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Abstract—Water bodies identification and Water level prediction is very important for water resource management 

to lower the risk of flood, and to protect the environment. This research tries to explore how deep learning and transfer 

learning can be used to perform these tasks by using satellite images. The primary challenge for accurately predicting 

water levels and identifying water bodies in satellite images is the temporal variations in weather conditions. 

Convolutional neural networks (CNN) are efficient while working with images. Long-Short-Term Memory (LSTM) 

models are also good at prediction of water levels. For water body identification, CNN-based models achieved upto 

95% accuracy and for Water level prediction LSTM networks also reached upto 95% accuracy. Transfer learning is a 

machine learning technique where a model trained on one task can be reused as the foundation for a another task. 

By using Transfer learning methods, the accuracy of these models can be improved. This method minimizes the cost of 

computing resources and the training time. The results highlight that combining deep learning methods with transfer 

learning methods can improve the accuracy for these tasks. The proposed method suggests a strong direction to 

accurately predict water levels and identify bodies of water, which will help to water resource management. Use of 

satellite images with deep learning and transfer learning models offers a better solution to explore its uses in hydrological 

and environmental science. 

 Index Terms—Water Level Forecasting, Water Body Identification, Machine Learning, Transfer Learning  

 

INTRODUCTION 

Water level prediction and water bodies identification are important aspects of hydrology and water 

resource management. Accurate and comprehensive analysis of data can make a significant difference in 

water resource management. Extracting data from satellite images requires complex computational 

techniques, such as deep learning models. Predicting water levels accurately is challenging due to extreme 

events. Floods can occur when water levels rise, forcing people to leave their homes and putting lives 

at risk. Accurate forecasting of water levels help authorities to act quickly to minimize these risks [1]. 

Traditional forecasting methods, which based on physical and conceptual models, are not exceptionally 

good at managing complex and varying size of water bodies. Satellite images offer detailed view of water 

bodies. However, the use of satellite images is hampered by variable climate conditions and the sheer 

volume of data involved. In addition, on large scales, manual analysis becomes impractical, which requires 

reliable and automated identification techniques [2]. In image analysis, machine learning, CNNs has 

shown outstanding performance. CNNs can automatically learn features from images, enabling them for 

water bodies identification in satellite images. It offers strong performance in differentiating between 

water and non-water bodies because for training it requires large datasets. However, for training of CNNs 

requires more time and computational resources. The efficiency of this process can be improved with 

use of transfer learning. Transfer learning models can be fine-tuned and made more adaptable to current 

domain [3]. LSTM systems have emerged as great at predicting water levels. LSTMs are designed to work 

with time-series information. LSTM networks can make accurate predictions by obtaining valuable 

information from historical data and characteristic variable values. The use of CNN, LSTM, and transfer 

learning methods together maybe a solid approach for improving accuracy in predicting water levels and 

identifying water bodies at data scarce regions. This integrated methodology helps the Water Resource 

Department to make good choices and use their resources more effectively [4]. 

RELATED WORK 

Satellite images and machine learning methods have made huge developments in hydrological studies. 

Hydrological study also involves some tasks like Predicting water levels and identifying water bodies. In 
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the past, these tasks were performed with readings taken on the ground and by using different 

hydrological models such as physical models, conceptual or empirical models, etc. However, these 

models often not accurate and adapt to changing weather conditions. To solve these problems, recent 

studies have used satellite data and more powerful computational methods. Many researchers used 

recurrent neural networks (RNNs) and their variations, like LSTMs, because they can handle time-series 

data. LSTMs can accurately predict water levels by analyzing past data and natural factors. They perform 

it better than standard statis- tical methods.[5]. Similarly, a mixed method that combines LSTM networks 

with physical water models has been used to make predictions more accurate, especially in places that 

does not have a lot of past data [6]. CNNs have also useful for identifying bodies of water using 

satellite Images. A deep learning approach was used to accurately identify bodies of water in multi-spectral 

satellite Images, even when there was noise was present in the images [7]. The combination of transfer 

learning techniques has been used to improve further performance. Transfer learning using pre-trained 

CNN models reduces computational requirements and training time, while preserving high accuracy [8]. 

Putting together different data sources and methods is another vital aspect for such type of work. 

Predictions of water levels are more accurate when satellite images and sensor data from the ground are 

combined. This method gives complete analysis how the water moves [9]. Similarly, combining visual and 

radar. satellite images to identify bodies of water shows that combining data from multiple sensors 

can improve the accuracy in a different weather condition [10]. Transfer learning has been used to make 

a CNN model that was already trained. Work better for classifying bodies of water in different parts of 

the world, with huge improvements in accuracy with less extra training [11]. Transfer learning also 

improves the accuracy of LSTM networks in predicting water levels by using models that already been 

trained in similar hydrological applications [12]. Even with these improvements, there are still problems 

with using machine learning and transfer learning for water studies [13]. Several challenges exist, such as 

variations in satellite image quality, differences in sensor performance, and temporal changes in water 

bodies. Another major problem is that fine- tuning of deep learning models still needs a lot of large 

samples that have been labeled [14]. To address these challenges, continued research and the development 

of novel methods capable of operating across diverse environments and varying data volumes are required. 

Table 1 presents summary of the related work done in water level forecasting and water body 

identification. 

Table 1. Summarizes the related work in water level forecasting and water body identification 

 

Method Approach Key Finding Area Limitation Scope 

LSTM 

Networks 

[15] 

Analyzing 

historical data 

and 

environmental 

factors 

Outperforme 

d traditional 

statistical 

methods 

River water 

levels 

Requires large 

datasets  and 

computational 

resources 

Applicable to 

various time- 

series 

forecasting 

tasks 

Hybrid LSTM 

and Physical 

Models [16] 

Combining 

LSTM with 

hydrological 

models 

Enhanced 

forecast 

accuracy  in 

regions with 
limited data 

Diverse 

hydrological 

regions 

Complexity in 

integrating 

models and 

data sources 

Improved 

predictive 

capabilities in 

data-scarce 
regions 

CNN for 

Image 

Classification 

[17] 

Using CNNs to 

classify water 

bodies from 

multi-spectral 
images 

High accuracy 

and 

robustness 

against noise 

Multi- 

spectral 

satellite 

images 

High 

computational 

cost for training 

Automated 

large-scale 

water body 

identification 

Transfer 

Learning with 

CNN [18] 

Applying pre- 

trained CNN 

models 

Reduced 

computationa 

l resources 

and  training 
time 

Various 

geographical 

regions 

Dependency on 

pre-trained 

models and 

domain-specific 
fine-tuning 

Efficient 

model 

adaptation to 

different 
environments 
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Satellite and 

Ground Data 

Integration 

[19] 

Combining 

satellite imagery 

with ground- 

based sensor 
data 

Improved 

reliability  of 

water level 

forecasts 

Water 

dynamics 

monitoring 

Complexity in 

data integration 

and processing 

Need  of 

Efficient 

models for 

data 

integration 

Optical and 

Radar Image 

Fusion [20] 

Fusing optical 

and radar 

satellite images 

Enhanced 

accuracy 

under varying 

conditions 

Multi-sensor 

data 

integration 

Requires 

advanced data 

fusion 

techniques 

multi-sensor 

data 

utilization can 

be improved 

Transfer 

Learning  for 

Water Body 

Classification 
[21] 

Adapting pre- 

trained CNN 

models for 

specific regions 

Significant 

accuracy 

improvement 

s with training 

Geographical 

regions 

Limited by 

availability of 

suitable pre- 

trained models 

Efficient 

classification 

across 

different 
regions 

Transfer 

Learning with 

LSTM [22] 

Incorporating 

pre-trained 

models from 

related 

hydrological 

applications 

Enhanced 

predictive 

capabilities of 

LSTM 

networks 

Hydrological 

applications 

Dependence on 

quality and 

relevance of 

pre-trained 

models 

Water level 

forecasting 

accuracy  can 

be improved 

 

DESCRIPTION OF DATASET 

The “Satellite Images of Water Bodies” dataset, available on Kaggle, is a valuable resource for image 

segmentation. This dataset contains a collection of satellite images along with corresponding masks that 

delineate the water bodies within each image [23]. It is curated to support environmental monitoring and 

hydrological studies. Every image in the dataset is paired with a binary mask, where pixels 

corresponding to water bodies are distinctly marked from the surrounding landscape. This clear 

segmentation facilitates the training of machine learning models, particularly CNNs, for accurate image 

segmentation. Sample images from the dataset are shown in Fig. 1. The availability of labeled allows 

researchers to bypass the labor-intensive process of manual annotation, fast-tracking the development, 

and make use of valid image analysis algorithms. The dataset’s images capture diversified geographic 

regions and different climatic conditions, providing a wide range of scenarios. This diversity plays main 

important role for creating robust models capable of generalizing across different geographic regions and 

environmental conditions. The high-resolution images improve a model’s ability to detect fine details, to 

contribute more accurate for segmentation results. A key advantage of this dataset is its relevance to 

transfer learning. Researchers can leverage pre-trained models on this dataset to improve performance on 

similar tasks with limited data availability. This approach reduces computational costs while enhancing 

model accuracy. 

Fig. 1. Sample Images of Dataset 
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PROPOSED METHODOLOGY 

 
Fig. 2. Overview of Proposed Model for Prediction and Detection 

 

The proposed strategy, as illustrated in figure 2, leverages both machine learning and transfer learning 

approaches to improve water body identification and water level estimating utilizing images. The machine 

learning approach is separated into two fundamental components: CNNs and LSTM systems. For water 

body differentiation, CNNs are utilized, due to their capability in image classification and division 

assignments. By using pre-trained models such as ResNet50, InceptionV3, MobileNetV2, and 

EfficientNetB0, the approach leverages the extensive feature extraction capabilities of these architectures. 

These models, pre-trained on ImageNet, are fine-tuned on the specific satellite images and masks 

dataset. This fine- tuning alters the pretrained weights to suit the unused dataset, accomplishing high 

precision and proficiency in recognizing water bodies. Within the domain of water level prediction, LSTM 

systems are used for their quality in dealing with time-series information. The technique includes 

utilizing pretrained LSTM models, or preparing LSTM systems on related hydrological time-series 

information, to figure out water levels accurately. 

1.1 Deep Learning Approach 

• CNN 

CNNs are widely recognized for their effective- ness in image classification and segmentation tasks. They 

are performing better at detecting spatial features within images through their layered architecture, which 

mimics the human visual processing system. For water body identification, CNNs can process images to 

accurately distinguish between water and non-water regions. By training on a large dataset of labeled 

images, CNNs extract patterns and features for identifying water bodies. This approach significantly 

reduces the manual work required for water body identification job. 

• LSTM 

LSTM networks are specially designed to process time-series data and long-term dependencies within the 

data. LSTMs can extract temporal dependencies in water level information by considering factors such as 

seasonal changes, and current trends. LSTM models can be trained on large time-series datasets, to 

forecast future water levels with more accuracy. This capability will be helpful for water resource 

departments in decision making about water resources. 

1.2 Transfer Learning Approach 

Transfer learning utilizes pretrained CNNs to improve precision and effectiveness in water body 

identification. Models such as ResNet50, InceptionV3, MobileNetV2, and Efficient- NetB0, trained on 

huge datasets like ImageNet. They are fine-tuned utilizing images of water bodies. Transfer learning 

approach includes updating the pre-trained weights to adopt to the modern dataset, both together 

minimizes efforts and preparation from scratch. 

This study also explores the following pre-trained models that can be used for water bodies identification. 

• ResNet50 

ResNet50, is a particular variation of the Residual Neural Network (ResNet). ResNet is more efficient in 
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extracting valuable information from satellite images. ResNet50 can be fine-tuned on other water bodies 

dataset by adjusting its pretrained weights to identify water bodies with more accuracy. The ability to 

process complex data and reduction of the gradient vanishing problem makes it more suitable for 

hydrological applications [24]. 

• InceptionV3 

Initial modules of InceptionV3 captures multiscale features within images. InceptionV3 can be fine-tuned 

on various image datasets, due to their robust feature learning This approach minimizes required training 

time. IncetionV3 can process diverse and complex visual patterns. It also appears as a strong alternative 

for hydrological applications. It also ensures accurate identification of water bodies under varied 

environmental conditions [25]. 

• MobileNetV2 

The MobileNetV2 has become strong choice for hydrological applications in resource constrained areas. It 

has lightweight and efficient architecture. MobileNetV2 obtains greater efficiency due to Depth wise 

separable convolutions and inverted residual block with linear bottlenecks. It is also trained on ImageNet. 

It also minimizes computational complexity and maintains high accuracy [26]. 

• EfficientNetB0 

EfficientNetB0 is powerful and versatile CNN. It is also useful for hydrological applications. It uses a 

compound scaling strategy. It is lightweight compared to larger CNNs but performs well on visual 

recognition tasks, making it good for large scale hydrological image datasets. It is also pre-trained on 

ImageNet [27]. 

The study also investigates the following pre-trained models for forecasting water levels. 

• LSTM Networks with transfer learning 

LSTM networks are specially designed for time series forecasting. They can be used for predicting water 

levels based on previous historical data and current data. With the help of transfer learning methods, 

LSTMs can use trained models from related hydrological task to another task, also improving accuracy, and 

reducing training time. LSTM networks capture temporal dependencies and patterns in water level data, 

considering various factors such as seasonal variations and current trends. When combined with feature 

extraction from images, it provides robust and accurate predictions. These predictions can be helpful in 

decision-making for water resource departments. Further transfer learning strengthens the capabilities of 

LSTMs. It emerges as a versatile model for accurate forecasting of water levels under diverse and complex 

environmental conditions. 

• Hybrid Models Combining LSTM with CNNs 

Hybrid models that combine LSTM and CNN architectures offer an efficient approach for 

comprehensive analysis of water and water level estimation. CNNs extracts spatial information from 

images, identifying patterns and examines changes in water bodies, whereas LSTM networks analyze 

temporal trends in water level data. This integrated approach combines the advantages of both models to 

improve the accuracy and robustness of the forecast. 

 

RESULT AND DISCUSSION 

Table 2. Performance metrics and results for the water body extraction using CNN and LSTM ML 

Model 

 

Model Parameters Value 

CNN Accuracy 95.2% 

CNN Precision 94.8% 

CNN Recall 95.5% 

LSTM MAE (Mean Absolute Error) 0.08 meters 

LSTM RMSE (Root Mean Square Error) 0.12 meters 

LSTM R2 Score 0.92 

F1 Score (CNN) 95.1% 

Training Time (CNN) 4 hours 
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Training Time (LSTM) 2 hours 

Inference Time (Per Image - CNN) 0.02 seconds 

Inference Time (Per Prediction - LSTM) 0.01 seconds 

 

Table 2 presents the performance metrics and results for the extraction of water bodies using a CNN 

and LSTM model. CNN achieved an accuracy of 95.2%, representing its effectiveness in detecting water 

bodies from images. It has achieved a precision of 94.8% and the F1 score is 95.10%. The LSTM reflects 

its precision in water level forecasting with a MAE of 0.08 meters RMSE of 0.12 meters. The LSTM R2 

score is 0.92. For training CNN and LSTM models require 4 and 2 hours, respectively, with inference 

times of 0.02 seconds per image for the CNN and 0.01 seconds per prediction for the LSTM. These 

values show CNN’s and LSTM’s high computational efficiency. 

The original image is shown in Figure 3 (a). In Figure (b), you can see the projected mask that the CNN 

model made, which clearly shows the named bodies of water. 

(a) (b) 

 

Figure 3: (a) Original Image (b) Predicted Mask 

 

Table 3 presents a comparative analysis of a hybrid CNN+LSTM model and various CNN architectures 

for the water bodies identification. The Comparison has been performed using confusion matrix. 

Accuracy, precision, recall, and F1 score of the confusion matrix have been used to evaluate the 

performance of model. ResNet50 obtained an accuracy of 95.2%, for distinguishing water bodies in 

satellite images. InceptionV3 and MobileNetV2 achieved the accuracy of 94.8% and 94.5%, respectively, 

while EfficientNetB0 achieved slightly better accuracy than them with 95.0%. The hybrid CNN+LSTM 

model obtained the best performance, obtained 97.2% accuracy. In terms of precision, ResNet50 scored 

94.8%, InceptionV3 obtained 94.3%, MobileNetV2 got 94.0%, and EfficientNetB0 obtained 94.6%, 

while the CNN+LSTM model achieved 96.9%. This higher precision indicates that the hybrid model has 

the better capability in accurately detecting water bodies. For recall, ResNet50 reached 95.5%, 

InceptionV3 got 94.9%, MobileNetV2 obtained 94.7%, and Effi- cientNetB0 95.2%. For F1 score, 

ResNet50 achieved 95.1%, EfficientNetB0 obtained 94.9%, InceptionV3 got 94.6%, and MobileNetV2 

got 94.3%, while the CNN+LSTM model again performed better than all others with a leading score of 

96.8%, which indicates its balanced and robust performance on both precision and recall metrics. 

Table 3. Comparison of Different Models Based on Various Metrics 

Metric ResNet50 InceptionV3 MobileNetV2 EfficientNetB0 Hybrid (CNN + 

LSTM) 

Accuracy 

(CNN) 

95.2% 94.8% 94.5% 95.0% 97.2% 

Precision 

(CNN) 

94.8% 94.3% 94.0% 94.6% 96.9% 
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Recall (CNN) 95.5% 94.9% 94.7% 95.2% 97.0% 

F1 Score 

(CNN) 

95.1% 94.6% 94.3% 94.9% 96.8% 

 

Figure 4 presents graphical accuracy comparison of different methods 

Figure 4: Accuracy Comparison of Different Methods 

 

CONCLUSION 

Using advanced CNN architectures such as ResNet50, InceptionV3, MobileNetV2, and EfficientNetB0, 

this study presents the ability of these models to accurately differentiate between water bodies. CNN 

models show their robustness in handling complex image analysis tasks, as these models achieved high 

precision, accuracy, recall, and F1 scores. Furthermore, integrating CNNs with LSTM networks improved 

performance, particularly in water level forecasting. The CNN+LSTM approach takes advantage of the 

spatial feature extraction capabilities of CNNs and the temporal sequence modeling capabilities of 

LSTMs. Transfer learning played a significant role in enhancing model performance while reducing 

computational costs and training time. The pre-trained models trained on ImageNet dataset provide a 

solid foundation for extracting features and fine-tuning on specific satellite image datasets, ensuring the 

generalization and efficiency of models. Using advanced techniques like machine learning, deep learning, 

and transfer learning in the hydrology area ensures a more accurate analysis of water bodies, helping water 

resource departments make decisions to mitigate flood risks. Future work will explore more advanced and 

hybrid architectures. Also evaluates these models across diverse regions to verify their generalizability, 

thereby helping researchers design robust and generalized solutions. 
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