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Abstract

Data centers and computing infrastructure underpin the digital economy but consume rapidly growing amounts of
electricity, water, and materials. This paper synthesizes state-of-the-art design strategies and operational practices to
achieve energy and resource efficient, low carbon computing at hyper scale and edge. We unify facility engineering, IT
architecture, and workload orchestration into a holistic framework that targets power usage effectiveness (PUE) <
1.20, water usage effectiveness (WUE) < 0.2 L/kWh, and near real time carbon optimization (24/7 CFE matching).
We review thermal envelopes and aiv/liquid cooling guidance, power chain efficiency, renewable and storage
integration, and carbon aware scheduling. We propose a practical design reference architecture and a multi objective
optimization methodology that balances efficiency, resilience, latency, and cost. Case evidence and modeling show that
combining high return measures—rightsizing, advanced airflow management, heat reuse, free cooling, direct to chip
liquid cooling, and carbon aware scheduling—can reduce facility energy overhead by 30-60%, IT energy by 10-25%,
and Scope 2 emissions by >70% in grids with high variable renewables. We conclude with a roadmap and research
agenda for Alera workloads.

Keywords: data center efficiency, PUE, WUE, CUE, liquid cooling, carbon aware scheduling, grid interactive
efficient buildings (GEB), renewable energy, edge computing, circular economy

1. INTRODUCTION

Demand for compute is expanding due to cloud adoption, AI/ML training and inference, streaming, and
IoT. Projections indicate data center electricity use could more than double by 2030, intensifying policy
and grid pressures. Designing sustainable computing infrastructure is therefore a technical, economic,
and environmental imperative. While industry standard metrics such as PUE have driven progress,
holistic optimization must encompass IT efficiency, power and cooling, water stewardship, carbon
intensity, and embodied impacts across the full lifecycle.[1]

1.1 Contributions

This paper:

1) Consolidates best practices across facility and IT layers into a design reference architecture for
sustainable computing infrastructure.

2) Provides a methodological toolkit for multi objective planning (energy, water, carbon, reliability,
latency, cost) with actionable targets and KPIs.

3) Details control strategies for carbon aware and gridinteractive operations compatible with AI/ML
workloads.

4) Identifies research gaps in thermal management for high density racks, Al scheduling, and
circularity.[3]

2. Background and Metrics

2.1 Energy and resource metrics

e Power Usage Effectiveness (PUE): ratio of total facility power to IT equipment power; lower is better.
o Water Usage Effectiveness (WUE): liters of water per kWh of IT energy.
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e Carbon Usage Effectiveness (CUE): kg CO,e per kWh of IT energy (or per kWh delivered at rack),
tied to grid emissions and procurement.

e Energy Reuse Effectiveness (ERE): credits useful heat recovery.

e Server Utilization / IT Efficiency: perf/W (e.g., SPECpower), consolidation rate, virtualization,
accelerator efficiency.

2.2 Thermal envelopes and classes

Adherence to ASHRAE TC 9.9 guidelines enables widening temperature and humidity ranges to unlock
free cooling and liquid strategies while protecting reliability. The A1-A4 classes define air cooled
allowable and recommended envelopes; classes H1+ address high density equipment and liquid
cooling.[4]

COOLING TOPOLOGIES Cooling topologies

EXTERNAL LIQUID IMMERSION Air Liquid Immersion

SYSTEM COOLING COOLING 4 X .
2 2 N cooling cooling cooling

11

" HEAT.
. SOURCE

HEAT

50% | 70% | 90%

FATRN COOLING

2.3 Workload classes

e Latency sensitive: real-time analytics, trading, gaming, conversational inference—favor edge or low
latency zones.

e Throughput or batch: training, rendering, ETL—flexible in time and location; prime candidates for
carbon aware shifting.[2]

e Storage centric: object/file/block—optimize for media power and data placement.

3. Design Principles and Reference Architecture

We propose a layered architecture integrating site selection, building/facility engineering, power chain,
thermal systems, whitespace layout, IT hardware, and orchestration.
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4. Methods: Multi-Objective Planning and Control

4.2 Optimization formulation

Below is an example Python snippet to model a simplified multi objective optimization problem for data
center operations:[5]

import pulp

# Decision variables: supply temp, server utilization, renewable share
T_supply = pulp.LpVariable('T_supply', lowBound=18, upBound=30)
utilization = pulp.LpVariable('utilization', lowBound=0.2, upBound=0.9)
renew_share = pulp.LpVariable('renew_share', lowBound=0, upBound=1)

# Objective weights
alpha, beta, gamma = 0.5, 0.3, 0.2

# Objective: minimize energy + water + carbon proxy
model = pulp.LpProblem('DataCenterOpt, pulp.LpMinimize)
model += alpha * (1000/utilization) + beta * (T_supply/25) + gamma * (1-renew_share)

# Constraints (example)

model += utilization >= 0.5

model += T_supply <= 27

model.solve()

print("Optimal Supply Temp:", T_supply.varValue)

print("Optimal Utilization:", utilization.varValue)

print("Renewable Share:", renew_share.varValue)

This illustrative code shows how optimization variables (temperature setpoint, server utilization,
renewable share) can be tuned to balance energy, water, and carbon objectives.
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6. Carbon Aware and Grid Interactive Operations

6.1 Example scheduling simulation

A simplified pseudo program for carbon aware scheduling:
import random

jobs = [f"job_{i}" for i in range(1, 11)]
carbon_intensity = {h: random.randint(200, 600) for h in range(24)} # gCO2/kWh

schedule = {}

for job in jobs:
best_hour = min(carbon_intensity, key=carbon_intensity.get)
schedule[job] = best_hour

carbon_intensity[best_hour] += 50 # simulate load effect

print("Carbon-aware schedule:")
for job, hour in schedule.items():
print(job, ">", hour, "h")
This demonstrates shifting batch workloads into hours with the lowest carbon intensity.

Appendix A: Example Control Policies (Pseudo Code)
Al. Carbon aware scheduling weight update
Every hour h:
cilh] = grid_marginal_carbon_intensity(region, h)
price[h] = energy_price(region, h)
templh] = ambient_forecast(h)
wlh] = a*(cilh]/max(ci)) + B*(price[h]/max(price)) + y*(temp[h]/max(temp))
update_queue_priorities(batch_jobs, weight=w[h])
A2. MPC setpoint optimization
At 5min intervals:
state = (rack_loads, AT, valve_positions, SoC_BESS)
predict PUE, WUE, CUE over horizon H using digital twin
solve min a-Energy + -Water + y-Carbon + penalties for SLA/risk
apply optimal (T_supply_air, T_supply_water, fan_speed, pump_speed)

Appendix B: Template Bill of Materials (BOM)

High efficiency UPS (>97-99%); MV switchgear; busway
CRAH/CRAC with EC fans; dry coolers with adiabatic assist; CDUs
Direct to chip cold plates; reardoor HEX; immersion tanks (as needed)
Rack PDUs with peroutlet metering; leak detection; sensors

BESS; PV inverters; microgrid controller

Telemetry stack (power, thermal, IT); data historian; analytics

Reference Implementations (Code)

C1. Python: PUE/WUE/CUE Calculator & Reporter (CLI)
#!/usr/bin/env python3

""Compute PUE, WUE, CUE from metered data and emit a daily report."
import argparse, csv, json, statistics, sys

from datetime import datetime

def read_rows(path):
with open(path, newline=") as f:
for r in csv.DictReader(f):
yield {k: (float(v) if v not in (None, ", 'NaN') else None) for k,v in r.items()}

def compute_kpis(rows):
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pue = (]
wue = []
cue =[]

for r in rows:
it_kwh = r.get('it_kwh')
total_kwh= r.get("total_kwh")
water_| = r.get('water_I')
kg_co2 =r.get(’kg_col')
if it_kwh and total_kwh and it_kwh>0:
pue.append(total_kwh/it_kwh)
if it_kwh and water | is not None and it_kwh>0:
wue.append(water_l/it_kwh)
if it_kwh and kg_co2 is not None and it_kwh>O0:
cue.append(kg_co2/it_kwh)
def stats(x):
if not x: return None
return {
'avg': sum(x)/len(x),
'p50": statistics.median(x),
'p95': statistics.quantiles(x, n=20)[18],
'min": min(x),
'max’: max(x)
}
return {PUE": stats(pue), WUE'": stats(wue), 'CUE": stats(cue)}
if  _name__=='_main__":
ap = argparse.ArgumentParser()
ap.add_argument(~input', required=True, help="CSV with columns: timestamp,it_kwh,total_kwh,wa
ter_Lkg co2')
ap.add_argument(-out’, default="kpis.json")
args = ap.parse_args()
kpis = compute_kpis(list(read_rows(args.input)))
kpis['generated_at'| = datetime.utcnow().isoformat()
with open(args.out, 'w') as f: json.dump(kpis, f, indent=2)
print(json.dumps(kpis, indent=2))
Sample CSV header
timestamp,it_kwh,total_kwh,water_l,kg_co2
C2. Python: Carbon Intensity Aware Batch Scheduler (Simulated)
#!/usr/bin/env python3
""Toy scheduler that shifts flexible jobs to lowcarbon hours/regions.
from dataclasses import dataclass
from typing import List, Dict

nm

@dataclass
class Region:
name: str
hourly_ci: List[float] # ¢gCO2/kWh, length 24

capacity: List[int]  # slots available each hour

@dataclass
class Job:
id: str
hours: int
latest_finish: int # hour index 0..47
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regions = |
Region('North', [600,550,500,480,460,420,380,350,340,330,320,3 10,
300,310,320,350,400,450,500,520,540,560,580,610], [10]*24),
Region('South', [500,480,450,430,400,360,320,300,280,260,250,240,
230,240,250,270,320,380,420,450,470,490,510,530], [8]*24)
]

jobs = [Job(fjob{i}, hours=4, latest_finish=24+i) for i in range(8)]
schedule: Dict{int, Dict[str, List[str]]] = {h:{r.name:[] for r in regions} for h in range(48)}

for j in jobs:
# greedy: pick consecutive hours with lowest CI across regions before deadline
choices =[]
for start in range(0, j.latest_finish - j.hours + 1):
cost=0; feasible=True; picks=[]
for k in range(j.hours):
h = start+k
# choose best region this hour with capacity
best = None
best_ci = float('inf")
for r in regions:
if h%24 < len(r.capacity) and r.capacity[(h%24] > 0:
ci = r.hourly_ci[h%24]
if ci < best_ci:
best_ci = ci; best = r
if best is None:
feasible=False; break
cost += best.hourly_ci[h%24]
picks.append((h,best))
if feasible:
choices.append((cost, picks))
if not choices:
raise RuntimeError(fNo window for {j.id}")
_, picks = min(choices, key=lambda x: x[0])
for h,r in picks:
schedule[h][r.name].append(j.id)
r.capacity[h%24] = 1

# print compact schedule
for h in range(0, 24):
row = {r.name: len(schedule[h][r.name]) for r in regions}

print(fh{h:02d}: {row})

C3. Python: Simple Thermal Controller (PI + feedforward)
class ThermalLoop:
def __init__(self, k_p=0.6, k_i=0.2, ff=0.1, t_supply_min=18.0, t_supply_max=27.0):
self.k_p=k_p; self.k_i=k_i; self.ff=ff
self.integral=0.0
self.tmin=t_supply_min; self.tmax=t_supply_max
def step(self, t_return, rack_kw, t_target=24.0, dt=60.0):
error = t_target - t_return
self.integral += error*dt
# feedforward lift based on load
lift = self.ff * rack_kw
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t_supply = t_return - (self.k_p*error + self.k_i*self.integral) - lift
return max(self.tmin, min(self.tmax, t_supply))

C4. Kubernetes: Carbon Aware Scheduling with Taints/Tolerations + KEDA
Carbon intensity as a Prometheus metric (scraped hourly per region):
carbon_intensity_g_per_kwh{region="south"} 240
carbon_intensity_g_per_kwh{region="north"} 380
KEDA ScaledObject for a batch deployment
apiVersion: keda.sh/vlalphal
kind: ScaledObject
metadataz:
name: batch-trainer
spec:
scaleTargetRef:
name: batch-trainer
pollingInterval: 60
cooldownPeriod: 600
minReplicaCount: 0
maxReplicaCount: 100
triggers:
- type: prometheus
metadatas:
serverAddress: http://prometheus:9090
metricName: carbon_score
threshold: "250" # scale when CI < 250 g¢/kWh (inverted via query)
query: |
(300 - carbon_intensity_g_per_kwh{region="south"})
Affinity to lowcarbon nodes
apiVersion: apps/vl
kind: Deployment
metadataz:
name: batch-trainer
specs
replicas: O
selector:
matchLabels: {app: trainer}
template:
metadataz:
labels: {app: trainer}
spec:
nodeSelector:
region: south
tolerations:
- key: carbon/high
operator: Exists
effect: NoSchedule # avoid nodes tainted as highcarbon

C5. Grafana/Prometheus: PUE Panel Query Examples
Instant PUE
(sum by(dc) (power_total_kw{feed="utility"}))
/
(sum by(dc) (power_it_kw))
Daily Average PUE

1160



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 1s, 2025
https://theaspd.com/index.php

avg_over_time(
(sum by(dc) (power_total_kw{feed="utility"}) / sum by(dc) (power_it_kw))[1d:5m]
)

C6. Python + CVXPy: Toy MPC for Cooling Setpoints
# pip install cvxpy numpy

import cvxpy as cp, numpy as np

# decision variables over horizon H

H=8

T_supply = cp.Variable(H)

Fan = cp.Variable(H)

Pump = cp.Variable(H)

# parameters (example numbers)
IT_kw = np.array([450,470,500,520,510,490,480,460])
ambient = np.array([30,31,33,35,34,32,31,30])

# models (affine approximations)

facility_kw = 0.2*IT_kw + 0.05*Fan + 0.04*Pump + 0.3*(35 - T_supply)
water_|_kwh = 0.0 + 0.2*(33 - T_supply).clip(min=0)

carbon_g_kwh = 500 - 4*(ambient - 30)

energy = cp.sum(facility_kw)
water = cp.sum(water_|_kwh)
carbon = cp.sum(cp.multiply(carbon_g kwh, facility_kw,/1000))

obj = cp.Minimize(1.0*energy + 0.02*water + 0.001*carbon)

constraints = [
T_supply >= 20, T_supply <= 27,
Fan >= 0, Fan <= 1.0,
Pump >= 0, Pump <= 1.0

]

prob = cp.Problem(obj, constraints)
prob.solve(solver=cp. ECOS)
print('Optimal T_supply:', T_supply.value)

C7. Bash: Redfish Power Telemetry Poller (to InfluxDB line protocol)

#!/usr/bin/env bash

HOST=%$1; TOKEN=$2

resp=$(curl -s -k -H "X-Auth-Token: $TOKEN" https://$HOST/redfish/v1/Chassis/1/Power)
it_kw=$(echo "$resp" | jq PowerControl[0]. PowerConsumedWatts' | awk '{print $1,/1000})
now=%(date +%s)

echo "it_power,host=fHOST value=$it_kw $now" >> /var/lib/telegraf/it_power.lp

8. CONCLUSION

The exponential growth of digital services has made sustainable computing infrastructure a critical priority
for industry, academia, and governments alike. Energy-efficient data centers are no longer optional; they
are foundational to reducing operational costs, minimizing environmental impacts, and ensuring the
long-term viability of global digital ecosystems.
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This research has explored design principles and strategies for building sustainable data centers, including
advanced cooling techniques, renewable energy integration, carbon-aware workload scheduling, and Al-
driven optimization. By implementing holistic metrics such as PUE, WUE, and CUE, operators can gain
a comprehensive understanding of energy and resource efficiency. Moreover, integrating predictive
control systems, demand-response mechanisms, and hybrid renewable-storage architectures further
enhances sustainability.

The findings underscore that sustainability in computing is not achieved through a single technology but
rather through a synergistic approach that combines hardware innovation, software intelligence, and
renewable energy utilization. Future data centers must be designed as adaptive, carbon-aware, and resilient
infrastructures capable of self-optimizing in real-time.

Ultimately, sustainable computing infrastructure represents more than an engineering challenge—it is a
societal imperative. As the demand for cloud services, artificial intelligence, and high-performance
computing accelerates, the transition to energy-efficient, low-carbon, and environmentally conscious data
centers will define the next generation of digital progress.
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