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Abstract  
This study predicts the agricultural Gross State Domestic Product (GSDP) of Assam, using statistical and econometric models 
for policy formulation in agricultural economics. We explore various models, including Cobb Douglas model, Constant 
Elasticity of Substitution model and Multiple Linear Regression model and found that the Multiple Linear Regression offers 
the best fit based on higher 
𝑅2, lower MSE, and AIC, along with statistically significant t-values. 
Our findings highlight the critical role of agricultural productivity in driving economic growth, enhancing the Gross State 
Domestic Product (GSDP), and supporting food security and employment. By integrating robust econometric models such as 
the Cobb-Douglas production function, the Constant Elasticity of Substitution (CES) model, and Multiple Linear Regression 
(MLR), this study provides valuable empirical insights. 
Objectives: 
1. To predict the agricultural economy in the state using Machine Learning models. 
2. To study the performance of selected model to assess the agricultural economy in the state. 
Methods: The methods and models we have used here are Ordinary Least Squares (OLS) and Non- linear Curve Fitting 
methods are used to estimate the parameters of the models. OLS is applied in the Cobb-Douglas and Multiple Linear 
Regression models, while Non-linear Curve Fitting is used for the Constant Elasticity of Substitution (CES) model. 
Results: Among the employed models, area and labour were identified as significant determinants of Assam's agricultural 
economic growth. Among the predictive models, the Multiple Linear Regression (MLR) model demonstrated the best fit, as 
indicated by its highest R² value, lowest Mean Squared Error (MSE), lowest root mean squared error (RMSE), lowest mean 
absolute percentage error (MAPE) and lowest Akaike Information Criterion (AIC). 
Conclusions: This study employed Ordinary Least Squares (OLS) and Non-linear Curve Fitting techniques to estimate 
parameters for three production function models, Cobb-Douglas, Constant Elasticity of Substitution (CES), and Multiple 
Linear Regression (MLR). OLS was applied to the Cobb- Douglas and MLR models, while the CES model was estimated 
using Non-linear Curve Fitting due to its structural complexity. 
The analysis identified area and labour as key contributors to Assam's economic growth. Among the models, the Multiple 
Linear Regression (MLR) model outperformed the others in terms of predictive accuracy, as demonstrated by its highest R², 
lowest Mean Squared Error (MSE), lowest root mean squared error (RMSE), lowest mean absolute percentage error (MAPE) 
and lowest Akaike Information Criterion (AIC) values. These results highlight the effectiveness of MLR in capturing the 
relationship between agricultural inputs and economic output in Assam, making it the most suitable model for policy 
formulation and future forecasting efforts. 
Key words: Agricultural Productivity, agricultural Gross State Domestic Product (GSDP), Cobb Douglas, Constant 
Elasticity of Substitution, Multiple Linear Regression 
 
INTRODUCTION:  
Understanding the relationship between agricultural inputs and outputs remains a foundational concern in 
agricultural economics. This relationship is typically captured through production functions mathematical 
models that quantify how different inputs such as land, labour, capital, fertilizer, and technology contribute to 
output, often measured in terms of yield or total production. For researchers and policymakers, identifying the 
most appropriate functional form is crucial for accurately evaluating productivity and guiding policy 
interventions. Among the various production functions, the Cobb- Douglas, Constant Elasticity of Substitution 
(CES), and Multiple Linear Regression (MLR) models are particularly influential. The Cobb Douglas 
production function, widely employed due to its log-linear form and interpretable elasticity coefficients, assumes 
constant returns to scale and unitary elasticity of substitution (Bhatti et al., 1996; Hossain et al., 2006; Prajneshu, 
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2008). The CES production function offers greater flexibility by allowing varying elasticities of substitution 
between inputs, though it is computationally intensive and nonlinear in estimation (Henningsen & 
Henningsen, 2012; Henningsen et al., 2019). Multiple Linear Regression, though not a production function in 
the strict sense, is often used to empirically estimate the separate contributions of agricultural inputs to output 
under less restrictive assumptions (Samiyu, 2021). These models have been extensively used to analyze the impact 
of input factors such as irrigation, fertilizer use, electricity, credit availability, rainfall, and high-yielding variety 
(HYV) seeds on agricultural productivity across various Indian states. Similarly, regression analyses have 
identified both significant and insignificant contributors to Agricultural GDP, depending on the structural and 
policy context (Reddy & Dutta, 2018; Kulsesthra & Agarwal, 2019). These findings underscore the importance 
of selecting appropriate models to reflect the realities of the agricultural production environment. While Cobb-
Douglas provides simplicity and interpretability, CES offers a more nuanced substitution framework, and MLR 
ensures flexibility 1 with larger datasets. Each has strengths and limitations, and their application must be guided 
by data availability, research objectives, and economic context. In regions like Assam ranked 17th in Agricultural 
GDP among Indian states understanding the determinants of agricultural productivity is crucial for informed 
policy-making. The state’s diverse agro-climatic conditions, reliance on monsoon rainfall, and variable input 
adoption patterns necessitate empirical evaluation using robust models. This study employs Cobb-Douglas, CES, 
and MLR approaches to model agricultural output in Assam, aiming to quantify input elasticities, estimate 
substitution patterns, and assess the contribution of individual inputs to economic performance. The integration 
of such modelling efforts not only enhances our understanding of agricultural productivity but also informs 
targeted interventions to stimulate rural development, food security, and inclusive economic growth in the 
region. 
1. Objectives of the Study: 
The aim of this paper is to predict the impact of three different models on agricultural economy and their 
performance evaluation with respect to Assam. Based on this the following objectives are formulated: 
I. To predict the agricultural economy in the state using Machine Learning models. 
II. To study the performance of selected model to assess the agricultural economy in the state. 
 
3. METHODS AND MODELS: 
The models used in this study include the Cobb Douglas Production Function, Constant Elasticity of 
Substitution, Multiple Linear Regression models. The Cobb-Douglas model is specified in its log-linear form, 
which enables the estimation of input elasticities directly from the regression coefficients. This functional form 
assumes a constant elasticity of substitution equal to one and provides a convenient framework to analyze returns 
to scale and factor productivity. The parameters were estimated using the Ordinary Least Squares (OLS) method 
in Python, and log transformations were applied to ensure linearity in parameters. This model is especially 
useful for its interpretability and widespread applicability in agricultural economics. The CES model generalizes 
the Cobb-Douglas function by relaxing the assumption of unitary elasticity of substitution between inputs. It 
accommodates varying degrees of substitutability, which is particularly relevant in the context of diverse 
agricultural environments and input interactions. The CES function was estimated using non-linear regression 
techniques, implemented through numerical optimization methods available in Python's scientific computing 
libraries. This model adds analytical depth by allowing a flexible substitution structure and provides insights 
into how changes in input mix affect output levels. The MLR model serves as a baseline comparative framework 
for analysing the relationship between agricultural output and input variables without imposing specific 
structural assumptions on production technology. It treats the output as a linear function of independent 
variables such as land area, labour, fertilizer use, irrigation, and capital inputs. Using OLS estimation, the MLR 
model helps assess the individual and joint statistical significance of explanatory variables. 
In addition, performance evaluation metrics such as R² (Coefficient of Determination), Mean Squared Error 
(MSE), t-Statistic, Akaike Information Criterion (AIC), and Instantaneous Growth Rate have been incorporated 
for comprehensive model evaluation 
3.1 Cobb Douglas Model: 
The studies on production function were made firstly by Knut Wicksell (economist) in 1906. Then, Cobb-
Douglas production function was developed by Charles W. Cobb (mathematician) and Paul H. Douglas 
(economist) in 1928. The Cobb-Douglas production function is widely used in economic studies. This function 
describes the economic output as a function of two factors, capital and labour. Cobb-Douglas production 
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function is used the modelling the substitution between capital input, labour services and technical change. 
This model implies the elasticity of substitution equals one. This function describes the economic output as a 
function of two factors, capital and labour. The Cobb-Douglas production function is given by 
The General form of Cobb-Douglas production function is formulated as: 
𝑄𝑖 = 𝐴𝑋1𝑖 

𝛽1𝑋2𝑖 𝛽2𝑋3𝑖 𝛽3 … … … … . 𝑋𝑘𝑖 𝛽𝑘𝑒𝜀𝑖 (1) 
Where: 
• 𝑄𝑖 is the ith observed output for the observation, 
• A is a constant representing total factor productivity, 
• 𝑋𝑗𝑖 represents the quantity of the 𝑗 th input for the ith observation, 
•  𝛽j are parameters indicating the output elasticity of each input, 
• 𝜖i is the error term. 
Taking log on both sides of eq(1) 
log 𝑄𝑖 = log 𝐴 + 𝛽1log 𝑋1𝑖 + 𝛽1log 𝑋1𝑖 (2) 
Transformation and Logarithms: Taking the logarithm of both sides of the equation, we obtain: 
log𝑒 (𝑄𝑖) = log𝑒 ( A) + 𝛽1log𝑒 (𝑋1𝑖) + ⋯ … … + 𝛽𝑘log𝑒 (𝑋𝑘𝑖) + 𝜖𝑖 (3) 
This equation ensures that the model satisfies the assumption of linear regression.  
Where j=1, 2, ...................,k  
In matrix notation we obtain, 

[

log𝑒 𝑄1

log𝑒 𝑄2

⋮
log𝑒 𝑄𝑘

]

𝑛×1

= [

1 log𝑒 𝑋11 … log𝑒 𝑋1𝑘

1 log𝑒 𝑋21 … log𝑒 𝑋2𝑘

⋮ ⋮ ⋮ ⋮
1 log𝑒 𝑋𝑛1 … log𝑒 𝑋𝑛𝑘

]

𝑛×(𝑘+1)

 [

𝛽0

𝛽1

⋮
𝛽𝑘

]

(𝑘+1)×1

+ [

𝜀1

𝜀2

⋮
𝜀𝑘

]

𝑛×1

 (4) 

Which can be written as: 

[

𝑊1

𝑊2

⋮
𝑊𝑘

]

𝑛×1

= [

1 𝑍11 … 𝑍1𝑘

1 𝑍21 … 𝑍2𝑘

⋮ ⋮ ⋮ ⋮
1 𝑍𝑛1 … 𝑍𝑛𝑘

]

𝑛×(𝑘+1)

 [

𝛽0

𝛽1

⋮
𝛽𝑘

]

(𝑘+1)×1

+ [

𝜀1

𝜀2

⋮
𝜀𝑘

]

𝑛×1

 (5) 

From where we get, 
 
𝑊 = 𝑍𝛽

 (6) 

And 
𝛽 = (𝑧/𝑧)−1𝑧/𝑊 (7) 
Where, 
Var − Cov(𝛽) = 𝜎2(𝑧/𝑧)−1 (8) 
And 

𝜎2 =
 RSS 

𝑛− no.of parameter 
 (9) 

For brevity we have used only two explanatory variables namely Labour and Capital 
L = 𝑋1𝑖 and K = 𝑋2𝑖 and 𝛽1 = 𝛼, 𝛽2 = 𝛽 
Then, 
ln 𝑄 = ln 𝐴 + 𝛼ln 𝐾 + 𝛽ln 𝐿 + 𝜖𝑖 (10) 
Similarly, for Rice Yield as Output we can Consider Capital and Fertilizer as inputs. The significance of the 
model lies in the fact that α, β represents direct elasticities of Labour and Capital w.r.t output Q i.e. GSDP, α, 
β represents direct elasticities of Capital and Fertilizer. 

3.1.1 Estimation of the Parameters of Cobb Douglas Model: 
From the model above we get, 

𝜀𝑌𝐾 =
𝑑log 𝑌

𝑑log 𝐾
 (11) 

After solving we get, 
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=
𝑑log 𝑌

𝑑𝑌

1

1/𝑘

𝑑𝑌

𝑑𝐾

 =  𝑌
𝐾𝑑𝐾

 = A𝛼𝐾𝛼−1𝐿𝛽 𝐿

AK𝛼𝐿𝛽

 = 𝛼

 (12) 

Similarly, 

𝜀𝑌𝐿 =
𝑑log 𝑌

𝑑log 𝐿
 (13) 

After solving we get, 

 =
𝑑log 𝑌

𝑑𝑌

1

1/𝐿

𝑑𝑌

𝑑𝐿

 =
𝐿𝑑𝑌

𝑌𝑑𝐿

 = A𝐾∝𝛽𝐿𝛽−1 𝐿

 A𝐾𝛼𝐿𝛽

 = 𝛽

 (14) 

The Return to scale in CD production function is achieved by 
• 𝛼 + 𝛽 > 1
 (15) 
• 𝛼 + 𝛽 < 1
 (16) 
• 𝛼 + 𝛽 = 1
 (17) 

3.2 CONSTANT ELASTICITY OF SUBSTITUTION (CES) PRODUCTION FUNCTION: 
The Constant Elasticity of Substitution (CES) production function, initially introduced by Arrow, Chenery, 
Minhas, and Solow in 1961, is a generalized form of the Cobb-Douglas production function. Unlike Cobb-
Douglas, CES imposes a constant elasticity of substitution across its isoquants, meaning the rate at which inputs 
can be substituted for one another remains uniform throughout. The CES production function assumes that 
the elasticity of substitution between any pair of inputs is consistent. Various forms of the CES function exist; for 
this study, the CES production function proposed by Kmenta in 1967 will be used, focusing on capital (K) and 
labor (L) inputs. The equation for this CES production function, characterized by a constant elasticity of 
substitution (CES), is expressed as: 

Q = A[𝜹𝒌−𝜌 + (𝟏 − 𝜹)𝑳−𝜌]
−𝜃

𝜌     (𝐴 > 0; 0 < 𝜎 < 1; −1 < 𝜌 ≠ 0)  (18) 
Here, Q denotes the total output value, L represents labour input measured in person-years, K represents capital 
input measured in monetary terms, and 𝛿, 𝜌, and 𝜎 are parameters. 𝐴 ∈ [0, ∞) represents the 
productivity(technologic progress level), 𝛿 ∈ [0,1] denotes the inputs' optimal distribution, 𝜌 ∈ [−1,0) ∪
(0, ∞) represents the elasticity of substitution and 𝜗 ∈ (0, ∞)(𝜗 = 𝐾𝐿 > 0) is the function's homogenous 
order of return to scale (degree of homogeneity) In the original form of CES, parameter 𝜗 was taken as 𝜗 = 1.If 
𝜗 = 1, constant return to scale, if 𝜗 < 1, decreasing return to scale and if 𝜗 > 1, increasing return to scale. 
The elasticity of substitution (EOS) of CES function is written as, 

𝜎 =
𝜕 ln(

𝐾

𝐿
)

𝜕 ln(
𝑀𝑃𝐿
𝑀𝑃𝐾

)
 (19) 

=
1

1−𝜌
≥ 0 (20) 

The logarithmic form of CES function is given by 

ln Q = ln 𝛾 −
P

𝜌
[𝛿𝑘−𝜌 + (1 − 𝛿)𝐿−𝜌] (21) 

Uzawa (1962) and Mc Fadden (1963) tried to extend the CES function to n-input factor production function 
given by, 

𝜕𝑄

𝜕𝐿
= (1 − 𝛿)𝐴−𝜌 (

𝑄

𝐿
)

𝜌+1

 (22) 

𝑄𝐿 = (1 − 𝛿)𝐴−𝜌 (
𝑄

𝐿
)

𝜌+1
 (23) 
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Taking the logarithm on both sides of Eq. (23) we get, 

ln (
𝑄𝐿

𝑄
) = ln (1 − 𝛿) + 𝐴−𝜌 + (𝜌 + 1)ln (

𝑄

𝐿
) (24) 

Eq. (24) represents the relationship between agricultural GSDP, labour and capital invest. 

3.2.1 Parameter Estimation of CES Production Function 
The CES (Constant Elasticity of Substitution) production function is nonlinear with respect to its parameters, 
which prevents it from being easily transformed into a linear form for traditional linear 
estimation methods. To estimate the parameters of the CES production function, nonlinear fitting techniques 
are typically employed. This estimation process assumes that the input variables are either non-stochastic or, if 
they are stochastic, that they are independent of the disturbance term (Hoff, 2004). 
Generally, there are two common approaches for estimating CES parameters: the linear Taylor series 
approximation and the nonlinear least squares method. The linear Taylor series method can be used with respect 
to the parameter 𝜌, providing a simplified approach for estimation. 
3.2.2 Estimating the CES function using Kmenta Approximation: 
The production function can be written in the form as (Kmenta, 1967)  

ln 𝑄𝑖 = ln 𝛾 −
1

𝜌
ln [𝛿𝐾𝑖

−𝜌
+ (1 − 𝛿)𝐿𝑖

−𝜌
] + 𝑢𝑖 (25) 

The parameters of the CES production function can be estimated from Eq. (34) using nonlinear least squares 
techniques, which are supported by various computer programs. Alternatively, a simplified approach involves 
linearizing the CES function with respect to the parameter ρ, which makes use of ordinary least squares 
estimation. This linearization is achieved through a Taylor series expansion around ρ=0. By ignoring higher-
order terms beyond the second order, the Taylor expansion approximates the CES function with a linear model, 
allowing for simpler estimation 
ln 𝑄𝑖 = ln 𝛾 + 𝜗𝛿ln 𝐾𝑖 + 𝜗(1 − 𝛿)ln 𝐿𝑖 + 𝑢𝑖 (26) 
Let us define the new variable as 

𝑌∗ = ln 𝑄𝑖 , 𝑋1∗=ln 𝐾𝑖 𝑋2∗ = ln 𝐿𝑖

𝛽0 = ln 𝛾, 𝛽1 = 𝜗𝛿, 𝛽2 = 𝜗(1 − 𝛿)
 

Then Eq (35) can be written as 
𝑌∗ = 𝑌∗ + 𝛽1𝑋1

∗ + 𝛽2𝑋2
∗ (27) 

The method of ordinary least squares helps to estimate the following parameters 

𝑌 = 𝑒𝛽0, 𝛿 =
𝛽1

𝛽1+𝛽2
, 𝜗 = 𝛽 + 𝛽 (28) 

𝜌 is related to the elasticity of substitution ( 𝜎 ) between the two inputs. Specifically, 𝜎 =
1

1−𝜌
. The value of 𝜌 

can range from −∞ to 1 and, where 𝜌 = 1 corresponds to a Cobb-Douglas production function (infinite 
substitution), and 𝜌 = −∞ indicates perfect complements. 

3.3 Multiple Linear Regression: 
Sir Francis Galton (1822-1911) was a pioneering figure who introduced the concept of regression toward the 
mean, laying foundational ideas for regression analysis, particularly in the context of heredity. Following him, 
Karl Pearson (1857-1936), a prominent statistician, developed the Pearson 
correlation coefficient, which became a crucial measure of linear relationships, providing essential principles 
for understanding regression analysis. Later, Ronald A. Fisher (1890-1962) advanced the field with the 
introduction of the analysis of variance (ANOVA) and maximum likelihood estimation, both critical tools for 
statistical inference and regression analysis. George E.P. Box (1919-2013) further contributed through the Box-
Jenkins methodology in time series analysis, emphasizing the importance of regression models in experimental 
design and statistical modelling across various fields. 
A Nobel laureate, Clive W.J. Granger (1934-2009), made significant contributions to econometric methods, 
including cointegration and error correction models, which enhance the applications of regression analysis in 
economic research. Meanwhile, David A. Freedman (1938-2008) critically examined the interpretation of 
regression results and highlighted the limitations of regression analysis in establishing causal relationships, 
influencing contemporary understanding of statistical inference. Herman Wold (1909-1992) was instrumental 
in the development of structural equation models, extending traditional regression analysis and facilitating a 
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deeper understanding of complex variable relationships. William H. Greene has also played a key role in 
advancing regression techniques, particularly in panel data analysis and econometric modelling, enhancing 
empirical research methodologies. Finally, James W. Cooper is known for his application of regression analysis 
across various disciplines, including economics and environmental science, demonstrating the versatility and 
importance of regression methods in diverse fields. 
3.3.1 Parameter Estimation of Multiple Linear Regression: 
The model we have used in the study is 
𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + 𝛽3𝑋𝑖3 + 𝛽4𝑋𝑖4 + 𝛽5𝑋𝑖5 + 𝛽6𝑋𝑖6 + 𝜀𝑖 (29) 
With the assumptions, 
(i)  𝜀𝑖 is normally distributed 
(ii) 𝐸(𝜀𝑖) = 0 
(iii) 𝐸(𝜀𝑖 2) = 𝜎s 2 
(iv) 𝐸(𝜀𝑖𝜀𝑗) = 0 for i = 1993 to 2023 
In general, the model is 
Y = 𝛽0 + 𝛽1𝑋 + 𝜖 (30) 
Where, 

𝑌 = [

𝑦1

𝑦2

⋮
𝑦𝑛

] , 𝑋 = [

𝑥21 𝑥31 ⋯ 𝑥𝑘1

𝑥22 𝑥32 ⋯ 𝑥𝑘2

⋮ ⋮ ⋮ ⋮
𝑥2𝑛 𝑥3𝑛 ⋯ 𝑥𝑘𝑛

] 

Using the method of least squares and the sample regression equation is 
𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖 + 𝑒𝑖 (31) 
The sum of squared residuals is 
ESS = ∑  𝑒𝑖

2 = ∑  (𝑌𝑖 − 𝑏0 + 𝑏1𝑋𝑖)2 (32) 
From partial derivatives we get 

𝜕RSS

𝜕𝑏0
= −2∑𝑖  (𝑌𝑖 − 𝑏0 + 𝑏1𝑋𝑖)(−1) = 0

 (33) 

𝜕RSS

𝜕𝑏1
= −2∑𝑖  (𝑌𝑖 − 𝑏0 + 𝑏1𝑋𝑖)(−𝑋𝑖) = 0 (34) 

Dividing each of these equations by -2 we get the normal equations as 
n𝑏0 + 𝑏1 ∑  𝑋𝑖 = ∑  𝑌𝑖 (35) 

𝑏0 ∑  𝑋𝑖 + 𝑏1 ∑  𝑋𝑖
2 = ∑  𝑋𝑖𝑌𝑖 (36) 

From these normal equations solving we get, 
𝑏0 = 𝑌 − 𝑏1𝑋 
And 

𝑏1 =
∑𝑋𝑖𝑌𝑖−𝑛𝑋‾𝑌‾

∑𝑋𝑖
2−𝑛𝑋‾ 2  (37) 

4. Results: 

Table 4.1.1: The Regression Results of the model: 
Taking logarithmic form of the model, we have estimated the parameters Capital and Labour are 
R square 0.972 

Adjusted R square 0.961 

F Statistic 2457 

 

 Coefficients Standard Error t Stat P-value 
Intercept -5.7761 1.1151 -5.1799 3.252E-06 
ln K 0.45 1.167 2.809 0.018 
Ln L 0.55 0.73 2.127 0.049 
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The model coefficient of determination 𝑅2 (0.972) and adj 𝑅2 (0.961) shows that the model has a very high 
fitting precision. Cobb-Douglas model parameters are obtained as follows: 

Table 4.1.2: Cobb Douglas model parameters: 
𝑨̂ ∝̂ 𝜷̂ ∝2+𝜷̂ 

2 0.45 0.55 1 

 
From the table above we can observe that ∝2+𝜷̂= 1 which indicates constant return to scale in terms of 
productivity of output. 
The Cobb Douglas Production Function is:  
𝑄𝐶𝑜𝑏𝑏(𝐺𝑆𝐷𝑃) = 2𝐾0.45𝐿0.55 (38) 
The elasticity of capital 𝛼 is 0.45. This shows that 1% increase in capital lead to 0.45% increase in GSDP. 
Similarly, the elasticity of labour 𝛽 is 0.55 which indicates that 1% increase in labour lead to 0.55% increase in 
GSDP. 
Residual analysis of Cobb Douglas Production Function: 

  

Fig 4.1: Residual analysis 
From the figure above we can infer that the residuals are scattered randomly around the red zero line, without 
any systematic pattern. The randomness supports linearity and suggests that the functional form is appropriate. 
Normality assumption of residuals is mostly satisfied. 

 
 
Fig 4.2: Actual and Predicted GSDP for Cobb Douglas Production Function 
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In the figure above the actual GSDP shows a nonlinear upward trend over time with clear cyclical or seasonal 
fluctuations. The curve appears to accelerate, suggesting that the economy is growing at an increasing rate, 
especially in the later periods. Predicted GSDP in the model appears linear and smooth, lacking the curvature 
and volatility of the actual series. It underestimates GSDP in the later years and overestimates in the earlier 
periods. This indicates that the Cobb-Douglas model, as implemented, captures the trend but fails to account 
for cyclical patterns or nonlinear growth acceleration. 

Table 4.2.1: Parameter Estimation of CES Production Function: 
δ (1-δ), θ ρ σ γ −θ/ρ 

0.45 0.55 0.9 0.9 10 𝑒0 -1 

The CES Production Function is: 
𝑄̂𝐶𝐸𝑆(𝐺𝑆𝐷𝑃)=0.93(0. 45𝐾0.9 + 0.55𝐿0.9) (39) 
Capital contributes 45% and labour 55% to the CES production process. Labour is slightly more significant 
than capital in determining output. A positive, small value of 𝜌 indicating limited substitutability between 
capital and labor. The closer 𝜌 → 0, the more the CES approaches the CobbDouglas case. Elasticity of 
substitution 𝜎 = 10 greater than 1 implies that capital and labour are more substitutable than in the Cobb-
Douglas case ( 𝜎 = 1 ). 𝛾 = 𝑒0 = 1 scales the CES function, reflecting minor efficiency loss (as A = 0.93 ). In 

the Kmenta approximation, 
−𝜃

𝜌
− 1 this ratio influences how the log − linearized CES form bends. A value of 

-1 is standard and expected when 𝜃 = 𝜌 Labour slightly outweighs capital in production importance. 
Substitutability is slightly elastic, but close to Cobb-Douglas. Efficiency factor ( ∼ 0.93 ) implies minor 
productivity losses. The function is well-suited for modeling GSDP when labour and capital have different, but 
complementary roles. 

 
Fig 4.3: Actual GSDP and Estimated GSDP obtained from CES Production Function: 
The resulting graph above illustrates both the actual and estimated GSDP values, following the Kmenta approach. 
The CES model captures the relationship between output (GSDP) and input factors capital and labour. The 
predicted GSDP values (orange line) closely follow the trend of the actual GSDP values (blue line) across the time 
period, indicating that the CES model provides a good fit for the underlying production process. While minor 
deviations are present in certain years, the model tracks both the long- term growth trend and short-term 
fluctuations in GSDP reasonably well. The divergence towards the end of the series may reflect nonlinearities, 
external shocks, or time-varying factors not captured by the static CES framework. However, the overall 
structural relationship appears robust. This alignment confirms that the CES production function, with its 
constant elasticity parameter (σ), is effective in modelling the substitution possibilities between labour and 
capital. 
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Table 4.3.1: Parameter Estimation of Multiple Linear Regression: 
R square 0.982 

Adjusted R square 0.985 

F Statistic 247.4 

 
Parameters Coeff. Std. Err. t P>|𝒕| 

Constant -4.0899 1.362 -2.000 0.008 

area 2.1519 0.636 3.382 0.004 

farm 2.5263 1.402 0.802 3.090 

labour 4.3974 0.958 4.589 0.000 

capital -0.0133 0.022 -0.609 0.551 

 
The equation of the model is 
GSDP=-4.089+2.151×area+0.6601×labour (40) 
From the Multiple Linear Regression model, we can see that labour and area are significant at 0.05 level of 
significance. For every one unit increase in area, holding labour constant, the GSDP is expected to increase by 
2.151 units. Similarly, for every one unit increase in labour, holding area constant, the GSDP is expected to 
increase by 0.6601 units. 

 
Fig 4.4: Actual GSDP and Estimated GSDP from Multiple Regression Model: 
The estimated GSDP values closely track the actual GSDP values across most years, indicating that the model fits 
the data well. Minor deviations are observed, which may be due to external shocks, structural changes, or variables 
not included in the model. For the period 1993 to 2000, the model predicts modest and stable growth, consistent 
with actual GSDP, reflecting the gradual liberalization period. Mid-2000’s to 2015 both actual and estimated 
GSDP show accelerated growth, possibly due to capital expansion and improved labour productivity. Slight 
divergence in certain years after 2015 suggests either policy interventions, exogenous shocks (e.g., 
demonetization, pandemic), or increasing non-linearities not captured by Multiple Linear Regression. 
Evaluation measures of the models: 
The linear part of the model estimated by Cobb Douglas Production function, Multiple Linear Regression and 
for non-linear estimation we have used CES Production Function (Zhang 2003). Plot obtained in Fig 6.3.5. 
shows the fit statistics of Cobb Douglas Production function, CES Production Function, Multiple Linear 
Regression and Log Linear Regression Model. 
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Fig 4.5: Predictive performance of the models 

CONCLUSION: 
Based on the comparative evaluation of three functional forms Cobb-Douglas, Constant Elasticity of 
Substitution (CES), and Multiple Linear Regression (MLR) for estimating Agricultural GSDP in Assam, the 
Multiple Linear Regression model emerges as the most accurate and robust estimator. It consistently 
outperforms the other models across all key statistical indicators, demonstrating the lowest values for Mean 
Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute 
Percentage Error (MAPE). These metrics underscore its superior goodness- of-fit and predictive accuracy. For 
future research and policy development, these models can be further enhanced by incorporating dynamic 
elements such as time trends, climatic variability, and technological progress. Additionally, applying these 
models to panel data across districts would allow for the exploration of spatial heterogeneity in production 
responses. This, in turn, can lead to more nuanced and targeted agricultural development strategies tailored to 
the specific needs and conditions of different regions within the state. 
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