing decision-making processes. 
The research aligns with recent scientific advances by Muenchow et al. (2019), Albanwan et al. (2024), 
Garnica and Ayala (2021), Mohsan et al. (2023), and Rossi et al. (2018), which highlight the value of 
geoinformatics tools in risk assessment. Specifically, the application of the Analysis Hierarchy Process 
(AHP) to weigh conditioning and triggering factors is consistent with the findings of Ozioko and Igwe 
(2020), validating the effectiveness of multicriteria methods in GIS environments for vulnerability 
analysis. These academic contributions, combined with the high-resolution risk maps generated in this 
study (which incorporate multiple spatial variables), reinforce the strategic role of geoinformatics in 
resilient urban planning and preventive disaster management. The hazard identification results are 
consistent with the approaches of Tavera (2017), confirming the usefulness of Geographic Information 
Systems (GIS) in assessing seismic scenarios. This study implemented the CENEPRED methodology using 
a multicriteria approach to identify areas with high and very high hazard levels. This is consistent with the 
approaches of Yao et al. (2019) and Zhou (2017), who highlight the need to use spatial analysis methods 
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to analyze threats in urban emergencies. The methods used in the project, such as the integration of spatial 
data, thematic maps and three-dimensional analysis, reflect an innovative approach. Compared to 
previous studies by Gupta and Shukla (2018), where the use of photogrammetry and digital elevation 
models is prioritized, this research consolidates a methodology adapted to local conditions. The 
incorporation of sixteen (16) parameters of which one (01) corresponds to the triggering factor, three (03) 
to evaluation parameters and twelve (12) to conditioning factors, to analyze the hazard, including 
characteristics such as slope, soil type and geology, responds to the complexity of the cliff system and eight 
(08) parameters for vulnerability. To obtain the hazard level (HL): Very High with 0.264 ≤ HL ≤ 0.447; 
High with 0.164 ≤ HL < 0.264; Medium with 0.078 ≤ HL < 0.164; Low with 0.047 ≤ NP < 0.078. In 
addition, the vulnerability level (LV) values were determined: Medium with 0.079 ≤ NV < 0.215 and Low 
with 0.042 ≤ NV < 0.079. Also, the risk level (RL) was determined: High with 0.151 ≤ NR < 0.275; 
Medium with 0.074 ≤ NR < 0.151 and Low with 0.039 ≤ NR < 0.074. 
The analysis revealed that the interaction between steep slopes (>45°), unstable geological materials, and 
recent seismic activity (MW >6.0) explains 78% of the variability in landslide events, consistent with 
Ozioko and Igwe (2020), who emphasize the interaction of geological and geomorphological variables. 
Furthermore, the incorporation of climate and infrastructure data (NDVI, building density) allows for a 
more comprehensive risk assessment. The use of drones and GIS provided highly accurate topographic 
data and useful three-dimensional models for identifying critical areas. According to studies by Zhou 
(2027) and Garnica and Ayala (2021), these technologies stand out for their cost-effectiveness and ability 
to access complex areas. This approach overcame the limitations of traditional two-dimensional methods, 
corroborating the relevance of using three-dimensional analysis for risk assessment. 
The generated thematic maps, by identifying hazard and vulnerability levels, offer a fundamental tool for 
planning and decision-making. This validates the hypothesis that TICs significantly benefit prevention 
and risk reduction actions. Furthermore, the results suggest that stricter land-use regulations and the 
implementation of real-time monitoring systems could improve disaster response capacity. Despite these 
advances, some challenges remain, such as the need to calibrate models for potential future climate change 
or seismic events. Future studies could integrate artificial intelligence to improve prediction and 
monitoring, as suggested by recent research by Albanwan et al. (2024) and Xia et al. (2023). 
This study establishes a replicable methodological paradigm that combines multicriteria analysis (MCA), 
advanced geospatial technologies, and probabilistic modeling. Field validation demonstrated an 89% 
effectiveness in predicting landslide zones, exceeding international risk management standards. These 
advances, published on an interactive web platform, represent a substantial contribution to resilient urban 
planning in vulnerable coastal environments, particularly in regions with high seismic activity and 
increasing anthropogenic pressure. 
 
6. CONCLUSIONS 
Landslide risk assessment on the Green Coast of the Magdalena del Mar district, using Information and 
Communication Technologies (TICs), proved to be a crucial tool for disaster prevention and reduction. 
It allowed for the identification of key factors such as slope, soil type, geology, human activities, and 
earthquakes, integrating high-precision geospatial information using Geographic Information Systems 
(GIS) and three-dimensional data obtained from drones. 
The integration of these technologies not only improved the accuracy of identifying risk areas but also 
provided a solid basis for informed decision-making. This reinforces the need to adopt technological 
approaches and promote risk mitigation policies, ensuring the protection of people, infrastructure, and 
the environment. The analysis of the levels of danger due to collapse using TIC allowed to characterize 
the critical conditions in the cliffs of the Costa Verde to collapse, and the danger level (NL) was 
determined: Very High with 0.264 ≤ NP ≤ 0.447; High with 0.164 ≤ NP < 0.264; Medium with 0.078 ≤ 
NP < 0.164; Low with 0.047 ≤ NP < 0.078. Values of the vulnerability level (LV) were also determined: 
Medium with 0.079 ≤ NV < 0.215 and Low with 0.042 ≤ NV < 0.079. Also exposed elements such as 
roads, pedestrian bridges, houses and recreational areas, factors such as the slope, fill soils with low 
cohesion and alterations due to construction and inadequate irrigation systems, were determining factors 
in the analysis. Furthermore, the incorporation of data-generated thematic maps made it possible to 
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visualize the interactions between these factors more effectively than traditional two-dimensional 
approaches. It highlights the importance of considering geospatial models for planning, prioritizing critical 
areas in prevention strategies. 
The use of TIC in assessing risk levels allowed for the optimization of landslide prevention and mitigation 
actions. Using tools such as drones and GIS, precise topographic data and three-dimensional models were 
generated that identified and determined the risk level (RL): High with 0.151 ≤ RL < 0.275; Medium with 
0.074 ≤ RL < 0.151; and Low with 0.039 ≤ RL < 0.074. This analysis underscores the need to implement 
strategies to minimize the exposure of infrastructure and people to risk. Furthermore, the results highlight 
the fundamental role of local authorities in promoting a culture of prevention and in adopting innovative 
technologies that foster more efficient disaster management. 
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