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Abstract 
Data centers and computing infrastructure underpin the digital economy but consume rapidly growing amounts of 
electricity, water, and materials. This paper synthesizes state-of-the-art design strategies and operational practices to 
achieve energy and resource efficient, low carbon computing at hyper scale and edge. We unify facility engineering, IT 
architecture, and workload orchestration into a holistic framework that targets power usage effectiveness (PUE) ≤ 
1.20, water usage effectiveness (WUE) < 0.2 L/kWh, and near real time carbon optimization (24/7 CFE matching). 
We review thermal envelopes and air/liquid cooling guidance, power chain efficiency, renewable and storage 
integration, and carbon aware scheduling. We propose a practical design reference architecture and a multi objective 
optimization methodology that balances efficiency, resilience, latency, and cost. Case evidence and modeling show that 
combining high return measures—rightsizing, advanced airflow management, heat reuse, free cooling, direct to chip 
liquid cooling, and carbon aware scheduling—can reduce facility energy overhead by 30–60%, IT energy by 10–25%, 
and Scope 2 emissions by >70% in grids with high variable renewables. We conclude with a roadmap and research 
agenda for AIera workloads. 
Keywords: data center efficiency, PUE, WUE, CUE, liquid cooling, carbon aware scheduling, grid interactive 
efficient buildings (GEB), renewable energy, edge computing, circular economy 
 
1. INTRODUCTION 
Demand for compute is expanding due to cloud adoption, AI/ML training and inference, streaming, and 
IoT. Projections indicate data center electricity use could more than double by 2030, intensifying policy 
and grid pressures. Designing sustainable computing infrastructure is therefore a technical, economic, 
and environmental imperative. While industry standard metrics such as PUE have driven progress, 
holistic optimization must encompass IT efficiency, power and cooling, water stewardship, carbon 
intensity, and embodied impacts across the full lifecycle.[1] 
1.1 Contributions 
This paper: 
1) Consolidates best practices across facility and IT layers into a design reference architecture for 
sustainable computing infrastructure. 
2) Provides a methodological toolkit for multi objective planning (energy, water, carbon, reliability, 
latency, cost) with actionable targets and KPIs. 
3) Details control strategies for carbon aware and gridinteractive operations compatible with AI/ML 
workloads. 
4) Identifies research gaps in thermal management for high density racks, AI scheduling, and 
circularity.[3] 
 
2. Background and Metrics 
2.1 Energy and resource metrics 
• Power Usage Effectiveness (PUE): ratio of total facility power to IT equipment power; lower is better. 
• Water Usage Effectiveness (WUE): liters of water per kWh of IT energy. 
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• Carbon Usage Effectiveness (CUE): kg CO₂e per kWh of IT energy (or per kWh delivered at rack), 
tied to grid emissions and procurement. 
• Energy Reuse Effectiveness (ERE): credits useful heat recovery. 
• Server Utilization / IT Efficiency: perf/W (e.g., SPECpower), consolidation rate, virtualization, 
accelerator efficiency. 
2.2 Thermal envelopes and classes 
Adherence to ASHRAE TC 9.9 guidelines enables widening temperature and humidity ranges to unlock 
free cooling and liquid strategies while protecting reliability. The A1–A4 classes define air cooled 
allowable and recommended envelopes; classes H1+ address high density equipment and liquid 
cooling.[4] 

 
2.3 Workload classes 
• Latency sensitive: real-time analytics, trading, gaming, conversational inference—favor edge or low 
latency zones. 
• Throughput or batch: training, rendering, ETL—flexible in time and location; prime candidates for 
carbon aware shifting.[2] 
• Storage centric: object/file/block—optimize for media power and data placement. 
3. Design Principles and Reference Architecture 
We propose a layered architecture integrating site selection, building/facility engineering, power chain, 
thermal systems, whitespace layout, IT hardware, and orchestration. 
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4. Methods: Multi-Objective Planning and Control 
4.2 Optimization formulation  
Below is an example Python snippet to model a simplified multi objective optimization problem for data 
center operations:[5] 
import pulp 
 
# Decision variables: supply temp, server utilization, renewable share 
T_supply = pulp.LpVariable('T_supply', lowBound=18, upBound=30) 
utilization = pulp.LpVariable('utilization', lowBound=0.2, upBound=0.9) 
renew_share = pulp.LpVariable('renew_share', lowBound=0, upBound=1) 
 
# Objective weights 
alpha, beta, gamma = 0.5, 0.3, 0.2 
 
# Objective: minimize energy + water + carbon proxy 
model = pulp.LpProblem('DataCenterOpt', pulp.LpMinimize) 
model += alpha * (1000/utilization) + beta * (T_supply/25) + gamma * (1-renew_share) 
 
# Constraints (example) 
model += utilization >= 0.5 
model += T_supply <= 27 
model.solve() 
print("Optimal Supply Temp:", T_supply.varValue) 
print("Optimal Utilization:", utilization.varValue) 
print("Renewable Share:", renew_share.varValue) 
This illustrative code shows how optimization variables (temperature setpoint, server utilization, 
renewable share) can be tuned to balance energy, water, and carbon objectives. 
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6. Carbon Aware and Grid Interactive Operations 
6.1 Example scheduling simulation 
A simplified pseudo program for carbon aware scheduling: 
import random 
 
jobs = [f"job_{i}" for i in range(1, 11)] 
carbon_intensity = {h: random.randint(200, 600) for h in range(24)}  # gCO2/kWh 
 
schedule = {} 
for job in jobs: 
    best_hour = min(carbon_intensity, key=carbon_intensity.get) 
    schedule[job] = best_hour 
    carbon_intensity[best_hour] += 50  # simulate load effect 
 
print("Carbon-aware schedule:") 
for job, hour in schedule.items(): 
    print(job, "->", hour, "h") 
This demonstrates shifting batch workloads into hours with the lowest carbon intensity. 
 
Appendix A: Example Control Policies (Pseudo Code) 
A1. Carbon aware scheduling weight update 
Every hour h: 
  ci[h]    = grid_marginal_carbon_intensity(region, h) 
  price[h] = energy_price(region, h) 
  temp[h]  = ambient_forecast(h) 
  w[h]     = α*(ci[h]/max(ci)) + β*(price[h]/max(price)) + γ*(temp[h]/max(temp)) 
  update_queue_priorities(batch_jobs, weight=w[h]) 
A2. MPC setpoint optimization  
At 5min intervals: 
  state = (rack_loads, ∆T, valve_positions, SoC_BESS) 
  predict PUE, WUE, CUE over horizon H using digital twin 
  solve min α·Energy + β·Water + γ·Carbon + penalties for SLA/risk 
  apply optimal (T_supply_air, T_supply_water, fan_speed, pump_speed) 
 
Appendix B: Template Bill of Materials (BOM) 
• High efficiency UPS (≥97–99%); MV switchgear; busway 
• CRAH/CRAC with EC fans; dry coolers with adiabatic assist; CDUs 
• Direct to chip cold plates; reardoor HEX; immersion tanks (as needed) 
• Rack PDUs with peroutlet metering; leak detection; sensors 
• BESS; PV inverters; microgrid controller 
• Telemetry stack (power, thermal, IT); data historian; analytics 
 
Reference Implementations (Code) 
C1. Python: PUE/WUE/CUE Calculator & Reporter (CLI) 
#!/usr/bin/env python3 
"""Compute PUE, WUE, CUE from metered data and emit a daily report.""" 
import argparse, csv, json, statistics, sys 
from datetime import datetime 
 
def read_rows(path): 
    with open(path, newline='') as f: 
        for r in csv.DictReader(f): 
            yield {k: (float(v) if v not in (None, '', 'NaN') else None) for k,v in r.items()} 
 
def compute_kpis(rows): 
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    pue = [] 
    wue = [] 
    cue = [] 
    for r in rows: 
        it_kwh   = r.get('it_kwh') 
        total_kwh= r.get('total_kwh') 
        water_l  = r.get('water_l') 
        kg_co2   = r.get('kg_co2') 
        if it_kwh and total_kwh and it_kwh>0: 
            pue.append(total_kwh/it_kwh) 
        if it_kwh and water_l is not None and it_kwh>0: 
            wue.append(water_l/it_kwh) 
        if it_kwh and kg_co2 is not None and it_kwh>0: 
            cue.append(kg_co2/it_kwh) 
    def stats(x): 
        if not x: return None 
        return { 
            'avg': sum(x)/len(x), 
            'p50': statistics.median(x), 
            'p95': statistics.quantiles(x, n=20)[18], 
            'min': min(x), 
            'max': max(x) 
        } 
    return {'PUE': stats(pue), 'WUE': stats(wue), 'CUE': stats(cue)} 
 
if __name__ == '__main__': 
    ap = argparse.ArgumentParser() 
    ap.add_argument('--input', required=True, help='CSV with columns: timestamp,it_kwh,total_kwh,wa
ter_l,kg_co2') 
    ap.add_argument('--out', default='kpis.json') 
    args = ap.parse_args() 
    kpis = compute_kpis(list(read_rows(args.input))) 
    kpis['generated_at'] = datetime.utcnow().isoformat() 
    with open(args.out, 'w') as f: json.dump(kpis, f, indent=2) 
    print(json.dumps(kpis, indent=2)) 
Sample CSV header 
timestamp,it_kwh,total_kwh,water_l,kg_co2 
C2. Python: Carbon Intensity Aware Batch Scheduler (Simulated) 
#!/usr/bin/env python3 
"""Toy scheduler that shifts flexible jobs to lowcarbon hours/regions.""" 
from dataclasses import dataclass 
from typing import List, Dict 
 
@dataclass 
class Region: 
    name: str 
    hourly_ci: List[float]  # gCO2/kWh, length 24 
    capacity: List[int]     # slots available each hour 
 
@dataclass 
class Job: 
    id: str 
    hours: int 
    latest_finish: int  # hour index 0..47 
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regions = [ 
    Region('North', [600,550,500,480,460,420,380,350,340,330,320,310,   
                     300,310,320,350,400,450,500,520,540,560,580,610], [10]*24), 
    Region('South', [500,480,450,430,400,360,320,300,280,260,250,240,   
                     230,240,250,270,320,380,420,450,470,490,510,530], [8]*24) 
] 
 
jobs = [Job(f'job{i}', hours=4, latest_finish=24+i) for i in range(8)] 
 
schedule: Dict[int, Dict[str, List[str]]] = {h:{r.name:[] for r in regions} for h in range(48)} 
 
for j in jobs: 
    # greedy: pick consecutive hours with lowest CI across regions before deadline 
    choices = [] 
    for start in range(0, j.latest_finish - j.hours + 1): 
        cost=0; feasible=True; picks=[] 
        for k in range(j.hours): 
            h = start+k 
            # choose best region this hour with capacity 
            best = None 
            best_ci = float('inf') 
            for r in regions: 
                if h%24 < len(r.capacity) and r.capacity[h%24] > 0: 
                    ci = r.hourly_ci[h%24] 
                    if ci < best_ci: 
                        best_ci = ci; best = r 
            if best is None: 
                feasible=False; break 
            cost += best.hourly_ci[h%24] 
            picks.append((h,best)) 
        if feasible: 
            choices.append((cost, picks)) 
    if not choices: 
        raise RuntimeError(f'No window for {j.id}') 
    _, picks = min(choices, key=lambda x: x[0]) 
    for h,r in picks: 
        schedule[h][r.name].append(j.id) 
        r.capacity[h%24] -= 1 
 
# print compact schedule 
for h in range(0, 24): 
    row = {r.name: len(schedule[h][r.name]) for r in regions} 
    print(f'h{h:02d}: {row}') 
 
C3. Python: Simple Thermal Controller (PI + feedforward) 
class ThermalLoop: 
    def __init__(self, k_p=0.6, k_i=0.2, ff=0.1, t_supply_min=18.0, t_supply_max=27.0): 
        self.k_p=k_p; self.k_i=k_i; self.ff=ff 
        self.integral=0.0 
        self.tmin=t_supply_min; self.tmax=t_supply_max 
    def step(self, t_return, rack_kw, t_target=24.0, dt=60.0): 
        error = t_target - t_return 
        self.integral += error*dt 
        # feedforward lift based on load 
        lift = self.ff * rack_kw 
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        t_supply = t_return - (self.k_p*error + self.k_i*self.integral) - lift 
        return max(self.tmin, min(self.tmax, t_supply)) 
 
C4. Kubernetes: Carbon Aware Scheduling with Taints/Tolerations + KEDA 
Carbon intensity as a Prometheus metric (scraped hourly per region): 
carbon_intensity_g_per_kwh{region="south"} 240 
carbon_intensity_g_per_kwh{region="north"} 380 
KEDA ScaledObject for a batch deployment 
apiVersion: keda.sh/v1alpha1 
kind: ScaledObject 
metadata: 
  name: batch-trainer 
spec: 
  scaleTargetRef: 
    name: batch-trainer 
  pollingInterval: 60 
  cooldownPeriod: 600 
  minReplicaCount: 0 
  maxReplicaCount: 100 
  triggers: 
  - type: prometheus 
    metadata: 
      serverAddress: http://prometheus:9090 
      metricName: carbon_score 
      threshold: "250"           # scale when CI < 250 g/kWh (inverted via query) 
      query: | 
        (300 - carbon_intensity_g_per_kwh{region="south"}) 
Affinity to lowcarbon nodes 
apiVersion: apps/v1 
kind: Deployment 
metadata: 
  name: batch-trainer 
spec: 
  replicas: 0 
  selector: 
    matchLabels: {app: trainer} 
  template: 
    metadata: 
      labels: {app: trainer} 
    spec: 
      nodeSelector: 
        region: south 
      tolerations: 
      - key: carbon/high 
        operator: Exists 
        effect: NoSchedule  # avoid nodes tainted as highcarbon 
 
C5. Grafana/Prometheus: PUE Panel Query Examples 
Instant PUE 
(sum by(dc) (power_total_kw{feed="utility"})) 
  / 
(sum by(dc) (power_it_kw)) 
Daily Average PUE 
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avg_over_time( 
  (sum by(dc) (power_total_kw{feed="utility"}) / sum by(dc) (power_it_kw))[1d:5m] 
) 
 
C6. Python + CVXPy: Toy MPC for Cooling Setpoints 
# pip install cvxpy numpy 
import cvxpy as cp, numpy as np 
# decision variables over horizon H 
H = 8 
T_supply = cp.Variable(H) 
Fan = cp.Variable(H) 
Pump = cp.Variable(H) 
 
# parameters (example numbers) 
IT_kw = np.array([450,470,500,520,510,490,480,460]) 
ambient = np.array([30,31,33,35,34,32,31,30]) 
 
# models (affine approximations) 
facility_kw = 0.2*IT_kw + 0.05*Fan + 0.04*Pump + 0.3*(35 - T_supply) 
water_l_kwh = 0.0 + 0.2*(33 - T_supply).clip(min=0) 
carbon_g_kwh = 500 - 4*(ambient - 30) 
 
energy = cp.sum(facility_kw) 
water  = cp.sum(water_l_kwh) 
carbon = cp.sum(cp.multiply(carbon_g_kwh, facility_kw/1000)) 
 
obj = cp.Minimize(1.0*energy + 0.02*water + 0.001*carbon) 
 
constraints = [ 
    T_supply >= 20, T_supply <= 27, 
    Fan >= 0, Fan <= 1.0, 
    Pump >= 0, Pump <= 1.0 
] 
prob = cp.Problem(obj, constraints) 
prob.solve(solver=cp.ECOS) 
print('Optimal T_supply:', T_supply.value) 
 
C7. Bash: Redfish Power Telemetry Poller (to InfluxDB line protocol) 
#!/usr/bin/env bash 
HOST=$1; TOKEN=$2 
resp=$(curl -s -k -H "X-Auth-Token: $TOKEN" https://$HOST/redfish/v1/Chassis/1/Power) 
it_kw=$(echo "$resp" | jq '.PowerControl[0].PowerConsumedWatts' | awk '{print $1/1000}') 
now=$(date +%s) 
echo "it_power,host=$HOST value=$it_kw $now" >> /var/lib/telegraf/it_power.lp 
 
8. CONCLUSION 
The exponential growth of digital services has made sustainable computing infrastructure a critical priority 
for industry, academia, and governments alike. Energy-efficient data centers are no longer optional; they 
are foundational to reducing operational costs, minimizing environmental impacts, and ensuring the 
long-term viability of global digital ecosystems. 
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This research has explored design principles and strategies for building sustainable data centers, including 
advanced cooling techniques, renewable energy integration, carbon-aware workload scheduling, and AI-
driven optimization. By implementing holistic metrics such as PUE, WUE, and CUE, operators can gain 
a comprehensive understanding of energy and resource efficiency. Moreover, integrating predictive 
control systems, demand-response mechanisms, and hybrid renewable-storage architectures further 
enhances sustainability. 
The findings underscore that sustainability in computing is not achieved through a single technology but 
rather through a synergistic approach that combines hardware innovation, software intelligence, and 
renewable energy utilization. Future data centers must be designed as adaptive, carbon-aware, and resilient 
infrastructures capable of self-optimizing in real-time. 
Ultimately, sustainable computing infrastructure represents more than an engineering challenge—it is a 
societal imperative. As the demand for cloud services, artificial intelligence, and high-performance 
computing accelerates, the transition to energy-efficient, low-carbon, and environmentally conscious data 
centers will define the next generation of digital progress. 
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