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Abstract 
Pyrazoline derivatives have become important compounds in medicinal chemistry because of their extensive array of biological 
activities, especially their antibacterial properties. The escalating problem of antimicrobial resistance (AMR) and the rising 
incidence of fungal infections underscore the urgent demand for new therapeutic agents. Pyrazoline derivatives, characterized 
by their unique five-membered heterocyclic framework, exhibit strong antibacterial and antifungal effects through mechanisms 
that involve interactions with microbial enzymes, DNA, and cellular membranes. Developments in synthetic methods, 
including environmentally friendly techniques and computational drug design, have facilitated the synthesis of derivatives with 
enhanced efficacy and reduced resistance. This review encapsulates recent progress in the synthesis, structural diversity, and 
biological efficacy of pyrazoline derivatives, emphasizing their significance in addressing global infectious disease challenges. It 
also reviews commercially available antimicrobial agents and the specific modifications that enhance pharmacokinetic and 
pharmacodynamic properties. The potential future applications of pyrazoline derivatives in combating AMR and invasive 
fungal infections are thoroughly examined, offering a comprehensive reference for advancing research and therapeutic 
innovations in this field. 
 
INTRODUCTION 
Pyrazoline derivatives have surfaced as a significant group of heterocyclic compounds in medicinal chemistry 
because of their extensive range of biological properties [1]. Among these effects, their antibacterial and antifungal 
properties have garnered considerable interest, particularly considering the pressing demand for novel 
therapeutic agents to address the escalating challenge of microbial resistance and fungal infections. The 
identification and creation of antimicrobial medications has historically depended on the structural and 
functional diversity of organic compounds, and pyrazoline derivatives, with their unique chemical structure, have 
proven to be a promising area for such research [2, 38-43]. 
The pyrazoline core consists of a five-membered heterocyclic ring containing two adjacent nitrogen atoms. This 
structural feature is not only versatile in synthetic applications but also significant in biological contexts, 
facilitating the development of compounds with enhanced pharmacological properties [3]. Pyrazoline derivatives 
are typically produced by cyclizing α,β-unsaturated carbonyl substances with hydrazines, enabling structural 
modifications. These modifications permit researchers to optimize the physicochemical and biological properties 
of the resulting molecules [4]. 
 

 
Figure-1: Structure of Pyrazoline 

 
The concerning rise of antimicrobial resistance (AMR) has been recognized as one of the most urgent global 
health challenges of the twenty-first century. Pathogens such as multidrug-resistant Escherichia coli, Staphylococcus 
aureus, and Pseudomonas aeruginosa are becoming increasingly challenging to treat with existing therapies, leading 
to higher death rates, prolonged hospital stays, and rising healthcare costs [5]. Simultaneously, the incidence of 
invasive fungal infections caused by species like Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans 
has increased, which is often worsened by patients with weakened immune systems [6]. These developments 
emphasize the vital necessity for new antibacterial and antifungal therapies with innovative mechanisms of action. 
Pyrazoline derivatives have shown significant effectiveness against a variety of microbial and fungal infections, 
rendering them attractive options for drug development. The antimicrobial efficacy of these compounds is often 
associated with their ability to bind with bacterial and fungal cellular targets, including enzymes, DNA, and 
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components of the cell membrane, thereby disrupting essential physiological functions [7]. Additionally, their 
structural variability facilitates the exploration of different mechanisms of action, which lowers the risk of 
resistance emergence. 
In addition to their natural biological roles, pyrazoline derivatives possess beneficial pharmacokinetic and 
pharmacodynamic properties, which include significant bioavailability, metabolic stability, and minimal toxicity 
[8]. These traits enhance their prospects as therapeutic agents. Moreover, progress in synthetic methods, including 
green chemistry and computational drug design, has facilitated the effective and sustainable development of 
pyrazoline-derived compounds featuring improved activity profiles. 
 

 
Figure-2: Varied significance of Pyrazoline and its derivatives [44-46] 

 
This review will offer a thorough overview of existing studies concerning pyrazoline derivatives used as 
antibacterial and antifungal agents. It will examine the synthesis and structural differences of these compounds, 
their mechanisms of action, and the spectrum of their biological activities. Furthermore, the review will 
investigate recent progress, challenges, and future perspectives in this field, emphasizing the role of pyrazoline 
derivatives in alleviating the global impact of infectious diseases. By merging current knowledge and pointing out 
research deficiencies, this review seeks to encourage upcoming research and advancements in the creation of 
pyrazoline-based treatments. 

Table-1: Some Marketed Drugs for Anti-Bacterial Activity 
S. No. Marketed Drug Structure Reference 

1. Cefoselis 

 

[47] 

2. Ceftolozane 

 

[48] 

3. Ciprofloxacin 

 

[49] 

4. Piperacillin 

 

[50] 
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5. Levonadifloxacin 

 

[51] 

6. Amoxicillin 

 

[52] 

7. Azithromycin 

 

[53] 

8. Meropenem 

 

[54] 

9. Doxycycline 

 

[55] 

10. Clarithromycin 

 

[56] 

11. Metronidazole 

 

[57] 

12. Vancomycin 

 

[58] 
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13. Clindamycin 

 

[59] 

14. Gentamicin 

 

[60] 

15. Erythromycin 

 

[61] 

16. Nitrofurantoin 

 

[62] 

17. Tigecycline 

 

[63] 

18. Tedizolid 

 

[64] 

19. Fosfomycin 

 

[65] 
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20. Rifampicin 

 

[66] 

Table-2: Some Marketed Drugs for Anti-Fungal Activity 
S. No. Marketed Drug Structure Reference 

1. Fluconazole 

 

[67] 

2. Itraconazole 

 

[68] 

3. Ketoconazole 

 

[69] 

4. Voriconazole 

 

[70] 

5. Posaconazole 

 

[71] 
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6. Caspofungin 

 

[72] 

7. Micafungin 

 

[73] 

8. Anidulafungin 

 

[74] 

9. Griseofulvin 

 

[75] 

10. Terbinafine 

 

[76] 

11. Naftifine 

 

[77] 

12. Clotrimazole 

 

[78] 
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13. Efinaconazole 

 

[79] 

14. Tavaborole 

 

[80] 

15. Ciclopirox 

 

[81] 

16. Tolnaftate 

 

[82] 

17. Amorolfine 

 

[83] 

18. Flucytosine 

 

[84] 

19. Nystatin 

 

[85] 

20. Amphotericin B 

 

[86] 

 
Routes of Synthesis Pyrazoline Derivatives 
In 2020, Xu et al. [9] reported a silver-catalyzed protocol for synthesizing 5-aryl-3-trifluoromethylpyrazoles via the 
coupling of N′-benzylidene tolylsulfonohydrazides with ethyl 4,4,4-trifluoro-3-oxobutanoate. The reaction 
sequence proceeds through nucleophilic attack, intramolecular cyclization, dehydrobenzenesulfonyl elimination, 
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and a final [1,5]-hydrogen shift, affording the desired trifluoromethylpyrazoles in moderate to good 
yields.Optimization studies revealed that raising the temperature to 60°C improved yields, whereas higher 
temperatures led to decreased product formation. Among catalysts, Cu (OTf)₂ afforded a 60% yield, while 
Fe(OTf)₃ was ineffective. Toluene proved superior to THF and dioxane as the solvent. For bases, K₂CO₃ 
outperformed NaH, t-BuOK, and t-BuONa. Notably, the combination of neocuproine as a ligand with a silver 
catalyst provided the best result, delivering yields exceeding 99%, whereas 2,2′-bipyridine and 1,10-
phenanthroline gave 57% and 92% yields, respectively. 

 
Scheme-1: Synthesis of 5–aryl–3–trifluoromethyl pyrazoles utilizing a silver catalyst 
 

Table-3: Structural Modification to synthesized pyrazole derivative by Xu et al. 
Structure Modification (R) 

 

H 
4-Me 
4-tBu 
4-O-CH2-Ph 
4-OMe 
4-N(Me)2 
3-CF3 
4-CN 
4-F 
2,4-diF 
(2-F, 5-Br) 
4-Cl 
4-Br 
2-Br 

 
In 2020, Kim et al. [10] developed a rapid and efficient "one-pot" strategy for synthesizing pyrazoles from (hetero) 
arenes and carboxylic acids. The method involves the in situ formation of ketones and β-diketones, followed by 
heterocyclization with hydrazine. The underlying concept was that three simple steps could yield 3,5-disubstituted 
pyrazoles. Initially, a TfOH/TFAA-mediated "one-pot" synthesis of 1,3-diketones was accomplished from 
methylarylketones, utilizing arenes and carboxylic acids. The resulting dicarbonyl intermediates were 
subsequently converted into 3,5-disubstituted pyrazoles under Knorr reaction conditions. 
 

 
Scheme-2: The synthetic method for producing pyrazoles from arenes and carboxylic acids through a one-pot 
synthesis 
 

Table-4: Structural Modification to synthesized pyrazole derivative by Kim et al. 
Modifications Structure 
R Ar 
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Me 
t-BuCH2 
1-AdCH2 
3-HO-1-
AdCH2 

Ph 
3,4-diMePh 
2,4-diClPh 
4-OMePh 
Thiophenyl 
5-Br-Thiophenyl 
5-(dibenzo[b,d]furan-2-yl) 

 

In 2020, Komendantova et al. [11] reported a novel approach for the synthesis of 3,4-dicarbonyl-substituted 
pyrazoles. The reaction employs 1,3-dicarbonyl compounds and oxamic acid thiohydrazides in the presence of 
catalytic TsOH, followed by sulfur elimination. The process proceeds via an iodine-accelerated 
imination/halogenation/cyclization/ring-contraction sequence. Using readily available substrates and mild 
conditions, this method provides a straightforward and highly efficient strategy for the synthesis of functionalized 
pyrazoles. 
 

 
Scheme-3: Production of substituted pyrazoles from 1,3–diketones and hydrazine derivatives 
 

Table-5: Structural Modification to synthesized pyrazole derivative by Komendantova et al. 
Modifications Structure 
R1 R2 R3 

 

Alk 
Ar 
Bn 

Alk 
OAlk 

Alk 
Ar 
Het 
Bn 

 
In 2020, Gerus et al. [12] investigated the fluorination of enones using XeF₂ in the presence of BF₃·Et₂O. The 
inclusion of pyridine in the reaction mixture afforded fluoroenones in a 68% yield. Subsequent treatment of 
fluoroenones with hydrazine sulfate produced fluoropyrazoles in an excellent 87% yield. 

 

 
Scheme-4: Synthesis of fluoropyrazole by Gerus etal., [12] 
 
In 2020, Stephan et al. [13] developed a versatile strategy for synthesizing pyrazole derivatives. Initially, a Heck 
reaction between (hetero) aryl bromides and acrolein or vinyl ketones generated 3-(hetero)aryl propenals and 
propenones. The reaction was performed under Jeffery’s and Fu’s conditions with Beller’s CataCXium Ptb 
ligand. The resulting 3-substituted α,β-unsaturated carbonyl compounds served as key intermediates for the 
preparation of 3,5-diarylpyrazoles and 3-(hetero)aryl pyrazoles via consecutive three- and pseudo-four-component 
reactions, providing low to good yields. This flexible approach is suitable for constructing diverse pyrazole 
libraries. 

 
Scheme-5: Synthesis of pyrazole derivative by Stephan et al., [13] 
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Table-6: Structural Modification to synthesized pyrazole derivative by Stephan et al. 
Modifications Structure 
R Ar 

 

H 
Me 
Ph 
4-OMePh 
4-NMe2Ph 
Penthyl 

Ph 
4-FPh 
4-CNPh 
4-NMe2Ph 
4-CF3Ph 
4-OMePh 
3-F,4-OMePh 
2-OMePh 
2-thiophenyl 

In 2020, Tian et al. [14] reported a transition-metal-free synthesis of 4-sulfonyl pyrazoles through a tandem C(sp²)-
H sulfonylation/pyrazole annulation process. The reaction involves N,N-dimethyl enaminones and sulfonyl 
hydrazines, catalyzed by molecular iodine at room temperature in the presence of TBHP and NaHCO₃. This 
method provides an efficient and straightforward route to sulfonyl-substituted pyrazoles. 
 

 
Scheme-6: Synthetic pathways for pyrazole derivatives utilizing I2/TBHP, NaHCO3 as a catalyst. 
 

Table-7: Structural Modification to synthesized pyrazole derivative by Tian et al. 
Modifications Structure 
R Ar 

 

4-OMe 
4-NMe2 
3-Cl 

4-ClPh 
3,5-diClPh 
4-OMePh 
4-FPh 
4-ClPh 
4-BrPh 
2-ClPh 

In 2020, Bhaskaran et al. [15] developed a metal-free protocol for synthesizing pyrazoles and chromeno-pyrazoles 
from aldehydic hydrazones and acetylenic esters. The method accommodates both symmetrical and 
unsymmetrical hydrazones and alkynes, affording a wide range of products in moderate to very high yields. 
 

 
Scheme-7: Synthesis of pyrazole derivatives by Bhaskaran et al., [15] 
 

Table-8: Structural Modification to synthesized pyrazole derivative by Bhaskaran et al. 
Modifications Structure 
R1 R2 Ar 

 

CO2Et 
CO2Me 

H 
CO2Et 
CO2Me 
Ph 

Ph 
4-OMePh 
4-BrPh 
4-FPh 
2-BrPh 
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In 2020, Li et al. [16] explored the 1,3-dipolar cycloaddition of N-tosylhydrazones with acetylene gas using a 
simple balloon setup. Screening of bases and solvents identified K₂CO₃ as the most effective base. The reaction 
provided pyrazoles in reasonable to good yields, with DMSO performing better than NMP for reactions involving 
ketone-derived N-tosylhydrazones. This straightforward method holds promise for commercial applications. 

 

 
Scheme-8: Synthesis of pyrazole derivatives by Li et al., [16] 
 

Table-9: Structural Modification to synthesized pyrazole derivative by Li et al. 

Modifications (Ar) Structure 
Ph 
4-MePh 
3-MePh 
2-MePh 
4-NMe2Ph 
2-OMePh 
4-OMePh 
4-CF3Ph 
4-BrPh 
3-BrPh 

 

 
In 2020, Ledovskaya et al. [17] achieved a regioselective synthesis of 1,3-disubstituted pyrazoles via 1,3-dipolar 
cycloaddition of vinyl ethers with hydrazonoyl chlorides, promoted by triethylamine (TEA) as a mild base. 
 

 
Scheme-9: Synthesis of pyrazole derivatives by Ledovskaya et al., [17] 
 

Table-10: Structural Modification to synthesized pyrazole derivative by Ledovskaya et al. 
Modifications Structure 
Ar1 Ar2 

 

Ph 
4-MePh 
4-OMePh 

Ph 
4-MePh 
4-BrPh 
4-FPh 

 
In 2020, Lakeland et al. [18] reported a visible-light photoredox-catalyzed approach for synthesizing 1,4-
disubstituted pyrazoles using Ru(bpy)₃(PF₆)₂ as the catalyst. The method exhibited excellent yields and broad 
substrate scope. 
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Scheme-10: Synthesis of pyrazole derivatives by Lakeland et al., [18] 
 

Table-11: Structural Modification to synthesized pyrazole derivative by Lakeland et al. 
Modifications Structure 
R Ar 

 

Buthyl 
iPr 
Cyclohexyl 
Me 
Ph 
Benzyl 
TBSO-Butyl 
(CH2)2CO2Me 
(CH2)2CO2N(OMe)Me 

H 
4-OMePh 
4-CNPh 
4-FPh 
4-ClPh 
4-BrPh 
4-CF3Ph 
3-MePh 

 
In 2020, Pearce et al. [19] developed a multicomponent oxidative coupling strategy to access multi-substituted 
pyrazoles. The reaction involves the combination of alkynes, nitriles, and titanium imido complexes, proceeding 
through diazatitana-cyclohexadiene intermediates and a 2-electron oxidation pathway mediated by TEMPO. 
 

 
Scheme-11: Synthesis of pyrazole derivatives by Pearce et al., [19] 
 

Table-12: Structural Modification to synthesized pyrazole derivative by Pearce et al. 
Modifications Structure 
R1 R2 R3 

 

Ph 
4-Me-Ph 
4-MeOPh 
4-CF3-Ph 
IPr 
Me 

Me 
Et 
Ph 
4-tBuPh 

Me 
Et 
4-tBuPh 

 
In 2021, Devi et al. [20] designed an elegant method for synthesizing functionalized pyrazole chalcones and 
indenyl-pyrazoles through a 1,3-dipolar cycloaddition of α-diazo phosphonates, sulfones, and trifluoromethanes 
with 2,4,6-trisubstituted pyrylium tetrafluoroborate salts. The reaction proceeds via nucleophilic addition to 
pyrylium salts, base-catalyzed ring opening, and intramolecular 1,5-cyclization, yielding 1,3-dipolar cycloaddition 
products. Subsequent hydride reduction and Nazarov-type cyclization, followed by acidic workup, afforded the 
target molecules in high yields. This strategy offers an efficient route to bioactive pyrazole derivatives. 

 
Scheme-12: Synthesis of pyrazole derivatives by Devi et al., [20] 
 

Table-13: Structural Modification to synthesized pyrazole derivative by Devi et al. 
Modifications Structure 
R1 R2 X 
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Ph 
4-OMePh 
4-MePh 
4-ClPh 

Ph 
4-OMePh 
4-MePh 
3-OMePh 
3-ClPh 
 

SO2Ph 
Tsyl 
CF3 

 

 
In 2021, Zhao et al. [21] investigated cascade reactions of alkyl α-diazoesters with ynones catalyzed by Al(OTf)₃, 
enabling the efficient synthesis of a series of 4-substituted pyrazoles. The transformation proceeds via a [3 + 2] 
cycloaddition, followed by 1,5-ester shift, 1,3-hydrogen shift, and N–H insertion steps. Mechanistic insights were 
obtained through deuterium labeling, kinetic studies, and control experiments, providing valuable data for 
understanding the underlying reaction pathways. 

 

 
Scheme-13: Synthesis of pyrazole derivatives by Zhao et al., [21] 
 

Table-14: Structural Modification to synthesized pyrazole derivative by Zhao et al. 

Modifications Structure 
R1 R2 Ar 

 

Me 
Ph 

Me 
Et 
 

Ph 
4-FPh 
4-MePh 
4-ClPh 
4-BrPh 
4-CF3Ph 
CO2MePh 

 
In 2021, Chen et al. [22] developed a transition-metal-free protocol under mild conditions for synthesizing 
disulfonated pyrazoles from sulfonyl hydrazides, 1,3-diketones, and sodium sulfinates using molecular iodine as 
the catalyst. The reaction proceeds via the in situ generation of sulfonyl iodide from sodium sulfinate and iodine, 
followed by imine formation (from sulfonyl hydrazides and 1,3-diketones), tautomerization to an enol form, and 
nucleophilic attack of the sulfonyl iodide, culminating in intramolecular condensation to afford the desired 
pyrazoles in a single step. 

 
Scheme-14: Synthesis of pyrazole derivatives by Chen et al., [22] 
 

Table-15: Structural Modification to synthesized pyrazole derivative by Chen et al. 
Modifications Structure 
R1 R2 R3 
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Ph 
4-MePh 
4-PhPh 
Naphthyl 
4-tBuPh 
3-MePh 
4-OMePh 
4-FPh 
4-BrPh 
4-ClPh 
4-IPh 

Me 
tBu 
n-C5H11 
Ph 
4-MePh 
4-OMePh 
Naphthyl 
4-FPh 
4-BrPh 
4-ClPh 
3-ClPh 
3-Thiophenyl 
2-Furanyl 
2-Pyridinyl 

Ts 
PhO2S 

 

In 2022, Yang et al. [23] introduced a novel metal-oxo-cluster-based inorganic framework, described as a 3D 
platelike ternary-oxo-cluster (NaCoMo), which serves as a highly efficient catalyst for the condensation and 
cyclization of 1,3-diketones with sulfanylhydrazides to yield pyrazoles. This method achieved excellent yields (up 
to 99%) under mild conditions. The development of NaCoMo opens avenues for utilizing non-classical 
polyoxometalates in pyrazole synthesis. 

 

 
Scheme-15: Synthesis of pyrazole derivatives by Yan et al., [23] 
 

Table-16: Structural Modification to synthesized pyrazole derivative by Yan et al. 
Modifications Structure 
R1 R2 R3 

 

H 
Me 
OMe 
Cl 
Br 
NO2 

H 
Cl 
Me 

Me 
Cyclopropyl 

 
In 2022, Liu et al. [24] reported the catalytic application of a Keggin-based U(VI)-containing polytungstate (U-
POW) tetramer (U4), which exhibits bifunctional Lewis acid-base properties. Under mild conditions, U4 
efficiently catalyzed the reaction of various hydrazines with 1,3-diketones to produce pyrazoles in high yields. This 
work not only highlights the potential of actinide-containing polyoxometalates (POMs) in catalytic synthesis but 
also represents the first example of a U-POW tetramer applied to pyrazole synthesis. 

 
Scheme-16: Synthesis of pyrazole derivatives by Liu et al., [24] 
 

Table-17: Structural Modification to synthesized pyrazole derivative by Liu et al. 
Modifications Structure 
R1 R2 
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H 
Me 
Cl 

Ph 
Penthyl 
PhCO 
4-MePhCO 
4-OMePhCO 
4-FPhCO 
4-ClPhCO 
4-BrPhCO  

 
In 2022, Kula et al. [25] investigated the reaction mechanisms involving (E)-3,3,3-trichloro-1-nitroprop-1-ene and 
N-(4-bromophenyl)-C-arylnitrylimine, providing insights into the structural and electronic factors governing the 
formation of substituted pyrazoles. 

 
Scheme-17: Synthesis of pyrazole derivatives by Kula et al., [25] 
 

Table-18: Structural Modification to synthesized pyrazole derivative by Kula et al. 
Modifications (R) Structure 

H 
Cl 
OMe 

   

 
Anti-Microbial Activity 
In 2017, Afaq et al. [26] reported that glacial acetic acid (GAA) promoted the thermal cyclization of hydrazine 
hydrate with 1,6-diphenylhexa-1,5-diene-3,4-dione, affording five pyrazoline derivatives (1a–e) in high yields (70–
87%). Antibacterial evaluation showed inhibition zones (mm) against Escherichia coli (11.5, 12.0, 12.0, 7.5, and 
16.0 mm) and Staphylococcus aureus (13.0, 13.5, 14.0, 8.0, and 18.0 mm). Compound 1e, bearing OCH₃ and 
OH groups, exhibited the strongest antibacterial activity. 
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Scheme-18: Synthesis of derivatives of bi-pyrazoline (1a – 1e) 
 

Table-19: Structural Modifications of Synthesized Compound 1 
Synthesized Compound Compound Name R1 R2 

 

1a H H 
1b H CH3 
1c H OCH3 
1d H Cl 
1e OCH3 OH 

 
In 2019, Fariana Nur Santi et al. [27] synthesized a new pyrazoline derivative (2) and evaluated its toxicity and 
antibacterial properties. The brine shrimp lethality test (BSLT) yielded an LC₅₀ of 96.96 ppm, indicating potential 
anticancer activity. The compound demonstrated moderate to significant antibacterial effects against S. aureus 
ATCC 25923 and E. coli ATCC 25922 by the agar diffusion method. 

 

 
Scheme-19: Synthesis of pyrazoline derivative exhibiting potential Anti-Bacterial activity against S. aureus and E. 
coli 
In 2020, Mohammad Asad et al. [28] synthesized five N-trifluoroacetyl-2-pyrazolines (3a–e) via the cyclization of 
chalcones with hydrazine and trifluoroacetic acid, achieving yields of 72–79%. Among them, 3a (bearing a NO₂ 
group) exhibited strong antibacterial activity, with MICs of 79 µM for Pseudomonas aeruginosa and 90 µM for 
E. coli. SEM analysis revealed complete bacterial membrane rupture upon treatment. 

 

 
Scheme-20: Synthesis of f N-trifluoroacetyl-2-pyrazoline derivatives (3a – 3e) 
 

Table-20: Structural Modifications of Synthesized Compound 3 
Synthesized Compound Compound Name R 

3a 
 

3b 
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3c 
 

3d 

 

3e 
 

 
In 2020, Dileep Kumar Achutha et al. [29] synthesized thiophene-tethered pyrazoline carbothioamide derivatives 
(4a–k) via an eco-friendly 3 + 2 annulation of chalcones and thiosemicarbazide hydrochloride in aqueous citrus 
extract. Antioxidant studies revealed DPPH and hydroxyl radical scavenging activity, while 4c and 4k showed 
notable antibacterial activity against S. aureus (20 and 15 μg/mL), E. coli (15 and 15 μg/mL), B. subtilis (25 and 
20 μg/mL), and antifungal activity against A. niger, A. flavus, and C. albicans. 
 

 
Scheme-21: Synthesis of pyrazoline derivatives (4a – 4k) via thiophene-tethered pyrazoline carbothioamide  
 

Table-21: Structural Modifications of Synthesized Compound 4 
Synthesized Compound Compound 

Name 
R1 R2 R3 

 

4a H H H 
4b H H F 
4c H H Cl 
4d H H CH3 
4e H H OCH3 
4f H H NO2 
4g H H N(CH3)2 
4h H H Br 
4i CH3 H CH3 
4j H OCH3 OCH3 
4k Cl H Cl 

 
In 2021, Matthew Payne et al. [30] developed a one-pot oxidative cyclization of chalcones with hydrazine 
monohydrate, producing fifteen 3,5-diaryl-1H-pyrazoles (5a–q) with yields ranging from 10–90%. 5p, possessing 
OCH₃ and OH groups, exhibited significant antibacterial activity against S. aureus (MIC = 8 μg/mL) and altered 
B. subtilis morphogenesis before cell lysis, without cytotoxic effects on 3T3-L1 mammalian cells. 
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Scheme-22: Synthesis of potential anti-bacterial agents of 3,5-diaryl-1H-pyrazole derivatives (5a – 5q) 
 

Table-22: Structural Modifications of Synthesized Compound 5 
Synthesized Compound Compound  

Name 
R1 R2 R3 R4 R5 

 

5a p-ClPh H OCH3 OCH3 H 
5b p-ClPh H OCH3 H OCH3 
5c p-ClPh OCH3 H H OCH3 
5d p-ClPh H OCH3 H H 
5e p-ClPh H OBn H H 
5f p-ClPh H H OBn H 
5g p-ClPh H OBn OCH3 H 
5h p-C(CH3)3Ph H OCH3 H H 
5i p-C(CH3)3Ph OCH3 H H OCH3 
5j p-C(CH3)3Ph H OCH3 OCH3 H 
5k p-C(CH3)3Ph H OBn H H 
5l Ph H OCH3 H H 
5m Ph OCH3 H H OCH3 
5n Ph H OCH3 OCH3 H 
5o tert-Bu H OH OCH3 H 
5p Ph H OH OCH3 H 
5q Ph H H OH H 

 
Also in 2021, Mohammad Asad et al. [31] synthesized three N-acyl-2-pyrazolines (6a–c) by cyclizing chalcones 
with hydrazine hydrate in the presence of aliphatic acids, yielding 78–84%. Compound 6b showed the best 
antibacterial activity (MIC: S. aureus & E. coli = 32 μg/mL; S. pyogenes & S. typhimurium = 64 μg/mL). 

 

 
Scheme-23: Synthesis of pyrazoline derivatives (6a – 6c) as N-acyl-2-pyrazolines 
 

Table-23: Structural Modifications of Synthesized Compound 6 
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Synthesized 
Compound 

Compound 
Name 

R1 R2 A 

 

6a 
  

CH3COOH 

6b 
  

CH3CH2COOH 

6c 
  

CH3CH2CH2COOH 

 
In 2021, Lokesh Kumar et al. [32] employed 1,3-dipolar cycloaddition between pyrazoline-linked alkynes and 2-
bromo-N-arylacetamide to synthesize pyrazoline–amide–1,2,3-triazole hybrids (7a–d) in 64–82% yields. 7a–c 
exhibited potent antibacterial and antifungal activity (MIC = 0.062–0.078 μmol/mL), with molecular dynamics 
simulations confirming 7a as the most promising antibacterial candidate. 
 

 
Scheme-24: Synthesis of pyrazoline derivatives (7a – 7d) 
 

Table-24: Structural Modifications of Synthesized Compound 7 
Synthesized Compound Compound Name R1 

 

7a H 

7b CH3 

7c OCH3 

7d Br 

 
In 2021, Pathade et al. [33] described an eco-friendly PEG-400-mediated synthesis of pyrazoline derivatives (8a–
d), which demonstrated antibacterial activity against S. aureus, B. subtilis, E. coli, and P. vulgaris (zones ≥15–20 
mm, comparable to chloramphenicol) and antifungal activity against A. niger and C. albicans (zones ≥15–20 mm, 
comparable to amphotericin-B). 
 

 
Scheme-25: Synthesis of pyrazoline derivatives (8a – 8d) 
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Table-25: Structural Modifications of Synthesized Compound 8 
Synthesized Compound Compound  

Name 
R1 R2 R3 R4 

 

8a H OCH3 OCH3 H 
8b Cl H Cl H 
8c H OCH3 OCH3 OCH3 

8d H H F H 

 
In 2021, Deepashree Nagaraj et al. [34] synthesized N-dimethylaminophenyl-substituted pyrazoline 
carbothioamide derivatives (9a–g) via a 3 + 2 cycloaddition of chalcones and hydrazinecarbothioamide 
hydrochloride with amberlyst-15. Compounds 9a, 9b, and 9g showed strong antibacterial activity against S. 
aureus, E. coli, and B. subtilis at low MICs, surpassing ciprofloxacin in some cases. However, 9e and 9g, bearing 
methoxy substituents, showed no significant activity even at 100 μg/mL. 
 

 
Scheme-26: Synthesis of pyrazoline derivatives (9a – 9g) 
 

Table-26: Structural Modifications of Synthesized Compound 9 
Synthesized Compound Compound Name R1 R2 

 

9a H H 
9b H F 
9c H Cl 
9d H CH3 
9e OCH3 H 
9f H OCH3 
9g OCH3 OCH3 

 
In 2023, Padhy et al. [35] synthesized pyrazolone derivatives (10a–d) by fusing benzimidazole chalcones with 
hydrazine hydrate, producing hybrids with antibacterial and anticancer activities. Compounds 10a (GI₅₀ = 26.13 
μM) and 10c (GI₅₀ = 12.27 μM) showed significant cytotoxicity against the MDA-MB-231 breast cancer cell line. 

 
Scheme-27: Synthesis of pyrazoline derivatives (10a – 10d) 

Table-27: Structural Modifications of Synthesized Compound 10 
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Synthesized Compound Compound Name R 

 

10a H 
10b CH3 
10c Cl 
10d Br 

 
 
In 2023, Kumar et al. [36] prepared pyrazoline derivatives (11a–i) from chalcones and phenyl hydrazine. 
Compounds 11b, 11f, and 11h displayed notable antibacterial activity against Shigella sp., B. subtilis, S. typhi, 
and S. aureus. Additionally, 11h exhibited significant antifungal activity against C. albicans and A. fusarium. 

 

 
Scheme-28: Synthesis of pyrazoline derivatives (11a – 11i) 

 
Table-28: Structural Modifications of Synthesized Compound 11 

Synthesized Compound Compound Name R 

 

11a H 
11b 3-NO2 
11c 4-NO2 
11d 4-NH3 
11e 4-OCH3 
11f 4-CH3 
11g 4-Cl 
11h 4-OH 

11i 4-CH2CH3 
 
In 2023, Finally, Daryan O. Ali et al. [37] synthesized azo-benzyloxy-pyrazoline hybrids (12a–j) via the Michael 
addition of azo-benzyloxy chalcones with phenylhydrazine. The compounds exhibited moderate antibacterial 
activity against S. aureus and E. coli at 200–1000 ppm, compared to azithromycin as a standard. 
 

 
Scheme-29: Synthesis of pyrazoline derivatives (12a – 12j) 
 

Table-29: Structural Modifications of Synthesized Compound 12 
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Synthesized Compound Compound Name R 

 

12a H 
12b 2-Cl 
12c 2-F 
12d 4-Cl 
12e 4-F 
12f OCH3 
12g CH3 
12h 4-NO2 
12i 4-PhOCH2 
12j 4-ClPhOCH2 

 
CONCLUSION 
Pyrazoline derivatives represent a highly promising category of molecules within the realm of medicinal chemistry, 
especially due to their antibacterial characteristics. Their structural versatility, combined with the simplicity of 
synthetic alterations, has facilitated the creation of derivatives exhibiting enhanced antibacterial and antifungal 
effects. These compounds demonstrate significant efficacy against a diverse array of pathogens, including 
multidrug-resistant bacterial strains and invasive fungal species, through mechanisms that target vital cellular 
components and functions. Innovations in synthetic methods, such as green chemistry and catalytic systems, have 
expanded the potential for producing compounds with improved pharmacological profiles and reduced toxicity. 
Regardless of these advancements, customizing these molecules for clinical use continues to pose a challenge, 
particularly concerning selectivity, bioavailability, and resistance to microbial defences This review underscores 
the importance of ongoing investigation into pyrazoline derivatives as possible solutions to the urgent global 
challenge of infectious diseases. Pyrazoline derivatives hold substantial promise for the advancement of next-
generation antimicrobial agents as they tackle existing limitations and pursue innovative strategies. 
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