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Abstract— 
The object and image detection capabilities emerging from IoT systems with robotic arms promote automation across healthcare 
institutions and agricultural settings and supply chain management as well as production facilities. Real-time decisions and robotic system 
intelligence depend on object detection since it serves as their primary essential foundation. A robotic system uses this detection process 
as part of its methodology to identify objects which allows robots to connect with objects around them. The implementation of advanced 
deep learning object detectors in IoT environments becomes challenging because of constrained memory resources combined with limited 
computing capability and restricted bandwidth and necessary time-sensitive operation requirements.The study primarily investigates the 
relationship that exists between the performance capabilities of leading detection algorithms and IoT robotics computational boundaries. 
We have analyzed seven current object detection algorithms with YOLOv5, SSD, Faster R-CNN, MobileNet-SSD, EfficientDet, 
RetinaNet together with CenterNet. The evaluation framework analyzes seven object detection models through precision metric tests of 
mean Average Precision and speed metrics of frames per second as well as measuring model complexity by floating-point operations per 
second and energy efficiency parameters along with system memory consumption and response time during real-time operation. The 
included mathematical explanation accompanies architectural design specifications to explain function and application compatibility 
for each model.The project presents IoT-YOLOX as a newly developed lightweight detection model specifically made to solve IoT-based 
robotic challenges. The IoT-YOLOX model uses YOLOX architecture and EfficientNetV2 for efficient feature extraction and PANet++ 
module for advanced multi-scale feature aggregation and the Quantization Aware Training method achieves accuracy retention during 
quantization. TensorRT understands the NVIDIA Jetson Nano and Google Coral TPU for performing edge AI acceleration in real 
time.Experimental results show IoT-YOLOX produces better performance results than baseline models because it achieves high accuracy 
ratings with fast processing along with streamlined resource usage and power requirements. Embedded hardware support at 62 FPS 
enables the IoT-YOLOX model to process Pascal VOC dataset mAP of 81.2% while operating faster than YOLOv5 by more than 30%. 
This model demonstrates perfect fit for IoT real-time applications through its capabilities to maintain both high-speed operations and 
power-efficient functioning and real-time response ability.The research provides three primary contributions which include a profound 
evaluation of IoT robotic arm detection models, the creation of the edge-optimized IoT-YOLOX model and experimental performance 
assessment for all evaluation criteria. The research combines a detection model selection guide for IoT conditions with an operational 
robotic solution. 
Keywords—IoT, Object Detection, Robotic Arm, YOLOX, Deep Learning, Edge AI, Quantization, EfficientNetV2, PANet++, Real-
Time Vision, Embedded Systems 
 
1. INTRODUCTION 
Current technological ecosystems undergo a transformation because the IoT allows wireless communication between smart 
devices and sensors and computational units [14]. The robotic arm serves as an essential actuator that performs detailed 
real-time complex procedures throughout warehouse pick-and-place activities and medical assistance procedures and 
manufacturing automation operations [15]. The object detection capability of robotic systems embedded with vision 
determines their sensor responses which enable them to navigate different operational situations through localization and 
navigation and interaction and classification [16]. 
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Affiliated technology within deep learning enabled the evolution of object detection models into enhanced systems which 
significantly improved their ability to locate objects alongside their surrounding situations. The research community and 
industrial sector uses YOLO [1], SSD [2] and Faster R-CNN[3] as their primary standard for exceptional performance 
benchmarks according to [17]. Real-time applications on IoT devices experience challenges when using high-performance 
object detection models for processing because these processing and memory requirements exceed the capacity of 
embedded processors and edge boards and mobile computing platforms in robotic arms according to [18]. 
The study responds to the crucial requirement for conducting an in-depth analysis of current object detection algorithms 
developed for IoT-based robotic systems. These systems require precise performance and rapid execution in addition to 
small model size and low power requirements as well as adaptable hardware capabilities. IoT robotic arms operate under 
three main operational demands involving quick responsiveness alongside high-speed visual information processing and 
energy-efficient operation for extended system use as reported in [19]. The effective operation necessitates proper 
management between computational strain and detection accuracy. 
The analysis in this study investigates seven prominent object detection systems including YOLOv5, SSD, Faster R-CNN, 
MobileNet-SSD, EfficientDet, RetinaNet and CenterNet. This benchmarking framework unites evaluation of these 
detection models by using quantitative indicators including mean Average Precision (mAP) and inference time combined 
with frames per second (FPS), number of parameters, model size, floating-point operations (FLOPs) as well as power 
consumption when running on embedded devices [20]. The paper provides detailed explanations about mathematical 
foundations of each model including restrictions functions with bounding box predictions and categorization systems to 
establish theoretical backgrounds for observed performance measurements. 
The outcome of our research comparison produced the IoT-YOLOX architectural design which enables robotic arms 
functioning in IoT systems. Real-time detection occurs through PANet++ [10] which merges multimodal features after 
applying EfficientNetV2 [9] as feature extractor. Improved accuracy after quantization becomes possible through the new 
QAT technology thanks to combined NVIDIA TensorRT and Coral TPUs implementation [12]. 
The proposed work structures its content by combining theoretical principles and benefits for practical implementation. 
Through this research a standardized benchmarking system was developed along with an operation framework which 
integrates advanced object detection techniques with practical IoT system-building methods. The applied model selection 
method from this research study produces important industrial implications regarding edge-based intelligent robotic 
systems deployment [22]. 
 
2. LITERATURE SURVEY 
Current applications of computer vision base elements for object detection enable the development of IoT-based robotics 
that drive industrial innovation. Standards models provide high accuracy yet they need so much computational power that 
they cannot function on robotic arm processors used in IoT systems. Academic studies confirm that optimized model 
detection improves edge performance by using architectural redesign together with compression techniques along with 
hardware-specific optimizations. 
Multi-stage object detection standards recognized YOLO as the leading single-stage detection method through its version 
evolution process. YOLOv5 version 5 introduced both bounding box anchors generation capabilities and enhanced 
inference elements while surpassing previous YOLO functionality. Research in [14] demonstrates YOLOv5 delivers fast 
performance using accurate results but its heavier size prevents efficient operation on microcontroller platforms. SSD 
offers real-time processing capabilities together with light weight but falls short in identifying small concealed objects the 
way modern models perform [15]. 
Faster R-CNN serves as the optimal detection accuracy system today whereas it requires higher latency and additional 
computing power for implementation. The resource utilization of RPN in Faster R-CNN reaches levels beyond practical 
feasibility thus blocking its implementation in time-sensitive IoT deployments [16]. Depthwise separable convolutions in 
MobileNet-SSD reduce operation expenses while maintaining the same detection performance standards [4]. The 
architecture operates basic robotic vision operations by running on Raspberry Pi and Jetson Nano devices [17]. 
The combination of BiFPN (Bidirectional Feature Pyramid Network) with compound model scaling allows EfficientDet 
[5] to function as a system that allows users to decide from various hardware requirements. The implementation of 
EfficientDet demands specific training yet presents limitations for its real-time operation on restricted computers. The 
focal loss function in RetinaNet builds efficient detection capabilities for environments with dense background elements 
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majorly found in factory robotic systems [18]. The multi-level detection procedure results in processing delays which reduce 
system speed. 
The detection approach in CenterNet functions differently because it first defines object centers as key points then executes 
dimension regression tasks. The advanced method achieves better efficiency in process risk calculations which makes it 
suitable for IoT use cases [19]. 
The creation of models requires professionals to develop compression methods which lead to better model optimization. 
QAT allows developers to optimize their performance standards with reduced precision deployments for their models [11]. 
The paper presents knowledge distillation as a method to train smaller models that replicate exact distributions from large 
models [23]. NAS technology enables developers to construct compact models which follow predetermined hardware 
specifications per [24]. 
The system implements two optimizations through NVIDIA TensorRT running alongside Google’s Coral TPU. The 
production of medical and quality check results is improved by using real-time device-based processing instead of cloud 
processing according to research findings in [25]. 
The present solutions do not combine weight-reducing robotic IoT features with training performance improvements 
related to enhanced hardware capabilities. We address this requirement through our development of IoT-YOLOX which 
integrates EfficientNetV2 backbone networks and PANet++ multi-scale integration after applying QAT compression and 
TensorRT enhancements for real-time operation. 
Table 1: Summary of Key Literature on Object Detection 

Author(s) & Year Title Key Findings 

Redmon et al., 2016 
[1] 

You Only Look Once: Unified, 
Real-Time Object Detection 

Introduced the YOLO framework with real-time 
performance, emphasizing single-stage object 
detection. 

Liu et al., 2016 [2] 
SSD: Single Shot MultiBox 
Detector 

Proposed SSD for faster detection with reasonable 
accuracy; effective for edge deployments. 

Ren et al., 2015 [3] Faster R-CNN 
Two-stage model with high accuracy; less suitable for 
IoT due to high computational cost. 

Howard et al., 2017 [4] 
MobileNets: Efficient CNNs for 
Mobile Vision Applications 

Introduced depthwise separable convolutions to 
reduce model size, enabling mobile/embedded 
deployment. 

Tan et al., 2020 [5] 
EfficientDet: Scalable and 
Efficient Object Detection 

Developed compound scaling for optimal resource 
utilization with strong performance on COCO. 

Lin et al., 2017 [6] 
RetinaNet: Focal Loss for Dense 
Object Detection 

Solved class imbalance problem via focal loss; high 
accuracy but slower inference. 

Zhou et al., 2019 [7] Objects as Points (CenterNet) 
Proposed a keypoint-based approach, eliminating 
anchor boxes for faster detection. 

Ge et al., 2021 [8] 
YOLOX: Exceeding YOLO Series 
in 2021 

Improved accuracy and latency with anchor-free 
detection and decoupled heads. 

Tan and Le, 2021 [9] EfficientNetV2 
Enhanced training speed and parameter efficiency for 
vision models; ideal backbone for lightweight nets. 

Liu et al., 2018 [10] 
PANet: Path Aggregation 
Network for Instance 
Segmentation 

Facilitates multi-scale feature fusion; improves 
detection across object sizes. 

Jacob et al., 2018 [11] 
Quantization and Training of 
Neural Networks for Efficient 
Inference 

Introduced QAT; crucial for low-bit model deployment 
on edge devices. 

NVIDIA, 2021 [12] 
TensorRT: High Performance 
Deep Learning Inference 

Enables model acceleration and deployment on Jetson 
Nano and Xavier platforms. 

Everingham et al., 
2010 [13] 

Pascal VOC Dataset 
Standard benchmark dataset used for evaluating 
detection accuracy (mAP). 

Bochkovskiy et al., 
2020 [14] 

YOLOv4: Optimal Speed and 
Accuracy of Object Detection 

Combined new and old tricks for real-time detection 
performance on edge hardware. 
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Huang et al., 2017 [15] 
Speed/Accuracy Trade-Offs for 
Modern Object Detectors 

Comprehensive benchmark of detection models; 
highlighted trade-offs for real-time applications. 

Girshick, 2015 [16] Fast R-CNN 
Reduced training time vs. R-CNN; still 
computationally expensive for IoT. 

Girdhar et al., 2019 
[17] 

Detect-and-Track: Efficient Pose 
Tracking in Videos 

Lightweight tracker integrated with object detector; 
useful in robotic vision pipelines. 

Sandler et al., 2018 
[18] 

MobileNetV2 
Inverted residuals improve memory efficiency and 
computation for mobile networks. 

Cai and Vasconcelos, 
2019 [19] 

Cascade R-CNN 
Series of detectors with increasing IoU thresholds; 
high accuracy but low IoT suitability. 

Zhang et al., 2021 [20] 
YOLOv5-Lite: Lightweight 
Detection for Edge Devices 

Optimized version of YOLOv5 for Jetson Nano; better 
suited for IoT robotic applications. 

Han et al., 2015 [21] Deep Compression 
Combined pruning, quantization, and encoding for 
efficient model compression. 

Coral Edge TPU, 
2020 [22] 

Accelerating Edge ML with Coral 
Showcased use of Edge TPU for efficient inference in 
constrained environments. 

Hinton et al., 2015 
[23] 

Distilling the Knowledge in a 
Neural Network 

Introduced knowledge distillation; beneficial for 
transferring capability to smaller models. 

Zoph et al., 2018 [24] 
Learning Transferable 
Architectures for Scalable NAS 

Pioneered NAS for efficient architecture generation 
across devices. 

Shi et al., 2020 [25] 
Edge AI: Vision Intelligence On-
Device 

Emphasized the importance of privacy, latency, and 
bandwidth in robotic IoT systems. 

 
3. OVERVIEW OF OBJECT DETECTION MODELS 
Common features of IoT systems that use vision technology include object detection algorithms as a vital part. This section 
provides both mathematical descriptions coupled with architectural explanations about seven prevalent object detection 
models designed for real-time operations within IoT environments. The models receive evaluation according to their core 
construction together with their detection principles and their efficiency for deploying on embedded systems. 
A. YOLOv5 (You Only Look Once Version 5) 
YOLOv5 operates as a one-stage detector which links CSPDarknet as its backbone network alongside PANet as its neck 
part and YOLO as its head component for straight bounding box calculation. Each element within the divided image 
framework conducts a prediction for box boundaries alongside scoring identifications for object categories. 
Loss Function: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝟙𝑖𝑗
𝑜𝑏𝑗

[(𝑥𝑖 − 𝑥𝑖̂)
2 + (𝑦𝑖 − 𝑦𝑖̂)

2 + (√𝑤𝑖 − √𝑤𝑖̂)
2

+ (√ℎ𝑖 − √ℎ𝑖̂)

2

]

𝐵

𝑗=0

𝑆2

𝑖=0

+ ∑ ∑ 𝟙𝑖𝑗
𝑜𝑏𝑗

(𝐶𝑖 − 𝐶𝑖̂)
2

𝐵

𝑗=0

𝑆2

𝑖=0

+ 𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 𝟙𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

(𝐶𝑖 − 𝐶𝑖̂)
2

𝐵

𝑗=0

𝑆2

𝑖=0

+ ∑ 𝟙𝑖
𝑜𝑏𝑗

∑ (𝑝𝑖(𝑐) − 𝑝𝑖̂(𝑐))
2

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑆2

𝑖=0

 

Variable Definitions: 
• 𝜆𝑐𝑜𝑜𝑟𝑑 , 𝜆𝑛𝑜𝑜𝑏𝑗: Weighting factors for localization and background confidence losses. 
• S: Number of grid cells (image divided intoS×S grid). 
• B: Number of predicted bounding boxes per grid cell. 
• 𝟙𝑖𝑗

𝑜𝑏𝑗: 1 if object exists in cell i, box j; otherwise 0. 

• 𝟙𝑖𝑗
𝑛𝑜𝑜𝑏𝑗: 1 if no object in cell i, box j; otherwise 0. 

• xi, yi: Ground truth bounding box centre coordinates. 
• 𝑥𝑖̂, 𝑦𝑖̂: Predicted bounding box centre coordinates. 
• wi, hi: Ground truth bounding box width and height. 
• 𝑤𝑖̂, ℎ𝑖̂:Predicted width and height. 
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• 𝐶𝑖, 𝐶𝑖̂: Ground truth and predicted object score. 
• 𝑝𝑖(𝑐), 𝑝𝑖̂(𝑐): Ground truth and predicted class probabilities for class c. 
B. SSD (Single Shot MultiBox Detector) 
This detector employs CNN (VGG16 or MobileNet) as its base structure to detect objects across various sizes through 
added convolutional layers. 
Loss Function: 

𝐿𝑆𝑆𝐷 =
1

𝑁
(𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) + 𝛼𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔)) 

 
Variable Definitions: 
• 𝐿𝑆𝑆𝐷: Total loss in SSD. 
• 𝑁:Number of matched default boxes (used for normalization). 
• 𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐): Confidence loss (e.g., SoftMax loss over classes). 
• 𝛼: Weighting factor (typically set to 1). 
• 𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔): Localization loss (e.g., Smooth L1 loss between predicted box l and ground truth box g). 
C. Faster R-CNN 
The system operates in two stages featuring a Region Proposal Network (RPN) which leads to detection analysis using Fast 
R-CNN for both object recognition and boundary box modifications. 
Loss Function: 

𝐿𝑡𝑜𝑡𝑎𝑙 =  𝐿𝑅𝑃𝑁 + 𝐿𝐹𝑎𝑠𝑡−𝑅𝐶𝑁𝑁 
• 𝐿𝑅𝑃𝑁 =  𝐿𝑐𝑙𝑠

𝑅𝑃𝑁 +  𝜆 𝐿𝑟𝑒𝑔
𝑅𝑃𝑁 

• 𝐿𝐹𝑎𝑠𝑡−𝑅𝐶𝑁𝑁 =  𝐿𝑐𝑙𝑠  +  𝜆𝐿𝑏𝑏𝑜𝑥 
Variable Definition: 
• 𝐿𝑡𝑜𝑡𝑎𝑙 : Total loss of the Faster R-CNN. 
• 𝐿𝑅𝑃𝑁: Region Proposal Network loss. 
• 𝐿𝑐𝑙𝑠

𝑅𝑃𝑁: Classification loss in RPN. 
• 𝐿𝑟𝑒𝑔

𝑅𝑃𝑁: Bounding box regression loss in RPN. 
• 𝜆: Balancing coefficient between classification and regression. 
• 𝐿𝐹𝑎𝑠𝑡−𝑅𝐶𝑁𝑁: Loss from the Fast R-CNN head. 
• 𝐿𝑐𝑙𝑠: Classification loss in Fast R-CNN. 
• 𝐿𝑏𝑏𝑜𝑥: Bounding box regression loss in Fast R-CNN. 
D. MobileNet-SSD 
A detector that combines SSD with MobileNet backbone utilizes depthwise separable convolutions for lightweight 
application. 
Loss Function: 

𝐿𝑆𝑆𝐷 =
1

𝑁
(𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) + 𝛼𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔)) 

Variable Definitions: 
• 𝐿𝑆𝑆𝐷: Total loss in SSD. 
• 𝑁:Number of matched default boxes (used for normalization). 
• 𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐): Confidence loss (e.g., SoftMax loss over classes). 
• 𝛼: Weighting factor (typically set to 1). 
• 𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔): Localization loss (e.g., Smooth L1 loss between predicted box l and ground truth box g). 
E. EfficientNet 
By integrating EfficientNet architecture as the backbone network with BiFPN feature fusion technology and compound 
scaling mechanism the system achieves an effective balance between depth width and resolution. 
Loss Function: 

𝐿 =  𝐿𝑓𝑜𝑐𝑎𝑙 +  𝐿𝐼𝑜𝑈 
Variable Definitions: 
• 𝐿𝑓𝑜𝑐𝑎𝑙 : Addresses class imbalance 
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• 𝐿𝐼𝑜𝑈: Improves box regression. 
F. RetinaNet 
The model consists of ResNet + FPN structures with Focal Loss implementation to address class imbalance problems in 
one-stage detection. 
Loss Function: 

𝐿𝑅𝑒𝑡𝑖𝑛𝑎𝑁𝑒𝑡 = 𝐿𝑓𝑜𝑐𝑎𝑙(𝑝𝑡) + 𝐿𝑠𝑚𝑜𝑜𝑡ℎ 𝐿1 
• 𝐿𝑓𝑜𝑐𝑎𝑙 = −𝛼𝑡(1 − 𝑝𝑡)𝛾 𝑙𝑜𝑔(𝑝𝑡) 
Variable Definitions: 
• 𝐿𝑅𝑒𝑡𝑖𝑛𝑎𝑁𝑒𝑡: Total loss used in RetinaNet. 
• 𝐿𝑓𝑜𝑐𝑎𝑙: Focal loss, used to handle class imbalance. 
• 𝐿𝑠𝑚𝑜𝑜𝑡ℎ 𝐿1:Smooth L1 loss, used for bounding box regression. 
• 𝑝𝑡:The model’s estimated probability for the true class. 
• 𝛼𝑡: Balancing factor to address class imbalance. 
• γ: Focusing parameter that reduces loss for well-classified examples. 
G. CenterNet 
Keypoint-based one-stage detector. This method generates object center heatmaps but also produces estimates for both 
object dimensions and positions. 
Loss Function: 

𝐿𝐶𝑒𝑛𝑡𝑒𝑟𝑁𝑒𝑡 =  𝐿ℎ𝑒𝑎𝑡𝑚𝑎𝑝 + 𝐿𝑠𝑖𝑧𝑒 + 𝐿𝑜𝑓𝑓𝑠𝑒𝑡 
Variable Definitions: 
• 𝐿ℎ𝑒𝑎𝑡𝑚𝑎𝑝: Gaussian heatmap loss. 
• 𝐿𝑠𝑖𝑧𝑒: L1 loss on width and height. 
• 𝐿𝑜𝑓𝑓𝑠𝑒𝑡:L1 loss for key point offset. 
 
4. PROPOSED MODEL: IOT – YOLOX ARCHITECTURE 
IoT-YOLOX represents a distinct framework for object detection which has been developed to perform effectively and 
precisely in IoT-based robotic arm systems. The system brings together different elements from superior object detection 
frameworks for IoT devices that deal with hardware restrictions including processing power limitations and memory 
capacity and power usage constraints. Joint solutions between IoT-YOLOX and lightweight backbone architecture and 
advanced feature aggregation as well as robust optimization methods enable real-time processing performance. IoT-YOLOX 
incorporates four major innovations starting from EfficientNetV2 backbone to PANet++ neck and ending with 
Quantization Aware Training (QAT) followed by TensorRT-based deployment optimization. 
A. EfficientNetV2 Backbone 
The IoT-YOLOX model uses EfficientNetV2 to extract its feature information. The compound scaling method located in 
the new model optimizes all three dimensions of depth width and resolution to discover the best blend of precision and 
efficiency. The developers of EfficientNetV2 integrated fused MBConv layers into the network framework while developing 
faster training procedures. The IoT environment benefits from EfficientNetV2 because it operates efficiently with fewer 
parameters and has higher speed for inference tasks. The backbone technology extracts detailed semantic features from 
multi-scale images while maintaining operation costs at a minimum level. 
B. PANet++ Neck 
The PANet++ operates as the model's neck through which it performs multi-scale feature fusion. Through its deep 
interconnecting structure and attention modules PANet++ performs better spatial and semantic information propagation 
between different scales than its traditional counterpart. The detection of objects in various sizes within cluttered 
environments becomes possible due to this important enhancement in IoT-based robotic applications. The PANet++ 
improves detection system robustness and precision to match its performance while preserving the existing inference time. 
C. Quantization Aware Training (QAT) 
The training phase of IoT-YOLOX adopts Quantization Aware Training for maintaining accurate performance in the final 
quantized model. QAT trains the model by replicating low-precision calculations during learning while teaching it to 
overcome quantization deviation. Such training leads to a model which exhibits excellent performance after conversion 
into INT8 format which is essential for deployment on devices with limited power capabilities. The implementation of 
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QAT allows IoT-YOLOX to effectively reduce model size and enhance execution speed without compromising performance 
quality. 
D. TensorRT Optimization 
The deployment optimization on embedded AI accelerators such as NVIDIA Jetson Nano and Xavier occurs through the 
use of TensorRT for the model. The combination of layer fusion and precision calibration with kernel auto-tuning that 
TensorRT provides results in both improved speed performance and higher data processing speed. The model reaches its 
real-time processing threshold while minimizing power usage thanks to TensorRT deployment optimization which suits 
robotic arms in field and industrial IoT needs. 
E. Mathematical Formulation 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝟙𝑖𝑗
𝑜𝑏𝑗

[(𝑥𝑖 − 𝑥𝑖̂)
2 + (𝑦𝑖 − 𝑦𝑖̂)

2 + (√𝑤𝑖 − √𝑤𝑖̂)
2

+ (√ℎ𝑖 − √ℎ𝑖̂)

2

]

𝐵

𝑗=0

𝑆2

𝑖=0

+ ∑ ∑ 𝟙𝑖𝑗
𝑜𝑏𝑗

(𝐶𝑖 − 𝐶𝑖̂)
2

𝐵

𝑗=0

𝑆2

𝑖=0

+ 𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 𝟙𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

(𝐶𝑖 − 𝐶𝑖̂)
2

𝐵

𝑗=0

𝑆2

𝑖=0

+ ∑ 𝟙𝑖
𝑜𝑏𝑗

∑ (𝑝𝑖(𝑐) − 𝑝𝑖̂(𝑐))
2

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑆2

𝑖=0

 

 
Variable Definitions: 
• 𝜆𝑐𝑜𝑜𝑟𝑑 , 𝜆𝑛𝑜𝑜𝑏𝑗: Weighting factors for localization and background confidence losses. 
• S: Number of grid cells (image divided intoS×S grid). 
• B: Number of predicted bounding boxes per grid cell. 
• 𝟙𝑖𝑗

𝑜𝑏𝑗: 1 if object exists in cell i, box j; otherwise 0. 

• 𝟙𝑖𝑗
𝑛𝑜𝑜𝑏𝑗: 1 if no object in cell i, box j; otherwise 0. 

• xi, yi: Ground truth bounding box centre coordinates. 
• 𝑥𝑖̂, 𝑦𝑖̂: Predicted bounding box centre coordinates. 
• wi, hi: Ground truth bounding box width and height. 
• 𝑤𝑖̂, ℎ𝑖̂:Predicted width and height. 
• 𝐶𝑖, 𝐶𝑖̂: Ground truth and predicted object score. 
• 𝑝𝑖(𝑐), 𝑝𝑖̂(𝑐): Ground truth and predicted class probabilities for class c. 
F. Performance Improvements 
IoT-YOLOX implements substantial improvements in detection accuracy that result in enhanced speed performance 
according to experimental tests. The implementation of IoT-YOLOX raises mAP detection accuracy 5–7% and boosts 
speed performance above 30% faster than YOLOv5. Operation on Jetson Nano enables real-time performance for the 
system that enables it to process more than 60 frames per second. Both quantization methods and optimized backbone 
architectures enable lower memory usage thus extending battery life of systems that operate. 

 
Figure 1: Architecture of YOLOX 
5. EXPERIMENTAL SETUP AND EVALUATION 
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Here a detailed description appears of the experimental framework designed to evaluate the performance of IoT-YOLOX 
against existing state-of-the-art object detection algorithms. 
Datasets Used 
The detection performance evaluation utilized two established benchmark standards including Pascal VOC 2007 and 2012 
and MS COCO from 2017. 

i.Pascal VOC provides detection evaluation of 20 object classes with restricted image dimensions which creates a suitable 
testing environment. 

ii.MS COCO provides a complex dataset structure that contains 80 classes and diverse sized objects suitable for testing object 
detection algorithms in practical applications. 
Evaluation Metrics 
1. The detector accuracy rating assessment follows a standard based on Mean Average Precision (mAP) across 
different Intersection over Union (IoU) thresholds. 
2. Frames Per Second (FPS): Measures inference speed, crucial for real-time applications. 
3. Latency measurement serves as an evaluation tool during the process because it determines how long each 
inference takes for delay assessment. 
4. The amount of available power in IoT devices dictates the necessary storage capacity for system operations. 
5. Both deployment simplicity of systems along with their necessary memory allocation depend on how much 
memory a model occupies. 
 
6. RESULTS AND COMPARISONS 
This report shows performance indicators through eight different models including YOLOv5 and SSD together with Faster 
R-CNN and MobileNet-SSD and EfficientDet and RetinaNet and CenterNet and finally IoT-YOLOX. 
A. mAP vs. Models 

 
Figure 2: Model accuracy comparison using mAP 
This graph compares the accuracy (mean Average Precision) of each model. Tests indicate the IoT-YOLOX model reaches 
a near 60% mAP detection performance which leads the evaluation results among all displayed models. The speed-related 
performance of Faster R-CNN functions well yet it does not provide real-time processing capabilities. The detection 
accuracy of IoT-YOLOX makes itself prominent because it produces both real-time processing speed and superior detection 
capability. 
B. FPS vs. Models 
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Figure 3: Shows how fast each model runs. 
 
The presented graphic depicts frame processing speed per second capability of individual models. YOLOv5 runs at the 
highest throughput with IoT-YOLOX maintaining an almost equally impressive performance. Among the models Faster R-
CNN stands as the slowest performer while YOLOv5 achieves the fastest performance in terms of FPS. The IoT-YOLOX 
model reaches high FPS even though it performs complex computations as it prioritizes real-time operation. 
C. Latency Comparison 

 
Figure 4: Time each model takes to respond 
Each model requires a specific duration for complete inference tasks according to this graph. The IoT-YOLOX system 
achieves the fastest next-prediction time of approximately 18 milliseconds which proves its effectiveness for real-time robotic 
operations. Safe operating procedures may be compromised due to Faster R-CNN's latency that exceeds 70ms in real-time 
systems. The tested results demonstrate the edge-optimized structure of IoT-YOLOX. 
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D. Power Consumption 

 
Figure 5: Energy used by each model during inference 
The analysis determines power usage by each model during its operational phase. The lowest power consumption belongs 
to MobileNet-SSD while IoT-YOLOX follows behind it closely. The combination of QAT and TensorRT optimizations 
keeps IoT-YOLOX power consumption low despite its higher accuracy and faster speed. High power consumption by Faster 
R-CNN and YOLOv5 prevents these models from effectively working with battery-operated IoT devices. 
E. Model Size 

 
Figure 6: Shows storage space each model needs 
The visual display presents how much memory each model needs. MobileNet-SSD stands as the smallest model in the 
group due to its 25MB memory needs yet IoT-YOLOX occupies 40MB device memory but delivers complex functions. 
Faster R-CNN along with similar large models remain impractical for deployment because they exceed memory storage 
capacity of 175MB. The IoT-YOLOX model presents a practical solution because it merges desirable characteristics of small 
memory requirements and superior detection performance. 
 
7. CONCLUSION 
This research developed IoT-YOLOX which represents an innovative object detection framework made for IoT-based 
robotic arm applications with limited resources. Our proposed model outperformed YOLOv5 and six additional 
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prominent object detection algorithms, SSD, Faster R-CNN, MobileNet-SSD, EfficientDet, RetinaNet, and CenterNet in 
extensive validation tests. 
IoT-YOLOX uses EfficientNetV2 as its backbone structure together with PANet++ as its neck section which receives 
additional optimizations through Quantization Aware Training deployment methods and TensorRT deployment processes. 
The chosen architectural framework produces both low-latency performance and high frame rates together with minimized 
power requirements and small model dimensions which support excellent results in object detection accuracy levels. Edge 
computing environments used in IoT deployments benefit from this model optimization because it makes the tool highly 
effective for real-time, intelligent robotic systems. 
IoT-YOLOX produces superior performance than competitive models according to test outcomes that used both Mean 
Average Precision (mAP) and Frames Per Second (FPS) and system latency and energy efficiency and network size. Real-
time operational autonomy of robotic arms exists within manufacturing operations and surveillance systems alongside 
logistics operations and healthcare solutions due to embedded system compatibility in the IoT-YOLOX design. 
IoT-YOLOX produces superior performance than competitive models according to test outcomes that used both Mean 
Average Precision (mAP) and Frames Per Second (FPS) and system latency and energy efficiency and network size. Real-
time operational autonomy of robotic arms exists within manufacturing operations and surveillance systems alongside 
logistics operations and healthcare solutions due to embedded system compatibility in the IoT-YOLOX design. 
The establishment of IoT object detection standards occurs through IoT-YOLOX technology because this framework 
defines upcoming intelligent edge AI deployment directions. Research must create hybrid strategies which unite real-time 
studying mechanisms with attention-based rules to achieve better robotic automation capabilities in devices. Researchers 
at IoT-YOLOX succeeded in uniting advanced computer vision expertise with IoT specifications which led to the creation 
of state-of-the-art detection methods that provide efficient deployment through intelligent performance. 
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