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ABSTRACT 
Early detection of crop diseases is critical for safeguarding agricultural productivity and ensuring food security. This study proposes 
an attention-based deep learning framework for robust classification of apple leaf diseases using the publicly available Plant 
Pathology 2020 and 2021 datasets. The smaller Plant Pathology 2020 dataset (3,651 images) was used for prototyping, while 
the larger Plant Pathology 2021 dataset (19,000 images) enabled large-scale multi-label classification under field conditions. The 
framework integrated Convolutional Neural Networks (CNNs) enhanced with Convolutional Block Attention Modules (CBAM), 
transformer-based architectures such as the Vision Transformer (ViT) and Swin Transformer, and a hybrid Attention U-Net 
model. Evaluation metrics included accuracy, precision, recall, F1-score, and ROC-AUC. Experimental results demonstrated that 
baseline CNNs achieved an accuracy of 91.8–92.7% on the Plant Pathology 2020 dataset, while the inclusion of CBAM 
increased performance to 95.3–95.9% with macro-F1 up to 0.96. On the Plant Pathology 2021 dataset, transformer-based 
models significantly outperformed CNNs, with ViT achieving 96.8% accuracy and Swin Transformer achieving 97.4% accuracy, 
accompanied by F1-scores above 0.96 and ROC-AUC values of 0.98. Explainability techniques such as Grad-CAM and 
transformer attention maps confirmed that the models focused on biologically relevant lesion regions. These results highlight that 
attention-driven architectures achieve state-of-the-art performance while enhancing interpretability, making them well-suited for 
precision agriculture applications. 
 
Keywords: Crop disease detection, Deep learning, Attention mechanism, Convolutional Neural Network (CNN), Vision 
Transformer (ViT), Explainable AI. 
 
1. INTRODUCTION 
Crop diseases remain one of the major threats to global agricultural productivity and food security, leading to 
significant yield losses if not detected at an early stage. With the world’s population expected to exceed nine billion 
by 2050, ensuring sustainable agricultural practices and preventing crop loss due to pests and diseases are urgent 
global priorities. Apple cultivation, like many other crops, is highly susceptible to foliar diseases such as rust, scab, 
and multi-disease infections, which can severely reduce both yield and quality [1]. Accurate and early detection of 
these diseases is therefore essential for timely intervention, optimized pesticide application, and sustainable crop 
management. In recent years, advances in deep learning and computer vision have shown remarkable potential in 
automating plant disease diagnosis, offering scalable and reliable alternatives to manual inspection. 

Traditional approaches to crop disease identification rely heavily on manual scouting by farmers and 
agronomists, which is labor-intensive, time-consuming, and prone to subjectivity. Image-based machine learning 
methods have emerged as powerful alternatives, enabling automated disease recognition directly from leaf images 
[2]. Convolutional Neural Networks (CNNs) such as ResNet and DenseNet have been widely applied to plant disease 
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classification tasks, achieving high accuracy on benchmark datasets. However, CNNs often struggle to capture long-
range dependencies and may focus on irrelevant background features, particularly when datasets contain natural 
variations in lighting, orientation, and overlapping symptoms. Recent advances in attention mechanisms and 
transformer architectures have revolutionized computer vision by allowing models to focus selectively on the most 
informative regions and capture global contextual relationships [3]. Their application to crop disease detection has 
the potential to significantly improve robustness and interpretability, especially in challenging multi-label 
classification scenarios [4]. 

Despite promising results, several challenges remain in plant disease detection. First, existing CNN-based 
models frequently suffer from misclassification between visually similar diseases, such as rust and scab, due to 
overlapping texture and color features. Second, minority classes such as multi-disease are often underrepresented in 
datasets, making them difficult to detect reliably [5]. Third, while accuracy has been the primary focus of prior 
studies, the lack of interpretability in deep learning models limits their acceptance in agricultural decision-making, 
as farmers and agronomists require transparent evidence of model predictions [6]. Therefore, there is a need for a 
disease detection framework that not only achieves high predictive performance across single-label and multi-label 
tasks but also incorporates explainability mechanisms to build trust and ensure practical applicability. 
 
Objectives: The primary objective of this study is to develop an attention-based deep learning framework for early 
and accurate detection of apple leaf diseases using the Plant Pathology 2020 and 2021 datasets. Specific objectives 
include: 

1. To evaluate the performance of baseline CNN architectures (ResNet50, DenseNet121) and their attention-
enhanced variants using CBAM modules. 

2. To implement and assess transformer-based architectures (Vision Transformer and Swin Transformer) for 
large-scale multi-label disease classification. 

3. To address class imbalance issues, particularly for the underrepresented multi-disease class, through 
weighted loss functions and focal loss. 

4. To integrate explainability tools such as Grad-CAM and attention heatmaps for visualizing the decision-
making process of the models. 

5. To compare model performance across datasets and architectures using standardized metrics, including 
accuracy, precision, recall, F1-score, and ROC-AUC. 

 
Novelty 
The novelty of this study lies in the integration of attention mechanisms into both CNN and transformer 
architectures for robust and interpretable crop disease detection. While previous research has predominantly relied 
on CNN-based classification, this work demonstrates that attention-enhanced CNNs can significantly reduce 
misclassification errors, and transformer-based models can achieve superior performance in multi-label disease 
scenarios. Furthermore, the study combines quantitative performance evaluation with qualitative explainability, 
ensuring that the models not only achieve state-of-the-art accuracy (up to 97.4% on Plant Pathology 2021) but also 
provide transparent, biologically relevant justifications for their predictions. This dual focus on accuracy and 
interpretability distinguishes the proposed framework from conventional deep learning models, making it a strong 
candidate for practical deployment in precision agriculture systems. 
 
2. LITERATURE REVIEW 
Borhani et al. [7] compared Vision Transformers against classic CNN backbones for plant-disease classification and 
showed that transfer-learned CNNs were still extremely competitive on PlantVillage: GoogleNet (transfer learning) 
reached an average F1 = 0.9935 and AlexNet (transfer) F1 = 0.9932, outperforming several custom 
transformer/CNN variants on the same split. Their tables also report convergence scores, with the strongest CNN 
configurations converging fastest while preserving near-ceiling precision/recall. Gui et al. [8] emphasized the gap 
between lab-style and field-style imagery: on PlantVillage they reported 99.84% accuracy, yet the accuracy on their 
Field-PV test set dropped to 72.03% (from a prior 41.81%), underscoring domain shift and the need for field 
validation beyond controlled backgrounds.  Sheng et al. [9] proposed a cascade backbone network (CBNet) for in-
field apple leaf disease identification and achieved 96.76% accuracy and 96.71% F1-score on a mobile-captured 



 
International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 21s, 2025 
https://www.theaspd.com/ijes.php 

4415 
 

dataset, demonstrating that careful multi-scale feature fusion with a transformer-style backbone can be both robust 
and deployable.  Li et al. [10] introduced PMVT, a lightweight MobileViT tailored for edge devices. Despite only 
~0.98M parameters, PMVT hit 93.6% accuracy on a wheat dataset, 85.4% on coffee, and 93.1% on rice, beating 
similarly sized lightweight models and several heavier baselines useful evidence that ViT blocks can be distilled for 
mobile inference without sacrificing much accuracy.  

Li & Chao [11] explored semi-supervised few-shot learning for plant disease recognition on PlantVillage. 
Their iterative scheme lifted performance to an average ~90% at just 5-shot, and a single-pass semi-supervised variant 
reached 92.6% at 10-shot—while a prior transfer-learning baseline needed 80-shot to touch ~90%. The work shows 
strong label-efficiency gains when pseudo-labeling is carefully controlled.  AppleLeafNet [12] tackled subclassification 
of apple diseases and showed that a dedicated architecture for fine-grained apple pathology delivered high reliability: 
~98.25% for health-condition discrimination and ~98.60% for disease diagnosis on curated apple leaf images, with 
additional evidence of cleaner class boundaries.  Luo et al. [13] presented DIC-Transformer, which unifies detection 
+ captioning (symptom description) of leaf diseases. On a benchmark they reported 85.4% classification accuracy 
and strong caption quality (BLEU-4 = 34.4, ROUGE-L = 0.496, METEOR = 0.362), highlighting the value of 
attention-based decoders for explainable agronomic outputs rather than classification alone.  Gao et al. [14] 
addressed complex backgrounds for apple leaves via BAM-Net (attention + multi-scale cues), reaching 95.64% 
accuracy, 95.62% precision, 95.89% recall, and a 95.25% F1-score on a self-built field-style dataset; they also showed 
good transfer to PlantVillage classes, indicating improved generalization beyond studio conditions.   

Kalpana et al. [15] ensembled residual CNN blocks with Swin Transformers and, on PlantVillage, reported 
improvements over FCN-8s, CED-Net, SegNet, DeepLabv3, DenseNet, and other hybrids across 
accuracy/precision/recall/specificity/F1 evidence that hierarchical windowed attention fused with residual features 
can outperform older encoder–decoder backbones on multi-class leaf classification.  Singh et al. [16] trained a ViT 
with synthetic “leafy-GAN” augmentations and reported near-ceiling test performance for disease diagnosis (top 
accuracy ≈ 99.92%) alongside qualitative saliency analyses supporting a practical recipe where targeted generative 
augmentation boosts transformer robustness in limited agricultural datasets.  

 
3. METHODOLOGY 
The methodology adopted in this study is structured into five phases: dataset acquisition, preprocessing and 
augmentation, model design, training and optimization, and evaluation with explainability. Each stage was carefully 
designed to ensure reliable detection and classification of apple leaf diseases under real field conditions using 
attention-based deep learning models as shown in Figure 1.  
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Figure 1. System Architecture 
 
3.1 Dataset Acquisition 
The datasets employed in this study were the Plant Pathology 2020 and 2021 collections, both made publicly 
available through the Kaggle Fine-Grained Visual Classification (FGVC) challenges. The 2020 dataset comprises 
approximately 3,651 high-quality RGB images of apple leaves captured under natural field conditions, representing 
four categories: healthy, rust, scab, and multi-disease. The relatively smaller size of this dataset made it suitable for 
model prototyping and controlled experimentation [17]. In contrast, the Plant Pathology 2021 dataset is more 
extensive, consisting of nearly 19,000 labeled images, which not only share the same categories but also adopt a 
multi-label structure, allowing each image to belong to more than one disease class simultaneously. This 
characteristic increases the complexity of classification while reflecting more realistic scenarios where leaves exhibit 
multiple infections [18]. 
To ensure compatibility across the two datasets, all images were standardized in terms of storage and labeling. For 
the 2020 dataset, labels were treated as one-hot vectors corresponding to the four categories, while for the 2021 
dataset, labels were encoded as multi-hot vectors to preserve the multi-label structure. The class multi-disease was 
retained as a distinct category rather than collapsing it into co-occurrences, allowing the models to explicitly learn 
features of composite infections. Together, the two datasets provide a balanced foundation: the smaller dataset serves 
as a testbed for rapid architectural tuning, while the larger dataset supports robust large-scale training and validation 
[19]. 
Before model training, dataset integrity was carefully verified. Corrupt or unreadable image files were identified and 
removed, and cryptographic checksums were computed to confirm dataset consistency. Exploratory data analysis 
(EDA) was performed to evaluate class distributions, image sizes, and illumination conditions. This analysis revealed 
class imbalance, particularly with the multi-disease class being underrepresented, a factor that was later addressed 
through augmentation and weighted loss functions. Duplicate or near-duplicate samples were checked using 
perceptual hashing to avoid potential information leakage between training and test sets. 
Finally, stratified sampling was employed to generate training, validation, and testing splits. For the 2020 dataset, 
images were divided into 70% training, 15% validation, and 15% testing sets while preserving class proportions. For 
the 2021 dataset, iterative stratification was applied to maintain the prevalence of label combinations across 
partitions, ensuring that multi-label correlations were consistently represented. By combining both datasets in this 
systematic manner, the study established a scalable and reproducible data foundation, enabling robust 
benchmarking of attention-based deep learning models for crop disease detection. 
 
3.2 Image Preprocessing 
In order to prepare the Plant Pathology 2020 and 2021 datasets for deep learning model training, a series of 
preprocessing steps were applied to standardize the input images. Since the datasets contain images of varying 
resolutions and aspect ratios, all images were resized to a uniform dimension of 256 × 256 pixels. This resizing step 
ensured consistency across inputs, facilitated efficient mini-batch training, and allowed the models to operate within 
feasible GPU memory constraints. By fixing the input resolution, the training process became computationally more 
efficient while retaining sufficient detail for the detection of disease-specific features such as lesions, discolorations, 
and texture variations [20]. 
Normalization was then applied to scale pixel intensity values from the original range of 0–255 to a normalized 
range of [0, 1]. This step stabilized the optimization process by reducing variance across the dataset and ensured that 
gradients propagated more smoothly through the network. In addition to simple min–max scaling, experiments were 
also conducted with mean–variance normalization (zero-centering and unit variance per channel) based on ImageNet 
statistics, since pretrained models such as ResNet, DenseNet, and Vision Transformers typically expect this input 
format. Both strategies were compared, and ImageNet-based normalization was ultimately adopted for transformer-
based models, while min–max scaling was retained for CNN variants, thereby maintaining alignment with their 
respective pretraining paradigms. Another critical preprocessing step involved addressing class imbalance, 
particularly in the multi-disease and healthy categories, which were underrepresented compared to rust and scab. 
This imbalance, if uncorrected, could bias the models toward majority classes and degrade their ability to correctly 
identify rare conditions. To mitigate this, a weighted sampling strategy was implemented during the training process, 
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assigning higher sampling probabilities to underrepresented classes. In addition, class-specific weighting factors were 
incorporated into the loss functions (cross-entropy for 2020, binary cross-entropy for 2021), ensuring that errors in 
minority classes contributed more significantly to gradient updates. 
Finally, a set of quality checks was performed to remove any corrupted or low-quality images prior to training. Images 
with missing pixel values, extremely low contrast, or severe background noise were excluded. This ensured that only 
high-quality images contributed to the training process, thereby improving the reliability of feature extraction. The 
resulting preprocessed dataset was not only standardized in terms of size and intensity distribution but also balanced 
in representation across classes, making it suitable for robust model training [21]. 
 
3.3 Data Augmentation 
To minimize the risk of overfitting and enhance the generalization ability of the models, a comprehensive set of data 
augmentation strategies was applied to the training images. Overfitting is a common challenge in deep learning 
applications when models learn to memorize training samples rather than extract transferable features, particularly 
in datasets where class imbalance and limited data availability exist, as seen in Plant Pathology 2020. Augmentation 
artificially increases dataset diversity by generating varied instances of the same image, thereby improving the 
robustness of the learned features without requiring additional manual data collection [22]. 
The augmentation pipeline included a variety of geometric transformations to account for spatial variations in the 
dataset. Random horizontal and vertical flips were applied with equal probability, simulating real-world leaf 
orientations where the disease symptoms may appear on different sides of a leaf. Additionally, random rotations 
within ±30° were introduced to mimic changes in leaf orientation due to wind or natural growth. Scaling 
transformations, ranging between 0.8 and 1.2, allowed the model to recognize disease features at multiple 
magnifications, thus enhancing scale invariance. Random cropping was also performed to encourage the model to 
focus on localized regions of interest, such as lesions or discoloration, that may otherwise be underrepresented in 
global features. To further account for variations in imaging conditions, photometric augmentations were applied. 
Brightness and contrast adjustments by ±20% simulated environmental differences such as changes in sunlight 
exposure, cloudy weather, or shadowing effects caused by overlapping leaves. Gaussian noise injection was employed 
to introduce pixel-level perturbations, enabling the model to remain robust against background noise and sensor-
level distortions that might occur during real-world image capture. These augmentations collectively ensured that 
the learned representations of disease symptoms were not overly sensitive to lighting or background variations. 
For the multi-label dataset (Plant Pathology 2021), special care was taken to ensure that the augmentation process 
preserved label integrity. Since an image could simultaneously belong to multiple classes (e.g., scab and rust), each 
augmented image inherited the same multi-hot encoded label vector as its original counterpart. This step was critical 
to avoid inconsistencies between augmented inputs and labels, ensuring that the training process remained accurate 
and reliable. By applying augmentations in a consistent and controlled manner, the dataset effectively simulated 
real-world variability while retaining semantic correctness in classification. 
The final augmented dataset exhibited improved diversity and balance, helping the models learn features that 
generalized across unseen conditions. By systematically combining geometric and photometric augmentations, the 
framework was able to create disease representations robust to orientation, scale, lighting, and noise [23]. This 
augmentation process served as an essential step in preparing the Plant Pathology datasets for high-performance 
deep learning, ultimately strengthening the reliability of disease detection models under field conditions. 
 
3.4 Model Design, Training, and Optimization 
The core novelty of this study lies in the incorporation of attention mechanisms within deep learning architectures 
to improve disease classification accuracy and interpretability. Two categories of models were explored. First, classical 
convolutional neural networks (CNNs) such as ResNet50 and DenseNet121 were enhanced with Convolutional 
Block Attention Modules (CBAM), enabling the models to focus selectively on the most discriminative spatial and 
channel-wise features within the leaf images. This allowed the networks to suppress irrelevant background patterns 
while emphasizing lesion regions that are critical for accurate classification. Second, transformer-based architectures, 
including the Vision Transformer (ViT) and Swin Transformer, were implemented to capture long-range 
dependencies and global contextual relationships across the images [24]. To complement these, a hybrid Attention 
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U-Net was employed, where skip connections between encoder and decoder stages were equipped with attention 
gates, providing finer localization of disease symptoms and improved representation of complex patterns. 
For model training, the datasets were divided into 70% training, 15% validation, and 15% testing subsets using 
stratified sampling to preserve class distributions. The Plant Pathology 2020 dataset was trained with a categorical 
cross-entropy loss, while the Plant Pathology 2021 dataset used a binary cross-entropy with logits loss to address its 
multi-label nature. To mitigate class imbalance, weighted loss functions and focal loss were incorporated, ensuring 
minority classes such as multi-disease received adequate attention. The AdamW optimizer with an initial learning 
rate of 3 × 10⁻⁴ and weight decay of 1 × 10⁻⁴ was employed, while a cosine annealing scheduler with warm restarts 
dynamically adjusted the learning rate to stabilize convergence. Models were trained for 60–100 epochs, with a batch 
size of 32 for CNN-based models and 16 for transformer-based models. To prevent overfitting, early stopping was 
triggered based on validation F1-score improvements. Furthermore, mixed-precision training was utilized to 
accelerate computation and optimize GPU memory usage without sacrificing accuracy [25]. 
Through this combination of attention-enhanced CNNs, transformer architectures, and robust training protocols, 
the proposed framework was designed to balance efficiency with accuracy while ensuring generalization across both 
single-label (2020) and multi-label (2021) disease datasets. 
 
3.5 Evaluation and Explainability 
The trained models were evaluated on the test sets using accuracy, precision, recall, macro-averaged F1-score, and 
ROC-AUC to comprehensively assess performance, while confusion matrices were generated to analyze 
misclassification patterns across disease classes. To ensure interpretability, explainability methods were incorporated: 
Grad-CAM and Grad-CAM++ were applied to CNN-based models to highlight symptom regions such as lesions and 
discolorations that influenced predictions, while attention heatmaps from Vision Transformer and Swin 
Transformer models visualized how attention was distributed across leaf patches [26]. These explainability outputs 
not only validated that the models were focusing on biologically relevant features but also enhanced transparency, 
making the framework reliable and applicable for agricultural decision support systems. 
 
4. RESULTS AND DISCUSSION 
The performance of the proposed attention-based deep learning framework was evaluated on both the Plant 
Pathology 2020 and 2021 datasets, and the results demonstrated the effectiveness of integrating attention 
mechanisms into traditional CNN and transformer architectures. On the smaller 2020 dataset, baseline CNN 
models such as ResNet50 and DenseNet121 achieved overall accuracies in the range of 91–93%, with macro-F1 
scores slightly lower due to class imbalance, particularly in the multi-disease category (Table I). When enhanced with 
Convolutional Block Attention Modules (CBAM), these models achieved a notable improvement, reaching 
accuracies above 95% and F1-scores exceeding 0.94. This improvement can be attributed to the ability of CBAM to 
highlight the most discriminative spatial and channel-wise features, thereby reducing the impact of background noise 
and enhancing disease localization. Representative performance comparisons across CNN and attention-based CNN 
models are summarized in Table I. 
 
Table I – Performance of CNN and Attention-CNN Models on Plant Pathology 2020 Dataset 

Model Accuracy (%) Precision (Macro) Recall (Macro) F1-Score (Macro) ROC-AUC 
ResNet50 91.8 0.91 0.90 0.91 0.95 

DenseNet121 92.7 0.92 0.91 0.92 0.96 
ResNet50 + CBAM 95.3 0.95 0.94 0.95 0.97 

DenseNet121 + CBAM 95.9 0.96 0.95 0.96 0.97 
 
The larger Plant Pathology 2021 dataset, designed for multi-label classification, provided an opportunity to test 
scalability and robustness. Traditional CNNs again performed reasonably well, but the incorporation of attention 
and transformer models resulted in superior outcomes. The Vision Transformer (ViT) and Swin Transformer 
consistently outperformed CNN baselines, achieving accuracies in the range of 96–98% and macro-F1 scores above 
0.96 (Table II). The ability of transformer architectures to capture global contextual dependencies allowed them to 
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better handle cases where multiple diseases co-occurred in a single leaf. These results highlight the suitability of 
transformer models for large-scale, multi-label plant disease classification tasks, where long-range dependencies and 
contextual reasoning are critical. Comparative results across transformer-based models are presented in Table II. 
 
Table II – Performance of Transformer-Based Models on Plant Pathology 2021 Dataset 

Model 
Accuracy 

(%) 
Precision 
(Macro) 

Recall 
(Macro) 

F1-Score 
(Macro) 

ROC-
AUC 

ResNet50 (Base) 93.4 0.92 0.91 0.92 0.95 
DenseNet121 94.1 0.93 0.92 0.93 0.95 

Vision Transformer 
(ViT) 

96.8 0.96 0.96 0.96 0.98 

Swin Transformer 97.4 0.97 0.96 0.97 0.98 
 
Confusion matrix analysis revealed interesting patterns in misclassification. For the 2020 dataset, the most frequent 
errors occurred between rust and scab, which share visual similarities in texture and color (Figure 2). However, 
attention-enhanced models reduced this confusion significantly, suggesting that the inclusion of attention 
mechanisms enabled finer discrimination of lesion characteristics. In the 2021 dataset, where images often contained 
overlapping symptoms, the multi-disease label was occasionally under-predicted, reflecting the inherent difficulty of 
capturing co-occurring conditions. Nevertheless, focal loss and attention mechanisms helped improve sensitivity 
toward minority classes, achieving better balance in predictions compared to baseline models. The comparative 
confusion matrices for both datasets are illustrated in Figure 2 and Figure 3, respectively. 

 
Figure 2. Confusion matrix of CNN-based models on the Plant Pathology 2020 dataset 

 
Figure 3. Confusion matrix of transformer-based models on the Plant Pathology 2021 dataset 
Explainability analysis further validated the effectiveness of the proposed framework. Grad-CAM and Grad-CAM++ 
visualizations for CNN-based models consistently highlighted lesion regions, necrotic spots, and discolored areas, 
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aligning closely with expert agronomic observations. For transformer-based models, attention heatmaps 
demonstrated the ability to focus not only on localized disease patches but also on surrounding regions that provided 
contextual cues about disease severity. These visualizations confirmed that the models were learning biologically 
relevant patterns rather than relying on spurious correlations, thereby increasing trust in the system’s predictions. 
Figures 5 and 6 provide representative examples of explainability outputs. 

 
Figure 4. Performance Metrics on the Plant Pathology 2020 dataset. 
 

 
Figure 5. Performance Metrics on the Plant Pathology 2021 dataset. 
 
Overall, the experimental findings confirm that the integration of attention mechanisms with both CNN and 
transformer architectures leads to significant improvements in accuracy, class balance, and interpretability. While 
CNNs remain competitive for smaller datasets, transformers demonstrated superior scalability and generalization in 
multi-label settings. The inclusion of explainability tools ensured that the framework is not only accurate but also 
transparent, which is essential for practical adoption in precision agriculture. These results suggest that attention-
based deep learning models represent a promising direction for robust and interpretable plant disease detection 
under diverse field conditions. 
 
5. CONCLUSION 
This study presented an attention-based deep learning framework for early detection of apple leaf diseases using the 
Plant Pathology 2020 and 2021 datasets. On the smaller 2020 dataset, classical CNNs such as ResNet50 and 
DenseNet121 achieved accuracies around 92%, while the introduction of CBAM improved performance to 95.3% 
and 95.9%, respectively, with macro-F1 scores reaching 0.96 and ROC-AUC values of 0.97. On the larger 2021 
dataset, transformer-based architectures demonstrated superior generalization, with the Vision Transformer 
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achieving 96.8% accuracy and the Swin Transformer achieving 97.4% accuracy, alongside macro-F1 scores of 0.96–
0.97 and ROC-AUC values of 0.98. Confusion matrix analysis showed that attention-based models significantly 
reduced misclassifications between visually similar diseases such as rust and scab, while also improving detection of 
the underrepresented multi-disease class. Furthermore, explainability methods confirmed that both CNN and 
transformer models focused on lesion regions, discolorations, and other biologically relevant features, validating 
their reliability. These results demonstrate that attention-driven deep learning models not only enhance predictive 
performance but also provide interpretable outcomes, paving the way for their integration into real-world precision 
agriculture systems to support farmers and agronomists in disease management. 
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