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Abstract: 

In the study on two-dimensional stratified flow in a channel, Dube (2002) and Yih (1960) proposed 

that the two-dimensional stratified flow over a barrier in a channel can be investigated by taking a 

suitable combination of sources, sink and doublets in place of barrier. Trustrum (1964) and then Dube 

(2023 & 2025) considered, however independently, the problem of two-dimensional channel flow over 

a barrier by applying an oseen-type approximation to the general flow and discussed the Long’s 

hypothesis. Our work is to examine and find out relation between the pressure at infinity, Fourde 

number and the strength of dipole for a non-occurrence of blocking by assuming the dipole to be 

placed at the bottom of the channel with its axis parallel to it and directed against the uniform flow. 

 

If the pseudo-velocity at infinity on the negative side (i.e. at ) be not large enough, then there is 

apparently a possibility that a layer of the stratified fluid in the lower region of the channel may not be 

able to cross the diploe. This will result in what may be called the blocking of the incoming fluid by the 

diploe. This leads to a contradiction to the work of Trustrum (1964) that if the axis of the dipole be 

parallel to the channel wall then there is no possibility of blocking. So we restudy the problem of the 

stratified flow over a dipole placed at the bottom of the infinite channel with its axis parallel to the 

uniform flow at infinity. We shall also try to find out analytically relation between the pressure condition 

at infinity (on the negative side) and the strength of the dipole for the non-occurrence of blocking. 
 

 

Nomenclature: 

 

F : Froude number 

F0 : Ordinary Froude number 

q : Velocity vector 

q : Dimension of velocity of pseudo velocity 

 
 

F : 

g : 

p : 

 : 

0 : 

External force other than gravitational force 

Acceleration due to gravity 

Pressure 

Density 

Reference density 

http://www.theaspd.com/ijes.php
mailto:duberakesh@gmail.com


International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 19s, 2025 
http://www.theaspd.com/ijes.php 

3722 

 

 

 

U : Horizontal velocity 

U0 : Representative velocity 

d : Reference length 

g : Acceleration due to gravitation 

 : Stream function 

  : Pseudo stream function 
 

k : Unit vector perpendicular to the plane of the motion 

 : Variation of height of the streamline. 

Key Words: Steady two-dimensional flow of a stably stratified, Incompressible inviscid fluid towards 

a sink, pseudo-flow , pseudo-steam function, torricellian vacuum 

Governing Equation, Boundary conditions and solution: 

 

We consider a two-dimensional stratified flow over a dipole placed at the origin at the bottom of an 

infinite horizontal channel formed by y = 0 and y = d . The axis of the dipole is horizontal and directed 

against the flow and the fluid of the purely dipole flow has constant density equal to that of the lowest 

stratum of the stratified fluid. The dipole flow affects the stratified flow. Using the equation 

 =  
  

 

 


−1/2 

 
 
d  

 
(1) 

  0  

the physical flow is transformed into the pseudo-flow with uniform velocity at x = − ; the stream 

function for the perturbed pseudo-low in the channel in non-dimensional quantities is then given by 

(2 +  2 ) =  2 
y , (2) 

 

 

1  U 2 
1/ 2 

(  = , F being the Froude number defined by  
  0  

 ) 

F 

 

The boundary conditions for  are set as 

 agd  

 

 → y as x → , 

 = 1 on y = 1 x, (3) 

 = 0 on y = 0 x  0. 

 

Writing = − y , the equation (2) reduces to 

 

(2 +  2 ) = 0 , (4) 
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 n  ( 

A n 

with boundary conditions 

 

 → y as x → , 

 = 1 on y = 1 x, (5) 

 = 0 on y = 0 x  0. 

 

The function  then defines the perturbation in the flow, i.e. the stream function for the purely dipole 

flow without any external effect satisfies the Laplace equation. 

In the absence of the dipole, the equation (4) admits the trivial solution  = 0 , giving  = y , which 

represents the unperturbed uniform parallel pseudo-flow. In the perturbed pseudo-flow, the solution is, 

as shown by Drazin-Moore (1967), found in two types depending on  . When    , the solution 

does not contain wavy terms and when    , the solution contains both wavy and non-wavy terms.. 

It is important to note that when  = 0 , no solution exists. 

 

Assume 

 

 

 = n (x) sin n y 
n=1 

, (6) 

 

 

the equation (4) gives 
d 2 

+ 
dx2 

 

2 − n2 2 )n = 0 . (7) 

The solution of this equation depends on the sign of ( 2 − n2 2 ) . 
 

If 0     , then ( 2 
− n2 2 ) can never be positive and so the solution is exponential type: 

 
 = A' exp (n2 2 −  2 )

1/2 

x + A exp −(n2 2 −  2 )
1/2 

x  (8) 
n n   n   

 
where ' and A  are arbitrary constants; and if  lies in N    (N +1) for some positive 

n 

integer N , then 

 

 2 − n2 2 is positive for n  N and 

negative for n  N +1. 

 

Thus for n  N +1 , the solution will be of the above exponential type while for n  N , the solution 

will be of sinusoidal type 

 = A' sin ( 2 − n2 2 )
1/2 

x + A exp ( 2 − n2 2 )
1/2 

x (9) 
n n   n   

 

which is stationary wave. 

 
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 

 

Thus when    , waves occur. To avoid the solution in which waves may occur, we shall restrict 

the consideration to the case when    . 

 

The above solution cannot be accepted, for it cannot satisfy the necessary boundary conditions for the 

flow over a dipole. Thus the above method of solution fails, and hence we solve it by different method. 

Since the disturbance of the flow is caused by the dipole at the origin, therefore the solution must be 

that one having a dipole singularity at the origin. Drazin-Moore (1967) used the Dirac delta function 

for the dipole singularity at the origin and accordingly the boundary condition on y = 0 was set as 

 = K (x). 

 

Following the Drazin-Moore, the solution of the equation (4) and having a dipole singularity at the 

origin is, for   x , written as 

 = −K  
 n sin nxy  

exp − x (n
2 2 

−  2 
)

1/ 2  , (10) 

n=1 (n
2 2 −  2 )1/ 2   

 

where K is some constant. 

 

The perturbed pseudo-stream function  is then given by 

 
 = y +  = −K  

 n sin nxy  
exp − x (n2 2 

−  2 
)1/2  . (11) 

n=1 (n
2 2 −  2 )1/ 2   

 

It may be noted that it is through the constant K that the dipole strength is to be involved. 

 

The relationship between K and the dipole strength can be established simply by arguing that the diploe 

flow in the neighborhood of the origin is not affected by the stratified flow, i.e. the flow in the 

neighborhood of the origin (dipole singularity) is purely dipole flow. 

Thus in the neighborhood of the origin, the equation (11) will reduce , by dropping the fisrt term and 

also putting  = 0 , to 

 −1 sin  y 

 = −K sin  y 
n=1 

exp(−n x ) = K .  (12) 
2 cosh  x − cos y 

 

The above result simplifies to  =−  
K y 

. (13) 
 

 x2 + y2 

 

Again, considering the purely dipole flow in the neighborhood of the origin, it is seen that the physical 

stream function  1 for the dipole flow may be taken as 

 = − 
y 

, ( x, y small) (14) 
 

1 1 
x2 + y2 
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 

 

 

where 1 is the physical dipole strength. 

 

Since the density of the fluid in the dipole flow is constant, the pseudo-stream function for the dipole 

flow is given by 

 

 2 = − 
y 

x2 + y2 

 

, (15) 

 

where   = 
1 

2 Ud 

coordinates. 

 

and  = 
1 

U 

 

is the non-dimensional dipole strength. Here 

 

x, y are non-dimensional 

 

Now, in the neighborhood of the origin, the equations ((13) and (15) represent the same flow and so , 

we find 

K =  . (16) 

 

This is the relation between the constant K and the non-dimensional dipole strength  . So, writing 

K in terms of  , the equation (11) now becomes 

 
 = y −  2  

 n sin nxy  
exp − x (n2 2 

−  2 
)1/2  . (17) 

n=1 (n
2 2 −  2 )1/ 2   

 

This gives the perturbed pseudo-stream function of the flow in the channel. 

From the equation (17), we find the horizontal component of the velocity 

u = 
 = 1−  3 n2 cos n y  

− 2 2 −  2 1/2  

y n=1 (n
2 2 −  2 )1/2 

exp  x (n )  . (18) 

 

On the lower boundary of the channel excepting the origin, i.e. on y = 0, x  0 , the equation (18) 

becomes 

u(x, 0) = 1−  3  
n 

 
− 2 2 −  2 1/ 2  

 

n=1 (n
2 2 −  2 )1/ 2 

exp  x (n )  . (19) 

 

 
n2 exp − x (n2 2 −  2 1/2  

Now, every term of the summation  

n=1 

 
 

(n2 2 −  2 )1/ 2  
)  is positive and the 

value of the summation increases as x decreases and becomes indefinitely large at the origin and tends 

to zero as x = − . So , u(x, 0) decreases in the magnitude as  x decreases up to a certain value 

where u(x, 0) becomes zero; if  x increases, the magnitude of u(x, 0) increases attaining the 

maximum value 1 at x =  . This is because of the fact that on either side of the dipole, the fluid 

 

2 
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d x 

 

  

  

exp − x (n  −  ) n exp − x (n  −  ) 

 

velocity of the dipole and that of the stratified fluid are opposite to each other. This is in fact, what is 

expected that on the lower boundary, the velocity of the fluid in the stratified flow decreases as  x 

decreases, and so u(x, 0) will be zero at some point on the lower boundary. The points on either side 

of the dipole where the velocity is zero, i.e. the stagnation points are given by the equation by putting 

u(x, 0) = 0 in the equation (19), we get 

 

0 = 1−  3  
n 

 − 
2 2 

−  2 1/ 2  . (20) 
exp x (n ) 

n=1 (n
2 2 −  2 )1/ 2   

 

It is obvious from the equation (20) that the two stagnation points are symmetrical with respect to the 

y − axis i.e. equidistance from the origin. 

 

The positions of the stagnation points are obviously depends on  and  . We shall briefly show how 

the positions of the stagnation points change with  keeping  fixed. 

Differentiating equation (20) with respect to  , we get 

 

0 = − 3 
n 

 

 2  2 2 1/2  3  2  
 

2  2 2 1/2   
 

n=1 (n
2 2 −  2 )1/2   

 

n=1 
  d 

 

d x 1 
giving =  0 . (21) 

d 
 2 3 


 

n=1 

n2 exp − x (n2 2 −  2 )1/2  

 

This shows that as  increases, the stagnation points on the lower boundary shift away from the origin 

on either side by the same amount. This is what we expected. 

To see this more clearly, we may consider the location of stagnation points in the limiting case when 

the stratification is very small, i.e. when  is very small. 

When  is very small, it’s second and higher power terms can be neglected as compared to  . By 

doing so, the equation (20) gives the stagnation points approximately as 

 

0 = 1−  2 n.exp(−n x ) 
n=1 

= 1−  2e− x 1+ 2e− x + 3e−2 x +... = 1−  2e− x 
 

 

 

whence , e
− x 

(1− e
− x 

)
2 

=  2 

1 

(1− e− x )2 

+  

2 

2 
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 − 
1
 x 

2 

or  e
1/2 x − e 2 

 =  2 

  

 

or 4sinh2 =  2 . 
2 

 

  
 

      

 

 

Figure-1 establishes the continuous part for stratified flow and the dipole flow. 

Therefore, when  is negligibly small, the stagnation points are given by 

x = 
2 

sinh−1 
    

. (22) 
  2  

  

 x 

http://www.theaspd.com/ijes.php


International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 19s, 2025 
http://www.theaspd.com/ijes.php 

3728 

 

 

F 

Thus, as  increases, x increases and vice-versa. Hence the stagnation points on the lower boundary 

( y = 0) shifts away from the origin as the dipole strength  increases. The same result is expected to 

hold for  not small and so even    and not equal to any multiple of  . 

 

It may be interesting to see also how the horizontal component of velocity behaves near the y -axis 

above the origin. From the equation (18), taking   1 and expanding the right hand side in powers of 

 and summing, we find in the limit when x → 0 , 

 

1 2  2  x  2   y  4  
u = 1+   4 cos ec 

2 
+ 2 

 2 
log 2 sin 

2 
 + O( ) , 0  y  1 . (23) 

    

 

This gives the horizontal component of the pseudo-velocity when the pseudo-streamlines cross the y - 

axis above the origin. Curves of u against y are drawn in the graph and shown in the figure-1 for 

different values of  . 

Yih (1969) blocking may be defined as the phenomenon of stagnation of a layer of the fluid leading 

from an obstacle upstream to infinity. In the case of stratified flow, he pointed out that it is possible for 

the part of the fluid near the bottom to be blocked while the top part still flows, depending upon the ar- 

upstream velocity and the height of the obstacle 

Extending the idea of blocking defined above, it may be possible that when  (dipole strength) is large 

enough, the lower stratum of fluid coming from x = − may not be able to rise and cross the dipole, 

which may result to blocking. Blocking in the real sense may not occur; for, here the obstacle, if occurs, 

will invalidate the assumptions at x = − making thereby the flow analysis upset. However, on the 

hypothesis of the possibility of blocking, one can easily find a maximum value of   up to which 

normal flow can ensure and flow analysis can be carried out. 

 

If a fluid particle, coming along the lowest stratum of the stratified fluid, can move up to the top of the 

dipole, then obviously no question of blocking will arise and the condition for it being so is that the 

hydrodynamic pressure at the top of the dipole must not be less than the hydrostatic pressure there at. 

This condition naturally implies a certain relationship between  and p (the hydrodynamic pressure 

at x = − ). In what follows, we try to find this relationship between  and p , and then deduce the 

possible maximum value of  corresponding to a prescribed p , when  is small. 

In the pseudo-flow of the stratified fluid, we have the density H defined by 

 
q2  y 

H = p + + (24) 

2 0 

2 
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F 

F 

F 

F 
= 

2 

2 

2 

is constant on a pseudo-streamline. 

Hence, considering a streamline 

q2  y 
p + + = value of H at x = − 

2 

0 

 

= p + 
1 

+ 
 

 

 
( 

 

 

 
and  = y at x = − ) 

  

  2 

0 

q2 y 1 
So, for the streamline = 0 , p +  0  + = p +  giving 

2 

0 

p = p + 
1 

(1− q
2 
) − 

y 
. (25) 

0   0 2 

0 

Here, p0 and q0 are the pressure and the velocity at any x on the streamline  = 0 at which  = 1 . 

If the height of the region to which the dipole flow is confined be denote by y0 , then the hydrodynamic 

pressure p0 at the top of the dipole is 

p = p + 
1 

(1− q
2 
) − 

y
0 , (26) 

0   0 2 

0 

Here q0 refers to the velocity at the top of the dipole. 

Again, if pH be the hydrostatic pressure at the top of the dipole, then 

m (1− y0 ) 
H 2 

0 

, (27) 

where   = 1− 
 

is the mean density of the stratified fluid and  being the stratification constant. 
m 

2 

Now , if p0  pH , there will be no chance for the fluid particles coming along the lower boundary of 

the channel to come up to the highest point of the dipole flow region and so the condition for the said 

fluid particles to cross the dipole , i.e. the condition for the non-occurrence of blocking is p0  pH . 

Using the value of p0 and pH from the equations (26) and (27), we find the non-occurrence of blocking 

p + 
1 

(1− q
2 
) − 

y
0   


m 

(1− y
0 
) 

. 
 

2 
0 

F 2 F 2 

0 0 

 

F 

F 

2 

2 2 

p 
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0 

 

 

  

0 

Since p   1 , the above inequality will satisfied if p  + 
1 

(1− q2 ) − 
y

0  
(1− y

0 
) 

which further 
m  

2 
0 

F 2 F 2 

0 0 

gives 

 

q0  (1− 2 p − 2F −2 )
1/2 

. (27) 

 

At the top of the dipole, the fluid velocity is horizontal and so by (25), we have 

 
3 

 n2 cos n y 

q0 = 1−   0  . (28) 

n=1 (n
2 2 −  2 )1/ 2 

 

This gives the relation between  and p for the non-occurrence of the blocking for    . 

When  is small, by Cesaro’s sum, we have 

 
n2 cos n y 

= 
 1 


  1  2 3  4  

n cos n y0 1+ 
2  2 

+ 
4  4 

+ ... . 
n=1 (n

2 2 
−  2 

)
1/ 2  n=1 2 n  8 n  

 

Hence for  small enough, if we neglect terms of second and higher orders of  , the inequality (28) 

will reduce to 

1+ 
1 

 2 cos ec2 
 y0  (1+ 2 p − 2F −2 )

1/2 

4 2 
 0 

 
or   c sin

2   y
0  

, (29) 
  

2 
 

  

 
where C = 

4 (1− 2 p − 2F −2 )
1/2 

−1 . (30) 

 2   0  

Since   0 , the inequality (29) requires that C should be positive and therefore 

 

p  F −2 . (31) 

 

Also, when  is small enough so that second and higher powers of  can be neglected, then it is seen 

from the equation (27) that the streamline  = 0 cuts the y -axis at the point y0 gives by the equation 

  1   y0  
y0 =  n sin n y0 = 

2 
 cot   

2 
 . 

n=1   

 
We have  = 

2 
y tan 

  y
0  

. (32) 

 
0   

2 
 

  
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Using this value of  , the inequality (29) gives 

 

y  
 

c sin  y . (33) 
0 

4 
0 

 

The trigonometric function sin  y  continuously increases from y = 0 to y = 
1 

, attaining the 
0 

 

maximum value 1 at y = 
1 

. 

 

0 0 
2 

 

0 
2 

 

Hence, the inequality (33) will be satisfied if y  
1 

and c  
2 

. 
0 2  

 

 

 

This can also be verified from the graph shown in figure-2 where the shaded portion is the required 

region from holding the inequality. 

With the maximum value of y (i.e. y = 
1 

), the equation (32) gives  = 
1 

. This gives the possible 
0 0 2  

maximum value of  for the non-occurrence of blocking. 

 

Thus the restrictions on  and c for the non-occurrence of blocking are 

 

  
1 

 
and c  

2 
. (34) 

 

The restriction on c , when applied to the equation (30), gives 
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−2 

4 
(1+ 2 p − 2F −2 )1/2 −1  

2 
, 

 
 

 2  
 0   

 

  
2 

or 1+ 2 p − 2F −2    −1 , 
0  

2 
 

  

 
 2  −2 

or p  
8 

+ 
2 

+ F0 . (35) 

 
 2  −2 

Hence for the non-occurrence of blocking, p should be at least equal to  
8 

+ 
2 

+ F0  , while  

should at most be equal to 
1 

. 

 

 

Since F0 does not contain the stratification constant, the inequality (35) gives the condition for the non- 

occurrence of blocking in the case of homogeneous fluid. Thus, for insufficient pressure at infinity (i.e. 

insufficient velocity and hence insufficient energy at infinity), the influence pf the dipole is felt far 

upstream and so its effect cannot be totally ignored. This indeed contradicts the Trustrum result. 

 

Conclusion: 

In the conclusion, we discuss the nature of change of flow with  and  . For the flow not contain 

 

waves,   should be less than   and also for the non-occurrence of blocking   
1 

 

 

and 

 2 

p  
8 

 
+ 

2 
+ F0  . 

 

The case when  = 0 implies  = 0 and so , in case  = 0 , the stratified fluid flow reduces to the 

homogeneous irrotational flow of constant density  = 1 everywhere. In that case, there is no 

distinction between the pseudo-stream function and the natural stream function. The flow is simply 

described by the stream function  as 

 
 

 

 = y −  sin n y .exp(−n 
n=1 

 
1 sin  y 

x ) (putting  = 0 in equation (17) 

= y −  
2 cosh  x − cos y 

(36) 

 

When   0 but small enough, the flow pattern of the stratified fluid flow will not differ much from 

that of the homogeneous fluid flow given by the equation (36). 

Again, for   0 , we have 

 
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 

3 
 n2 cos n y  2  2 2 

 1/ 2  
u = 1−   1/2 exp 


− x (n  −  )  

and 
 

 

n=1 (n2 2 −  2 )   

 

2 
 

 2  2 2 
1/ 2  

v =  n sin n y.exp 

− x (n  

n=1 

−  )  
. 

 

From these equations, it can be seen that the effect of  is to make the fluid move faster than that in 

the corresponding homogeneous fluid. 

The streamline = 0 demarcates the stratified fluid flow from the dipole flow region and so   0 

defines the stratified flow while   0 defines the dipole flow. 

 

When  is small, the boundary of the dipole flow region cannot taken as approximately given by 

(assuming  small) 

x2 + y2 =  . (37) 

 

Which is obtained by putting  = 0 in the equation (36) and then expanding and simplifying by 

retaining up to second order terms. 

In the case when   0 , the two stagnation points symmetrically placed on either side of the origin 

appear on the lower boundary (from equation (20)). As  increases from 0 to 
1 

 

 

, the stagnation 

points shift away from the origin by equation (22) and accumulation of fluid occur near those points. 

This can also be verified from the stream pattern shown in figure-3. As a result of shifting away of the 

stagnation points, the shape of the demarcating curve (i.e. the part of the streamline = 0 ) is found 

flattened extending more on both sides of the x -axis. This can be verified mathematically from the 

equation (22) , and is confirmed from the graph of the streamline pattern from figure-3.This is actually 

what is expected and is partly due to the influence of the stratified flow. When there is no possibility of 

blocking, the maximum height of the dipole flow region is y = 
1 

2 

and this corresponds to  = 
1 

. 

 
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If   
1 

 

 

, the maximum pressure at infinity, i.e. 
 2 

p = 
8 

 
+ 

2 
+ F0 

 

is not sufficient enough for the 

fluid particles on  = 0 on the left side of the dipole to rise against the gravity and to cross the y -axis 

above the dipole and so in that case there is a possibility of blocking of fluid, to occur on or near the 

lower boundary. This violates indeed the basic assumptions at infinity on the negative side, i.e. the 

pseudo-velocity is uniform at x = − . Thus the pressure at infinity and the dipole strength are related 

for the non-occurrence of blocking in the flow field. 

Applications of the work: 

 

The study of stratified fluids also find applications in industries. The concept of solar pond and ocean 

thermal energy conversion (OTEC) may be mentioned. The intrusion of a heavy fluid into a lighter one 

occurs in the process of manufacturing glass. Idea of fluid flow in porous media is applicable to 

hydrology and is of vital interest to petroleum industries and paper industries. Axisymmetric flow of 

non-homogeneous fluids have also a bearing on such engineering devices as centrifuges and 

meteorological phenomena as tornados. 

−2 
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