International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 22s, 2025
https://www.theaspd.com/ijes.php

Pyrazoline-Based Molecules In Antimicrobial Research: A
Systematic Review

Mohd Akil!, Abdul Rahman Khan', Benjamin Siddiqui, Igbal Azad', Naseem

Ahmad"
"Department of Chemistry, Integral University, Lucknow - 226026

Abstract

Pyrazoline derivatives have become important compounds in medicinal chemistry because of their extensive array of biological
activities, especially their antibacterial properties. The escalating problem of antimicrobial resistance (AMR) and the rising
incidence of fungal infections underscore the urgent demand for new therapeutic agents. Pyrazoline derivatives, characterized
by their unique five-membered heterocyclic framework, exhibit strong antibacterial and antifungal effects through mechanisms
that involve interactions with microbial enzymes, DNA, and cellular membranes. Developments in synthetic methods,
including environmentally friendly techniques and computational drug design, have facilitated the synthesis of derivatives with
enhanced efficacy and reduced resistance. This review encapsulates recent progress in the synthesis, structural diversity, and
biological efficacy of pyrazoline derivatives, emphasizing their significance in addressing global infectious disease challenges. It
also reviews commercially available antimicrobial agents and the specific modifications that enhance pharmacokinetic and
pharmacodynamic properties. The potential future applications of pyrazoline derivatives in combating AMR and invasive
fungal infections are thoroughly examined, offering a comprehensive reference for advancing research and therapeutic
innovations in this field.

INTRODUCTION

Pyrazoline derivatives have surfaced as a significant group of heterocyclic compounds in medicinal chemistry
because of their extensive range of biological properties [1]. Among these effects, their antibacterial and antifungal
properties have garnered considerable interest, particularly considering the pressing demand for novel
therapeutic agents to address the escalating challenge of microbial resistance and fungal infections. The
identification and creation of antimicrobial medications has historically depended on the structural and
functional diversity of organic compounds, and pyrazoline derivatives, with their unique chemical structure, have
proven to be a promising area for such research [2, 38-43].

The pyrazoline core consists of a five-membered heterocyclic ring containing two adjacent nitrogen atoms. This
structural feature is not only versatile in synthetic applications but also significant in biological contexts,
facilitating the development of compounds with enhanced pharmacological properties [3]. Pyrazoline derivatives
are typically produced by cyclizing a,B-unsaturated carbonyl substances with hydrazines, enabling structural
modifications. These modifications permit researchers to optimize the physicochemical and biological properties
of the resulting molecules [4].
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Figure-1: Structure of Pyrazoline

The concerning rise of antimicrobial resistance (AMR) has been recognized as one of the most urgent global
health challenges of the twenty-first century. Pathogens such as multidrug-resistant Escherichia coli, Staphylococcus
aureus, and Pseudomonas aeruginosa are becoming increasingly challenging to treat with existing therapies, leading
to higher death rates, prolonged hospital stays, and rising healthcare costs [5]. Simultaneously, the incidence of
invasive fungal infections caused by species like Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans
has increased, which is often worsened by patients with weakened immune systems [6]. These developments
emphasize the vital necessity for new antibacterial and antifungal therapies with innovative mechanisms of action.
Pyrazoline derivatives have shown significant effectiveness against a variety of microbial and fungal infections,
rendering them attractive options for drug development. The antimicrobial efficacy of these compounds is often
associated with their ability to bind with bacterial and fungal cellular targets, including enzymes, DNA, and
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components of the cell membrane, thereby disrupting essential physiological functions [7]. Additionally, their
structural variability facilitates the exploration of different mechanisms of action, which lowers the risk of
resistance emergence.

In addition to their natural biological roles, pyrazoline derivatives possess beneficial pharmacokinetic and
pharmacodynamic properties, which include significant bioavailability, metabolic stability, and minimal toxicity
[8]. These traits enhance their prospects as therapeutic agents. Moreover, progress in synthetic methods, including
green chemistry and computational drug design, has facilitated the effective and sustainable development of
pyrazoline-derived compounds featuring improved activity profiles.
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Figure-2: Varied significance of Pyrazoline and its derivatives [44-40]

This review will offer a thorough overview of existing studies concerning pyrazoline derivatives used as
antibacterial and antifungal agents. It will examine the synthesis and structural differences of these compounds,
their mechanisms of action, and the spectrum of their biological activities. Furthermore, the review will
investigate recent progress, challenges, and future perspectives in this field, emphasizing the role of pyrazoline
derivatives in alleviating the global impact of infectious diseases. By merging current knowledge and pointing out
research deficiencies, this review seeks to encourage upcoming research and advancements in the creation of
pyrazoline-based treatments.
Table-1: Some Marketed Drugs for Anti-Bacterial Activity

S. No. Marketed Drug Structure Reference

~

z—o0
z
/

L. Cefoselis VAN | J (47]

IO o N \ ° NH,
2. Ceftolozane Nf‘\uég/\} >\/\/ [48]
7

3. Ciprofloxacin h | (49]

L
4. Piperacillin bNTn YA (50]

4383



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 22s, 2025
https://www.theaspd.com/ijes.php

5. Levonadifloxacin | O/ [51]
6. Amoxicillin [52]
1. Azithromycin [53]
8. Meropenem [54]
9. Doxycycline [55]
10. Clarithromycin [56]
11. Metronidazole (57]
12. Vancomycin [58]
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13. Clindamycin [59]
14. Gentamicin [60]
15. Erythromycin [61]
16. Nitrofurantoin $<:< = //O [62]
17. Tigecycline /\”/ ““ [63]
N/ \N
N \N/
18. Tedizolid " (64]
S [0

OH
19. Fosfomycin - ""”//ﬁ/ on [65]

o]
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20. Rifampicin [66]
N
Table-2: Some Marketed Drugs for Anti-Fungal Activity
S. No. Marketed Drug Structure Reference
F N%\
1. Fluconazole | 7 (67]
N/N
)
2. [traconazole [68]
cl 0, o} N/—\N / \c OH
\Q' """" T~ O O~
Y
3. Ketoconazole ) ) Ojvo\@\ [69]
4. Voriconazole [70]
5. Posaconazole [71]
DN
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6. Caspofungin (72]
1. Micafungin [73]
8. Anidulafungin (74]
9. Griseofulvin [75]
10. Terbinafine [76]
11. Naftifine (77]
12. Clotrimazole (78]
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13. Efinaconazole [79]
14. Tavaborole [80]
15. Ciclopirox (81]
16. Tolnaftate [82]
17. Amorolfine [83]
18. Flucytosine (84]
19. Nystatin [85]
20. Amphotericin B [86]

Routes of Synthesis Pyrazoline Derivatives

In 2020, Xu et al. [9] reported a silver-catalyzed protocol for synthesizing 5-aryl-3-trifluoromethylpyrazoles via the
coupling of N'benzylidene tolylsulfonohydrazides with ethyl 4,4,4-trifluoro-3-oxobutanoate. The reaction
sequence proceeds through nucleophilic attack, intramolecular cyclization, dehydrobenzenesulfonyl elimination,
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and a final [1,5]-hydrogen shift, affording the desired trifluoromethylpyrazoles in moderate to good
yields.Optimization studies revealed that raising the temperature to 60°C improved yields, whereas higher
temperatures led to decreased product formation. Among catalysts, Cu (OTf). afforded a 60% yield, while
Fe(OTf)s was ineffective. Toluene proved superior to THF and dioxane as the solvent. For bases, K2CO:s
outperformed NaH, +BuOK, and +BuONa. Notably, the combination of neocuproine as a ligand with a silver
catalyst provided the best result, delivering yields exceeding 99%, whereas 2,2"bipyridine and 1,10-
phenanthroline gave 57% and 92% vyields, respectively.

AgOTf (10 mol%)

\ Me,phen (12 mol%)
. -
R | M KH (15 mol%)
| FsC OFt

/ Toluene, 60°C

Scheme-1: Synthesis of 5-aryl-3-trifluoromethyl pyrazoles utilizing a silver catalyst

Table-3: Structural Modification to synthesized pyrazole derivative by Xu et al.
Structure Modification (R)
H

4-Me

4-tBu
4.O-CH,-Ph
4-OMe

4’N(Me)z

cF; | 3-CF;
N A 4.CN
=

4.F

EtO © 2,4-diF
(2-F, 5-Br)
4.Cl

4-Br

2-Br

In 2020, Kim et al. [10] developed a rapid and efficient "one-pot" strategy for synthesizing pyrazoles from (hetero)
arenes and carboxylic acids. The method involves the in situ formation of ketones and B-diketones, followed by
heterocyclization with hydrazine. The underlying concept was that three simple steps could yield 3,5-disubstituted
pyrazoles. Initially, a TfOH/TFAA-mediated "one-pot" synthesis of 1,3-diketones was accomplished from
methylarylketones, utilizing arenes and carboxylic acids. The resulting dicarbonyl intermediates were
subsequently converted into 3,5-disubstituted pyrazoles under Knorr reaction conditions.

Ar.

o 0
o ) ﬂ
)J\ a )J\ R
R OH NH,NH
OH NH,
AH — )K e R mon
Ar

TOH / TFAA EtOH
Scheme-2: The synthetic method for producing pyrazoles from arenes and carboxylic acids through a one-pot
synthesis

Table-4: Structural Modification to synthesized pyrazole derivative by Kim et al.
Modifications Structure

R | Ar
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Me Ph Ar ﬂ
t+BuCH, 3,4-diMePh R

1-AdCH, 2,4-diCIPh

3.HO-1- 4.OMePh

AdCH, Thiophenyl
5-Br-Thiophenyl

5-dibenzol[b,d]furan-2-yl)
In 2020, Komendantova et al. [11] reported a novel approach for the synthesis of 3,4-dicarbonyl-substituted
pyrazoles. The reaction employs 1,3-dicarbonyl compounds and oxamic acid thiohydrazides in the presence of
catalytic TsOH, followed by sulfur elimination. The process proceeds via an iodine-accelerated
imination/halogenation/cyclization/ring-contraction sequence. Using readily available substrates and mild
conditions, this method provides a straightforward and highly efficient strategy for the synthesis of functionalized

pyrazoles.

S
0 o | L R N/
HoN N TsOH (10 mol%) i H
+ N N —_—
N R3 -[S]
R{ Ry
o Ry

Scheme-3: Production of substituted pyrazoles from 1,3-diketones and hydrazine derivatives

Table-5: Structural Modification to synthesized pyrazole derivative by Komendantova et al.

Modifications Structure
R, | R, R, 7R Ry
Alk [ Alk [Alk | ® Y
Ar | OAlk | Ar I-
Bn Het R,

Bn

In 2020, Gerus et al. [12] investigated the fluorination of enones using XeF: in the presence of BFs-Et2O. The
inclusion of pyridine in the reaction mixture afforded fluoroenones in a 68% vyield. Subsequent treatment of
fluoroenones with hydrazine sulfate produced fluoropyrazoles in an excellent 87% yield.

0 1) XcF,, BF;, Et,O NH,NH, <

)J\/\ 2> —
_— D — e
FiC Z Sowme o
F.C / oMe CH;CN, RT 3 Toluene, 80°C

3
F

Scheme-4: Synthesis of fluoropyrazole by Gerus etal., [12]

In 2020, Stephan et al. [13] developed a versatile strategy for synthesizing pyrazole derivatives. Initially, a Heck
reaction between (hetero) aryl bromides and acrolein or vinyl ketones generated 3-(hetero)aryl propenals and
propenones. The reaction was performed under Jeffery’s and Fu’s conditions with Beller's CataCXium Ptb
ligand. The resulting 3-substituted o,B-unsaturated carbonyl compounds served as key intermediates for the
preparation of 3,5-diarylpyrazoles and 3-(hetero)aryl pyrazoles via consecutive three- and pseudo-four-component
reactions, providing low to good yields. This flexible approach is suitable for constructing diverse pyrazole

libraries.

0.5 mol% Pd,(dba);
o 2 mol% CataCXium Ptb R

(Hetero)Ar-bromide (1.0 equiv.) '\
/Br Ar (Hetero)
(Hetero) Ar X R NBu,Cl (1.0 equiv.)

NaHCO; (1.1 equiv.)
DMEF, 100°C (MW), 4h
Then: H,SOy (1.0 equiv.), TosNHNH, (1.1 equiv.) 80°C (MW), 1.5h
Then: NaOH (3.3 equiv.), 100°C (MW), 4h

Scheme-5: Synthesis of pyrazole derivative by Stephan et al., [13]
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Table-6: Structural Modification to synthesized pyrazole derivative by Stephan et al.

Modifications Structure
R Ar

H Ph

Me 4.FPh

Ph 4.CNPh

4OMePh | 4NMePh | TN oo
4.NMe,Ph | 4-CF;Ph @
Penthyl 4-OMePh
3-F,4-OMePh
2-OMePh
2-thiophenyl
In 2020, Tian et al. [14] reported a transition-metal-free synthesis of 4-sulfonyl pyrazoles through a tandem C(sp?)-
H sulfonylation/pyrazole annulation process. The reaction involves N,N-dimethyl enaminones and sulfonyl
hydrazines, catalyzed by molecular iodine at room temperature in the presence of TBHP and NaHCOs. This
method provides an efficient and straightforward route to sulfonyl-substituted pyrazoles.

[ N SOAr

|

1, (20 mol%) R
o 2
Ar: Vi TBHP (2 equiv.) G
AN AN N A
Rl ‘ O/ ~y~ NaHCO; (0.5 mol%)
‘ - f DCM, 40°C
Ar0,S’

Scheme-6: Synthetic pathways for pyrazole derivatives utilizing I,/TBHP, NaHCO; as a catalyst.

Table-7: Structural Modification to synthesized pyrazole derivative by Tian et al.

Modifications Structure

R Ar

4.OMe | 4-CIPh

4NMe, | 3,5diCIPh | [T ) sow

3.Cl 4.OMePh A
4FPh @
4.CIPh
4.BrPh ’
2.CIPh

In 2020, Bhaskaran et al. [15] developed a metal-free protocol for synthesizing pyrazoles and chromeno-pyrazoles
from aldehydic hydrazones and acetylenic esters. The method accommodates both symmetrical and
unsymmetrical hydrazones and alkynes, affording a wide range of products in moderate to very high yields.

Ry
Ry Ar.

Ry
h =N
| | N N Ar
S RT, 20h
| PH
R, Ph

Scheme-7: Synthesis of pyrazole derivatives by Bhaskaran et al., [15]

Table-8: Structural Modification to synthesized pyrazole derivative by Bhaskaran et al.

Modifications Structure
R, R, Ar .
CO,Et | H Ph
CO,Me | COEt | 4OMePh | ™ ’\
CO,Me | 4BrPh @ o
Ph 4.FPh N
2-BrPh
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In 2020, Li et al. [16] explored the 1,3-dipolar cycloaddition of N-tosylhydrazones with acetylene gas using a
simple balloon setup. Screening of bases and solvents identified K2COs as the most effective base. The reaction
provided pyrazoles in reasonable to good yields, with DMSO performing better than NMP for reactions involving
ketone-derived N-tosylhydrazones. This straightforward method holds promise for commercial applications.

| K,CO;4

HN Acetylene gas (on balloon) Ar
N
N >
M DMSO0, 90°C (6h)

Ar

Scheme-8: Synthesis of pyrazole derivatives by Li et al., [16]

Table-9: Structural Modification to synthesized pyrazole derivative by Li et al.

Modifications (Ar) | Structure
Ph
4-MePh
3-MePh
2-MePh Ar
4.NMe,Ph
2-OMePh
4.OMePh
4.CF;Ph
4.BrPh
3-BrPh

In 2020, Ledovskaya et al. [17] achieved a regioselective synthesis of 1,3-disubstituted pyrazoles via 1,3-dipolar
cycloaddition of vinyl ethers with hydrazonoyl chlorides, promoted by triethylamine (TEA) as a mild base.

Arq
Ar
HN 1
~ Et;N, CH
N 34N, Lelle
+ -
///lL\\\ Z Now T
Ars ol A

Scheme-9: Synthesis of pyrazole derivatives by Ledovskaya et al., [17]

Table-10: Structural Modification to synthesized pyrazole derivative by Ledovskaya et al.

Modifications Structure
Ar, Ar, An
Ph Ph

4-MePh 4-MePh
4.0OMePh | 4-BrPh
4.FPh Ary

In 2020, Lakeland et al. [18] reported a visible-light photoredox-catalyzed approach for synthesizing 1,4-
disubstituted pyrazoles using Ru(bpy)s(PFe)z as the catalyst. The method exhibited excellent yields and broad
substrate scope.

Ar Ar
N Ru(bpy)s(PFy), (5 mol%)
\ o  MeNH (20 mol%)
| N+ /\/ - >
o/ R EVI, (I equiv.) NMP
€] (o) RT, 48 h, blue LEDs
[¢)

R
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Scheme-10: Synthesis of pyrazole derivatives by Lakeland et al., [18]

Table-11: Structural Modification to synthesized pyrazole derivative by Lakeland et al.

Modifications Structure
R Ar

Buthyl H

iPr 4-OMePh Ar
Cyclohexyl 4.CNPh

Me 4-FPh

Ph 4-CIPh

Benzyl 4-BrPh

TBSO-Butyl 4CFPh | R
(CH,),CO;Me 3-MePh
(CH,),CO,N(OMe)Me

In 2020, Pearce et al. [19] developed a multicomponent oxidative coupling strategy to access multi-substituted
pyrazoles. The reaction involves the combination of alkynes, nitriles, and titanium imido complexes, proceeding
through diazatitana-cyclohexadiene intermediates and a 2-electron oxidation pathway mediated by TEMPO.

[py,TiCl,(NPh)], [Py, TiCL,(NPh)],

C¢DsBr, 115°C

+

C¢DsBr, 115°C

J N\,
_
\E
O
N

2
o
&

Ry

Scheme-11: Synthesis of pyrazole derivatives by Pearce et al., [19]

Table-12: Structural Modification to synthesized pyrazole derivative by Pearce et al.

Modifications Structure

R, R, R,

Ph Me Me A
4-Me-Ph | Et Et

4MeOPh | Ph 4. BuPh Rs
4-CF3.Ph | 4‘BuPh R S~/
IPr Ra

Me

In 2021, Devi et al. [20] designed an elegant method for synthesizing functionalized pyrazole chalcones and
indenyl-pyrazoles through a 1,3-dipolar cycloaddition of a-diazo phosphonates, sulfones, and trifluoromethanes
with 2,4,6-trisubstituted pyrylium tetrafluoroborate salts. The reaction proceeds via nucleophilic addition to
pyrylium salts, base-catalyzed ring opening, and intramolecular 1,5-cyclization, yielding 1,3-dipolar cycloaddition
products. Subsequent hydride reduction and Nazarov-type cyclization, followed by acidic workup, afforded the
target molecules in high yields. This strategy offers an efficient route to bioactive pyrazole derivatives.

Ry

\ X
| ( DBU (1.5 equiv.)

.
% | MeCN, RT (2-6h)
Ry (o] Ry N2
S
BF,

Scheme-12: Synthesis of pyrazole derivatives by Devi et al., [20]

Table-13: Structural Modification to synthesized pyrazole derivative by Devi et al.
Modifications Structure
R, | R, | X

4393



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 22s, 2025
https://www.theaspd.com/ijes.php

Ph Ph SO,Ph
4-OMePh | 4-OMePh | Tsyl
4-MePh 4-MePh CF,
4-CIPh 3-OMePh

3-CIPh

In 2021, Zhao et al. [21] investigated cascade reactions of alkyl a-diazoesters with ynones catalyzed by AI(OTY)s,
enabling the efficient synthesis of a series of 4-substituted pyrazoles. The transformation proceeds via a [3 + 2]
cycloaddition, followed by 1,5-ester shift, 1,3-hydrogen shift, and N-H insertion steps. Mechanistic insights were
obtained through deuterium labeling, kinetic studies, and control experiments, providing valuable data for
understanding the underlying reaction pathways.

R,0,C

0 N,
)J\ Al(OTH), A
+ B —
DCE, 80°C
Ar % Ry CO,R, R,

CO4R,

Scheme-13: Synthesis of pyrazole derivatives by Zhao et al., [21]

Table-14: Structural Modification to synthesized pyrazole derivative by Zhao et al.

Modifications Structure
R, | R, | Ar
Me | Me | Ph o ot

Ph | Et | 4-FPh R,
4-MePh
4.CIPh
4.BrPh Ri

4.CF;Ph CO,R,
CO,;MePh

Ar

In 2021, Chen et al. [22] developed a transition-metalfree protocol under mild conditions for synthesizing
disulfonated pyrazoles from sulfonyl hydrazides, 1,3-diketones, and sodium sulfinates using molecular iodine as
the catalyst. The reaction proceeds via the in situ generation of sulfonyl iodide from sodium sulfinate and iodine,
followed by imine formation (from sulfonyl hydrazides and 1,3-diketones), tautomerization to an enol form, and
nucleophilic attack of the sulfonyl iodide, culminating in intramolecular condensation to afford the desired
pyrazoles in a single step.

o
O\s/ g + )C]\/U\ + |:| I, KHPO, 0 F , N
R1/ \NHNHZ Ry ™ CH;CN. RT
Oo=—g
/\
o R

Scheme-14: Synthesis of pyrazole derivatives by Chen et al., [22]

Table-15: Structural Modification to synthesized pyrazole derivative by Chen et al.
Modifications

R, | R, | R,

Structure
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Ph Me Ts o T3 o
4MePh | Bu PhO,S N7
4.PhPh n-CsHy,

Naphthyl | Ph N7 N
4BuPh 4-MePh

3-MePh 4.OMePh g
4.OMePh | Naphthyl O// \R

4-FPh 4.FPh
4-BrPh 4-BrPh
4.CIPh 4-CIPh

4-IPh 3.CIPh
3-.Thiophenyl
2-Furanyl
2-Pyridinyl
In 2022, Yang et al. [23] introduced a novel metal-oxo-cluster-based inorganic framework, described as a 3D
platelike ternary-oxo-cluster (NaCoMo), which serves as a highly efficient catalyst for the condensation and
cyclization of 1,3-diketones with sulfanylhydrazides to yield pyrazoles. This method achieved excellent yields (up
to 99%) under mild conditions. The development of NaCoMo opens avenues for utilizing non-classical
polyoxometalates in pyrazole synthesis.

[o] Ry
O_!—Ng ’
N\,
o o
NaCoMo (2 mol%)
+ _— > o
Rs 80N - 120°C (1 - 1.5h) S/
N\
)

Rz

Ry

Scheme-15: Synthesis of pyrazole derivatives by Yan et al., [23]

Table-16: Structural Modification to synthesized pyrazole derivative by Yan et al.

Modifications Structure

R, R, | R; Ry

H |H |[Me
Me | Cl | Cyclopropyl @ Ra
OMe | Me _°
Cl N
Br °
NO, "

In 2022, Liu et al. [24] reported the catalytic application of a Keggin-based U(VI)-containing polytungstate (U-
POW) tetramer (U4), which exhibits bifunctional Lewis acid-base properties. Under mild conditions, U4
efficiently catalyzed the reaction of various hydrazines with 1,3-diketones to produce pyrazoles in high yields. This
work not only highlights the potential of actinide-containing polyoxometalates (POMs) in catalytic synthesis but

also represents the first example of a U-POW tetramer applied to pyrazole synthesis.
R4

[¢] o

HoN
NG Uy (0.5 mol%)
+ NH @ &—— 3
| 120°C, 100-180 min.
Ry

Ry R,

Scheme-16: Synthesis of pyrazole derivatives by Liu et al., [24]

Table-17: Structural Modification to synthesized pyrazole derivative by Liu et al.

Modifications Structure
R, | R,
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H | Ph R4
Me | Penthyl
Cl | PhcO — \
4-MePhCO

4-OMePhCO
4. FPhCO
4.CIPhCO

4BrPhCO Ra

In 2022, Kula et al. [25] investigated the reaction mechanisms involving (E)-3,3,3-trichloro-1-nitroprop-1-ene and

N-(4-bromophenyl)-C-arylnitrylimine, providing insights into the structural and electronic factors governing the
formation of substituted pyrazoles.

—

Benzene

5[0 0.
SRS

Scheme-17: Synthesis of pyrazole derivatives by Kula et al., [25]

Table-18: Structural Modification to synthesized pyrazole derivative by Kula et al.
Modifications (R) | Structure

! 9 ©

Cl

o o S
Anti-Microbial Activity

In 2017, Afaq et al. [26] reported that glacial acetic acid (GAA) promoted the thermal cyclization of hydrazine
hydrate with 1,6-diphenylhexa-1,5-diene-3,4-dione, affording five pyrazoline derivatives (1a-e) in high yields (70-
87%). Antibacterial evaluation showed inhibition zones (mm) against Escherichia coli (11.5, 12.0, 12.0, 7.5, and

16.0 mm) and Staphylococcus aureus (13.0, 13.5, 14.0, 8.0, and 18.0 mm). Compound le, bearing OCH3 and
OH groups, exhibited the strongest antibacterial activity.
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o, CHs

o (=)
+ 40% NaOH
_—
a EtOH

H3C CHy

Yield: 70 - 87%
Average Yield: 75%

Scheme-18: Synthesis of derivatives of bi-pyrazoline (1a - 1e)

Table-19: Structural Modifications of Synthesized Compound 1

Synthesized Compound Compound Name | R, R,
la H H
1b H CH,
lc H OCH;
1d H Cl
le OCH; | OH

In 2019, Fariana Nur Santi et al. [27] synthesized a new pyrazoline derivative (2) and evaluated its toxicity and
antibacterial properties. The brine shrimp lethality test (BSLT) yielded an LCso of 96.96 ppm, indicating potential
anticancer activity. The compound demonstrated moderate to significant antibacterial effects against S. aureus

ATCC 25923 and E. coli ATCC 25922 by the agar diffusion method.

o

o >\NH1
N N
= OCH; ‘
OCH;
EtOH
_— >
NH,CONHNH,
cl cl OH
c el OH
2

Yield: 29%

Scheme-19: Synthesis of pyrazoline derivative exhibiting potential Anti-Bacterial activity against S. aureus and E.
coli

In 2020, Mohammad Asad et al. [28] synthesized five N-trifluoroacetyl-2-pyrazolines (3a-e) via the cyclization of
chalcones with hydrazine and trifluoroacetic acid, achieving yields of 72-79%. Among them, 3a (bearing a NO:
group) exhibited strong antibacterial activity, with MICs of 79 pM for Pseudomonas aeruginosa and 90 pM for
E. coli. SEM analysis revealed complete bacterial membrane rupture upon treatment.

2 >\r/m

N N
F a NH,NH, . H,0 ‘
e e
CF3COOH, reflux (2h) e
Br’

Br
3

Yield: 72 - 79%
Average Yield: 76%

Scheme-20: Synthesis of f N-trifluoroacetyl-2-pyrazoline derivatives (3a - 3e)

Table-20: Structural Modifications of Synthesized Compound 3
Synthesized Compound Compound Name

R
. \©/
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In 2020, Dileep Kumar Achutha et al. [29] synthesized thiophene-tethered pyrazoline carbothioamide derivatives
(4a-k) via an eco-friendly 3 + 2 annulation of chalcones and thiosemicarbazide hydrochloride in aqueous citrus
extract. Antioxidant studies revealed DPPH and hydroxyl radical scavenging activity, while 4c and 4k showed

notable antibacterial activity against S. aureus (20 and 15 pg/mL), E. coli (15 and 15 pg/mL), B. subtilis (25 and
20 pg/mlL), and antifungal activity against A. niger, A. flavus, and C. albicans.

4
\ (=) A s
NaOH, McOH \ cl
—_— >
RT (3-4 h) /

NH,

:O T

Yield: 68 - 88%
Average Yield: 79%

Scheme-21: Synthesis of pyrazoline derivatives (4a - 4k) via thiophene-tethered pyrazoline carbothioamide

Table-21: Structural Modifications of Synthesized Compound 4

Synthesized Compound Compound R, R, R,
Name
4a H H H
4b H H F
" 4c H H Cl
4d H H CH;
3 4e H |H OCH,
(=) U s 4f H H NO,
O [ — 4e H |H | N(CH)
@ 4h H H Br
4i CH; | H CH;
4 H OCH; | OCH;
4k Cl H Cl

In 2021, Matthew Payne et al. [30] developed a one-pot oxidative cyclization of chalcones with hydrazine
monohydrate, producing fifteen 3,5-diaryl-1H-pyrazoles (5a-q) with yields ranging from 10-90%. 5p, possessing
OCHSs and OH groups, exhibited significant antibacterial activity against S. aureus (MIC = 8 pg/mL) and altered
B. subtilis morphogenesis before cell lysis, without cytotoxic effects on 3T3-L1 mammalian cells.
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Yield: 10 - 90%

Average Yie;d: 43%

Scheme-22: Synthesis of potential anti-bacterial agents of 3,5-diaryl-1H-pyrazole derivatives (5a - 5q)

0, DMSO
NH,NH, . H,0
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Table-22: Structural Modifications of Synthesized Compound 5

Synthesized Compound Compound | R, R, R, R, R;
Name
5a p-CIPh H OCH; | OCH; | H
5b p-CIPh H OCH; | H OCH,
5¢ p-CIPh OCH; | H H OCH,
5d p-CIPh H OCH; | H H
S5e p-CIPh H OBn | H H
5f p-CIPh H H OBn | H
b ‘“ 5¢ p-CIPh H OBn | OCH; | H
(s 5h >C(CH,),Ph | H OCH, | H H
O O 5i p-C(CH);Ph | OCH, | H H OCH,
& Re R | 5 p-C(CH5);Ph | H OCH; | OCH; | H
", 5k p-C(CH;);Ph | H OBn | H H
51 Ph H OCH; | H H
5m Ph OCH; | H H OCH,
5n Ph H OCH; | OCH, | H
50 tert-Bu H OH OCH; | H
5p Ph H OH | OCH,|H
5q Ph H H OH |H

Also in 2021, Mohammad Asad et al. [31] synthesized three N-acyl-2-pyrazolines (6a-c) by cyclizing chalcones
with hydrazine hydrate in the presence of aliphatic acids, yielding 78-84%. Compound 6b showed the best

antibacterial activity MIC: S. aureus & E. coli = 32 pg/mL; S. pyogenes & S. typhimurium = 64 pg/mL).

o

N

NH,NH, . H,O ‘
—
@ / @ A @
reflux (2h)

A

e

N

6
Yield: 78 - 84%
Average Yield: 81%

Scheme-23: Synthesis of pyrazoline derivatives (6a - 6¢) as N-acyl-2-pyrazolines

Table-23: Structural Modifications of Synthesized Compound 6
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Synthesized Compound
Compound Name R, R, A

6a Q/ D CH,COOH

HsCO

e
] 6b m CH;CH,COOH
e e HaC CH,

NO,

6¢ /O/ D CH,CH,CH,COOH

In 2021, Lokesh Kumar et al. [32] employed 1,3-dipolar cycloaddition between pyrazoline-linked alkynes and 2-
bromo-N-arylacetamide to synthesize pyrazoline-amide-1,2,3-triazole hybrids (7a-d) in 64-82% vyields. 7a-c
exhibited potent antibacterial and antifungal activity (MIC = 0.062-0.078 umol/mL), with molecular dynamics
simulations confirming 7a as the most promising antibacterial candidate.

o, H o, CH,
o
_Z S
40% NaOH K
- .
EtOH, Microwave, 5-7 min. o !
kc ®

NHzNH, “*0‘ reflux (2-3h)

CH;CO0H

N\
Qo

Yield: 64 - 82%
Average Yield: 74%

Scheme-24: Synthesis of pyrazoline derivatives (7a - 7d)

Table-24: Structural Modifications of Synthesized Compound 7
Synthesized Compound Compound Name | R,

e Ta H
b CH;

N ‘N
% ‘ O Te OCH;
° ) | 7d Br

In 2021, Pathade et al. [33] described an eco-friendly PEG-400-mediated synthesis of pyrazoline derivatives (8a-
d), which demonstrated antibacterial activity against S. aureus, B. subtilis, E. coli, and P. vulgaris (zones >15-20

mm, comparable to chloramphenicol) and antifungal activity against A. niger and C. albicans (zones >15-20 mm,
comparable to amphotericin-B).

: ®
.
- ® F 2
F Rs =

CoHsNHNH, reflux (2-3h)
NaOH. PEG - 400

[¢)

Scheme-25: Synthesis of pyrazoline derivatives (8a - 8d)
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Table-25: Structural Modifications of Synthesized Compound 8

Synthesized Compound Compound | R, R, R, R,
Name
8a H OCH; | OCH; | H
8b Cl H Cl H
8c H OCH; | OCH; | OCH;
8d H H F H

In 2021, Deepashree Nagaraj et al. [34] synthesized N-dimethylaminophenyl-substituted pyrazoline
carbothioamide derivatives (9a-g) via a 3 + 2 cycloaddition of chalcones and hydrazinecarbothioamide
hydrochloride with amberlyst-15. Compounds 9a, 9b, and 9g showed strong antibacterial activity against S.
aureus, E. coli, and B. subtilis at low MICs, surpassing ciprofloxacin in some cases. However, 9e and 9g, bearing
methoxy substituents, showed no significant activity even at 100 pg/mL.

_ |
Ry =
' RT (3 - ah) @ _cHa
] I
— T~

Scheme-26: Synthesis of pyrazoline derivatives (9a - 9g)

Table-26: Structural Modifications of Synthesized Compound 9

Synthesized Compound Compound Name | R, R,
Oa H H
;\\ 9b H F
i 9¢c H Cl
(=) 9d H CH;
a e Oe OCH3 H
Lo of H OCH,
Og OCH; | OCH;

In 2023, Padhy et al. [35] synthesized pyrazolone derivatives (10a-d) by fusing benzimidazole chalcones with
hydrazine hydrate, producing hybrids with antibacterial and anticancer activities. Compounds 10a (Glso = 26.13
uUM) and 10c (Glso = 12.27 uM) showed significant cytotoxicity against the MDA-MB-231 breast cancer cell line.

l )J\‘\.

oy

Scheme-27: Synthesis of pyrazoline derivatives (10a - 10d) ‘
Table-27: Structural Modifications of Synthesized Compound 10
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Synthesized Compound | Compound Name | R
QN @ | 10a H

\ O 10b CH,
OV | 10c Cl
e 10d Br
In 2023, Kumar et al. [36] prepared pyrazoline derivatives (11a-i) from chalcones and phenyl hydrazine.

Compounds 11b, 11f, and 11h displayed notable antibacterial activity against Shigella sp., B. subtilis, S. typhi,
and S. aureus. Additionally, 11h exhibited significant antifungal activity against C. albicans and A. fusarium.

|
.

s ey v

20—

Yicld: 68 - 94%%

Scheme-28: Synthesis of pyrazoline derivatives (11a - 111)

Table-28: Structural Modifications of Synthesized Compound 11

Synthesized Compound | Compound Name | R
11a H
11b 3.NO,
Q 11c 4NO,
o 11d 4.NH,
Pt 4OCH;
A (‘5/ L1f 4-CH,
L 11g 4.Cl
11h 4.OH
11i 4.CH,CHj;

In 2023, Finally, Daryan O. Ali et al. [37] synthesized azo-benzyloxy-pyrazoline hybrids (12a-j) via the Michael
addition of azo-benzyloxy chalcones with phenylhydrazine. The compounds exhibited moderate antibacterial
activity against S. aureus and E. coli at 200-1000 ppm, compared to azithromycin as a standard.

Scheme-29: Synthesis of pyrazoline derivatives (IZaM:"i 2j
Table-29: Structural Modifications of Synthesized Compound 12
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Synthesized Compound Compound Name | R
12a H
12b 2-Cl
a 12¢ 2-F
12d 4-Cl
@_/O " 12e 4.F
o 12f OCH;
12¢ CH;
12h 4.NO,
12i 4.PhOCH,
12j 4.CIPhOCH,

CONCLUSION

Pyrazoline derivatives represent a highly promising category of molecules within the realm of medicinal chemistry,
especially due to their antibacterial characteristics. Their structural versatility, combined with the simplicity of
synthetic alterations, has facilitated the creation of derivatives exhibiting enhanced antibacterial and antifungal
effects. These compounds demonstrate significant efficacy against a diverse array of pathogens, including
multidrug-resistant bacterial strains and invasive fungal species, through mechanisms that target vital cellular
components and functions. Innovations in synthetic methods, such as green chemistry and catalytic systems, have
expanded the potential for producing compounds with improved pharmacological profiles and reduced toxicity.
Regardless of these advancements, customizing these molecules for clinical use continues to pose a challenge,
particularly concerning selectivity, bioavailability, and resistance to microbial defences This review underscores
the importance of ongoing investigation into pyrazoline derivatives as possible solutions to the urgent global
challenge of infectious diseases. Pyrazoline derivatives hold substantial promise for the advancement of next-
generation antimicrobial agents as they tackle existing limitations and pursue innovative strategies.
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