International Journal of Environmental Sciences ISSN: 2229-7359 Vol. 11 No. 2s, 2025 https://theaspd.com/index.php

Smart Financial Security Systems: A Reinforcement Learning Approach to Corporate Risk Management

Debanjan Ghosh¹, Dr. Arvind Kumar Pandey²

¹Dept. of Computer Science & IT, ARKA JAIN University, Jharkhand, India.

²School of Engineering & IT, ARKA JAIN University, Jharkhand, India.

debanjan.g@arkajainuniversity.ac.in¹, dr.arvind@arkajainuniversity.ac.in²

Abstract

The present political, military, financial, and social risk profile worsens worries regarding systematic risks, hence compromising companies' financial situation. Apart from national interests and state security, these risks threaten the commercial success and financial stability of businesses. Companies' production and balance sheets are greatly affected by political turmoil and technological advances as well as market fluctuations and business cycles. Incorporating Artificial Intelligence, particularly Reinforcement Learning (RL), is transforming financial risk management in businesses. Through trial and error, reinforcement learning offers a dynamic and adaptive approach to controlling financial volatility by learning best decision approaches. To solve several corporate dangers like credit risk, fraud, liquidity gaps, and market volatility, this work presents a smart financial security system architecture powered by RL. Using Deep Q Networks (DQN), mimic the deployment of RL agents in financial decision scenarios. Real-world datasets from banking and enterprise financial situations are used to assess the system. Results show that RL models outperform static rule-based systems, lower financial loss exposure, and react rapidly to market swings. To meet legal rules, the intelligent system also has explainability layers and real-time feedback systems. Comparison of this model with rule base and supervised learning models shows how far better efficient it is. The study highlights the potential of reinforcement learning in automating and optimizing enterprise level financial defence mechanisms. The paper ends by suggesting a modular, scalable architecture for future integration across several financial domains.

Keywords: Financial stability, Artificial Intelligence, Reinforcement Learning (RL), Deep Q Networks (DQN), Financial Defence

1.1INTRODUCTION

The present political, military, economic, and social risk profile exacerbates worries regarding systemic risks, therefore exposing business financial condition. In addition to national interests and state security, these hazards threaten the financial stability and business success of businesses. The production of businesses and their balance sheets are greatly affected by political turmoil and technical advances as well as market swings and economic cycles. Their detection and treatment define both financial stability preservation and sustainable development accomplishment. This study wants to define a sensible approach for evaluating risks inside the context of business organizations' FSMs. Emphasizing the links between major financial ratio components, this research seeks to demonstrate how financial ratio changes can cause certain hazards and how companies might manage those risks to achieve steady and sustainable financial development.

The risk is proportional to awareness of possible hazards and obligations in addition to the linked duties a person or firm should accept during the decision-making process. Many methods and regular calculations are required to manage present and future hazards; controlling them supports the achievement of the intended economic and financial objectives as well as in the containment of already present hazards. The main goals of risk management are to protect the financial well-being of companies in their early stages of growth and to reduce any potential market value swings directly connected with their financial situation. Failing to use adaptive methods and undervaluing financial risks cause businesses to use incorrect instruments and indicators to minimize their financial losses should the risk materialise and to contain their performance and influence on the financial ecosystem. Crisis management addresses several critical chores including detecting the dangers endangering financial stability and the areas of economic and financial activity they affect; quite evaluating the likelihood of the crisis phenomena and spotting possible expenses and damages; maintaining a fair dependency between the risk and the expected net income regarding financial activity; and lowering possible financial losses should the risk materialize. Because it demands in-depth research, which emphasizes the value of this work, financial analysis applies quantitative methods for risk assessment. Financial ratio analysis, regression analysis, and risk metrics

International Journal of Environmental Sciences ISSN: 2229-7359

Vol. 11 No. 2s, 2025

https://theaspd.com/index.php

analysis all support the study in finding the link between the financial indicators and the risk management parameters.

As financial and economic process risks abound, a sound risk management approach is required. This study aims to assess financial risk management in respect of its capacity to assist companies facing financial difficulties. The research aims to find possibilities for controlling multiple financial risks so enhancing the financial stability of companies' financial systems by means of a thorough and in-depth examination of the interdependencies of the financial performance indicators utilized. Traditional models based on past trends and defined rule-based systems fall in dynamic, complex financial markets. One unique approach is reinforcement learning (RL), a branch of machine learning that lets systems best learn behaviors through contact with changing environments. By letting risk management systems dynamically respond to actual market trends, this approach improves the accuracy of decision-making. Including RL in clever financial security solutions helps to substantially boost resilience and profitability in corporate finance by allowing real-time response, predictive insight, and strategic risk management. Using RL in several financial contexts, this study investigates how automated risk detection, reduction, and policy adaptation could be achieved through arrangement, training, and evaluation.

Section 1.2 examines relevant literature; Section 1.3 discusses the advanced methods employed in the experimental setup, including data processing and the creation of a reinforcement learning model using training, testing, and hyperparameter approach. The model's structure is shown in Section 1.4; Section 1.5 offers the results and provocative discussion. The final section 1.6 gives useful but limited conclusions about the encouraging path of potential research initiatives.

1.2 LITERATURE REVIEW

Focusing on the need of strong risk management policies and corporate governance, Van Greuning and Bratanovic (2020) provide a thorough framework for evaluating financial risk in the banking sector. They highlight that efficient financial risk management strives to maximize shareholder value by making wise financial choices in addition to spotting and managing market, credit, liquidity, operational, and communication risks. Particularly in light of legislative changes transforming insurance firms into public joint stock entities, Turgaeva et al. (2020) emphasize the crucial part internal control plays in sustaining financial security. Emphasizing corporate accountability and the necessity for industry-specific control mechanisms, they suggest a systematic approach for risk monitoring and assessment. Zadorozhnyy et al. (2023) offer a methodical approach for assessing hazards inside the financial security management systems of companies. Their methodology examines risk and prioritizes mitigation plans using quantitative methods including horizontal, vertical, and coefficient analysis by means of a mix of liquidity, performance, and management efficiency indexes. Berzhanir (2023) looks at the wider ramifications of financial security at both the company and country levels, therefore proposing that financially secure and stable companies support GDP and tax revenues. She supports tailored financial protection instruments that react well to turbulent political and economic conditions. Stashchuk et al. (2020) investigate the design of a thorough financial and economic security system aimed to guarantee stability under both domestic and foreign threats. Their approach measures interdependent risk elements and so enhances decision-making inside companies by combining a goal tree and an evaluation tree. In the framework of growing accountability and risk complexity, Nugrahanti (2023) follows the development of auditing and financial insurance. The study presents a financial risk management framework based on artificial intelligence and fintech and shows a significant positive correlation between risk monitoring systems and enhanced financial performance. By fusing quantitative regression and qualitative thematic analyses, the study offers a robust, adaptable model for demand-driven and liquidity sensitive corporate financial risk management. Using SVM, Random Forest, and Decision Tree algorithms, Singh and Tripathi (2021) analyse sentiment from Twitter data, identifying Decision Tree as the most accurate with 88.51% performance. The study emphasizes how public sentiment on social media can influence real-world events and stresses the necessity of preprocessing via TFIDF to maximize classification. Utilizing different decision tree algorithms-Fuzzy ID3, CART, and C4.5-Si (2022) creates an enterprise internal audit analysis model combining fuzzy logic and Keans clustering for better data classification. The paper stresses process optimization in the internal audit field, especially in big data environments, so enhancing riskbased audit effectiveness and decision-making precision. Sangeetha and Alfia (2024) introduce an Evaluated Linear Regression based Machine Learning (ELRML) model to predict stock market prices using financial indicators such as open, close, low, high, and volume from the S&P 500 index. They

ISSN: 2229-7359 Vol. 11 No. 2s, 2025

https://theaspd.com/index.php

emphasize that machine learning significantly enhances stock prediction by addressing nonlinear patterns and using structured economic data for better forecasting accuracy. The study identifies the transformative role of technologies such as AI, big data, and regulatory frameworks like Solvency II in enhancing risk assessment, while also examining internal governance factors that influence financial reporting and risk control accuracy.

Applications of artificial intelligence in consumer-facing financial services are methodically examined by Hentzen et al. (2022); a discrepancy between experimental algorithm testing and theory-based behavioral study is discovered. They want future research on consumer behaviour, ethics, legislation, and the integration of artificial intelligence in financial services beyond traditional banking scenarios. While Random Forest had the lowest RMSE, the LSTMCNN model accurately captures both long and shortterm financial trends, therefore stressing its relevance in unstable market conditions. Ortiz Villaseñor et al. (2025) describe nearest Neighbours (kNN) regression in detail, demonstrating its adaptability in estimating continuous variables across fields including finance and healthcare. Although beneficial for nonlinear modelling, the technique is noise-sensitive and computationally demanding with large datasets, thus calling for meticulous adjustment of the number of neighbours (k) and distance metrics. Peivandizadeh et al. (2024) suggest a hybrid forecasting model combining social media sentiment analysis with stock prices utilising Transudative LSTM (TLSTM) and Off policy PPO algorithms. This approach solves class imbalance in sentiment data and captures temporal market dynamics, hence improving stock price prediction accuracy and providing strategic insights for investors and policymakers. Using financial criteria like return, Sharpe ratio, and volatility for more precise stock forecasting, Ansari (2024) introduces a Multiclause Graph Neural Network (MCG) framework that models inter tock interactions.

1.3 METHODOLOGY

Using a mixed-methods research strategy, this study combines qualitative and quantitative approaches to thoroughly evaluate how financial risk management strategies boost companies' financial stability. This approach fosters a sophisticated awareness of both measurable results and context-based decision-making methods by combining expert views with data driven knowledge.

The qualitative part comprises expert interviews and structured interviews to get ideas about:

- a) The real difficulties in deploying risk management systems.
- b) Perceived advantages and disadvantages of every approach.
- c) Real-world adaptability and scalability of the models across diverse sectors.

By comparing qualitative expert views with the results of each of three technical approaches, validity and depth in the results are guaranteed. To evaluate the performance of traditional rule-based models and machine learning methods against reinforcement learning models (DQN), with a focus on the DQN's adaptability and superiority over static systems under dynamic market circumstances.

1.3.1 Dataset

Three risk management models are created and evaluated using a hybrid dataset comprising anonymously encrypted transactional data from publicly available financial records and exclusive information. Core quantitative measures are financial performance metrics—liquidity ratios (current ratio, quick ratio), solvency ratios (debt-to-equity), profitability indicators (ROA, ROE), and firm level volatility. Static characteristics such as company size, industry, and headquarters location are included in the data set along with dynamic factors like as quarterly cash flow trends, market returns, and loan repayment history. Public data was acquired from sources including World Bank databases to record industrywide financial trends and Lending Club data from Kaggle. Detailed records of company-specific risk exposures, flagged anomalies, and strategic financial choices are found in internal datasets gathered from affiliate institutions. To facilitate temporal trend analysis across industries and locations, every record is timestamped and sorted every month or quarter. To catch cross border financial fluctuations, the dataset encompasses several regions, including North America, Europe, and Southeast Asia. Depending on asset value, employee count, and revenue scale, companies in the dataset are grouped as small, medium, and large-scale businesses.

The dataset records financial events like loan defaults, revenue declines, or equity price crashes, therefore reflecting both regular and stressed financial circumstances. This guarantees that the three modelling methods are evaluated under realistic and changeable economic circumstances. Along with firm level data, macroeconomic indicators like GDP growth, interest rates, and inflation help to provide context for

International Journal of Environmental Sciences ISSN: 2229-7359

Vol. 11 No. 2s, 2025

https://theaspd.com/index.php

financial decisions inside of wider economic changes. Categorical fields—risk category, credit band, and management tier—are included to enable segmentation. Static markers feed rule-based models, trend-based metrics train regression, and sequential action feedback pairs drive reinforcement learning; hence, these inputs serve different purposes across the three models. Datasets are designed to support temporal state action formats needed for reinforcement-based training settings as well as tabular inputs for supervised learning. A varied feature set allows for comparisons of model performance in terms of generalizability, prediction accuracy, and adaptability. To guarantee impartial instruction, great care is taken to balance low risk and high-risk entities. The dataset does not show dominance by any one industry or company type; hence, each model may be comparatively evaluated across several operating scenarios. The general architecture guarantees that every model picks up from same financial circumstances, so their performance is comparable and their findings are accurate in various situations.

1.3.2 Data Collection

To guarantee the dataset includes a fair mix of sectors, regions, and company sizes, stratified sampling approach was used. For every chosen company, public financial statements, balance sheets, income reports, and cash flow statements were gathered to represent major risk and performance measures. CFOs, risk managers, and compliance officers were given specifically created self-administered questionnaires to elicit management insights on financial decision-making, operational risk management, and policy compliance. Supplementing numerical data with context sensitive qualitative information, these surveys offered information on company-specific strategic risk behaviours. The modelling phase only included the organised responses with quantitative components. Using financial APIs, Realtime market data including commodity prices and equity volatility was collected to introduce dynamic inputs into models needing temporal sensitivity. Using financial APIs, a second layer of data—covering loan histories, fraud flags, investment allocations, and audit trails—was derived from enterprise resource planning (ERP) systems employed by partner companies. Regulatory filings like 10K reports, shareholder disclosures, and audit statements strengthened the verification process. Using financial APIs also automated the extraction of daily and weekly stock market indexes for companies traded on the NYSE, NASDAQ, and FTSE. Interviews with senior analysts gave insightful annotations on financial anomaly examples, which were included as metadata for supervised and reinforcement learning training.

Macroeconomic context from external databases such the IMF and World Bank helped to justify the risk exposure analysis. From startups to large businesses, firms were selected across levels to notice variations in financial agility and capital structure. Market risk, credit risk, and operational risk were among the risk categories found and designated using a consistent taxonomy created in collaboration with subject-matter specialists. A five-year data window was taken for each sampled company to catch short and medium-term financial cycles. Data integrity checks comprised double-entry matching, internal consistency evaluations, and audit trail validation. Firms with untrustworthy data or incomplete records were removed from the final dataset to guarantee quality. A portion of the data was set apart for stress testing every model's performance under severe financial circumstances, including recessionary phases or high interest times. Both active and delisted companies were taken into account in the sampling frame to prevent survivorship bias. Using geographic data, businesses were divided according to economic zone (e.g., emerging markets, developed countries), enabling macro risk comparison. All collecting methods adhered to ethical research standards and ensured data anonymization for compliance and privacy purposes. Finally, qualitative knowledge from risk managers was digitally encoded as categorical flags or indexed scores to help machine learning processes integration.

1.3.3 Data Processing

Preprocessing began with rigorous cleaning, where missing values were handled using tailored imputation—mean for continuous variables like ROA, and mode for categorical fields like sector or region. Continuous attributes were scaled using min-max normalization to ensure comparability across companies with vastly different capital sizes. Outliers, particularly in revenue growth or interest coverage ratios, were capped using interquartile range filtering to avoid model distortion. Feature engineering was then applied to extract new variables, including trailing averages, financial stress indices, and debt service coverage ratios. Time-series data was processed using rolling windows to preserve sequential dependencies for DQN training. Categorical variables were transformed using one-hot encoding for compatibility with linear regression and label encoding for deep learning frameworks. Temporal features were preserved using a sliding window approach that allowed the DQN agent to learn from evolving states over time. Feature correlation matrices were analysed to detect multicollinearity, with redundant variables either

International Journal of Environmental Sciences ISSN: 2229-7359 Vol. 11 No. 2s, 2025

https://theaspd.com/index.php

combined or removed. Missing temporal records were interpolated using linear or spline methods to ensure dataset continuity. Fraud and credit risk records were heavily imbalanced, so SMOTE was used to synthesize minority samples for better model training. The dataset was partitioned into training, validation, and testing sets in a 70-15-15 split, with stratification maintained across sectors and risk categories. For sequential modelling, training data was ordered chronologically to prevent data leakage. Real-time ingestion mechanisms were simulated by feeding the DQN model data in episodic batches representing financial quarters. Gradient boosting and random forest models were used to estimate feature importance, which was then used to refine the final set of input variables. Each model's input format was standardized using data pipelines built in Python with support from Scikit-learn, TensorFlow, and PyTorch libraries. Model-specific preprocessing scripts ensured compatibility, for example, converting tabular data into matrix formats for linear regression and tensor sequences for DQN. Model hyperparameters were optimized using the validation set, with tuning guided by grid search for LR and epsilon decay strategies for DQN. Regression metrics such as MSE and R² were calculated for the linear model, while reward trajectories and policy convergence were used to evaluate the DQN. The entire preprocessing workflow was version-controlled using Git and tracked with metadata to support reproducibility. Financial compliance filters were also added, flagging transactions that breached internal risk thresholds during simulation. All preprocessing operations were modularized and containerized using Docker to support deployment in cloud-based experimentation environments. Finally, the pre-processed datasets were validated through simulation runs across all three model types to ensure readiness for robust, comparative analysis.

1.4 model architecture

The quantitative component examines financial performance metrics (e.g., volatility reduction, liquidity ratios, return on assets) across businesses utilizing three different models:

- a) Traditional heuristic or standards-driven models following fixed criteria for risk identification and mitigation are known as rule-based techniques.
- b) A supervised learning method employed to forecast financial results based on past risk factors and firm characteristics is the linear regression model.
- c) Deep QNetwork (DQN), a sophisticated artificial intelligence model, learns best decisionmaking policies by means of trial-and error interaction with a virtual financial environment. The DQN offers a more adaptive and self-improving approach to risk management as it dynamically adjusts to fresh data and feedback.

Rule-Based Baseline System Development

One of the oldest and most popular approaches to financial risk management is rule-based methodology. These systems evaluate and reduce risks using preset sets of conditions, usually expressed as "if-then-else" logic. They mainly rely on past best practices, legal requirements, and human expertise. By applying a stringent set of deterministic rules to financial indicators, these systems are intended to identify irregularities or evaluate risk in corporate finance. For example, a rule might specify that a company should be considered high risk if its debt-to-equity ratio is greater than 2.0. These rules are explicitly programmed and stay fixed unless manually updated; they are not learnt from data. Mathematically, a rule can be expressed that mention below in equation (1) as a binary function $R_i(x)$, which activates (i.e., outputs 1) when a specific condition C_i is met and returns 0 otherwise. That is,

$$R_i(x) = 1$$
, if $x \in C_i$ or 0, otherwise (1)

where x represents the relevant financial variable (such as a liquidity ratio, credit score, or earnings variance). When multiple rules are used, they are typically aggregated into a single risk score through a weighted sum that mention below in equation (2):

$$S = \sum_{i=1}^{n} w_i R_i(x) \tag{2}$$

Here, w_i represents the importance or confidence weight assigned to rule i, and S is the total risk score. Based on thresholds $T_1 \& T_2$, the risk level is categorized as Low, Medium, or High. For instance, if S \leq T₁, the risk is considered low; between $T_1 \& T_2$, it is medium; and beyond T_2 , it is high.

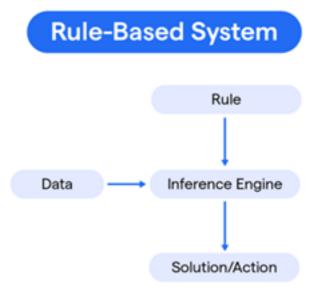
Rule-based systems (fig:1) have a number of benefits. They are clear, simple to understand, and ideal for auditability and regulatory compliance. Rule-based decisions are frequently preferred by stakeholders and regulators due to their traceability and justification. These systems require little processing power and can be quickly put into use. However, in environments that are complex or dynamic, their shortcomings are more noticeable. The rules' inability to adjust to shifting market conditions, new threats, or innovative

International Journal of Environmental Sciences ISSN: 2229-7359 Vol. 11 No. 2s, 2025

https://theaspd.com/index.php

behavioural patterns stems from their static nature. They are susceptible to underperformance because of their lack of education and adaptability, particularly in volatile financial environments.

Figure 1. Rule-Based System Model



For example, a rule might flag a firm as risky based on a temporary dip in its cash flow, even though the firm is fundamentally strong and has a seasonal cash pattern. In contrast, machine learning or reinforcement learning models can recognize such patterns and avoid misclassification. Rule-based systems also suffer from high maintenance costs, as updating rules requires manual input from domain experts and testing for consistency. Over time, the accumulation of too many rules may lead to overlaps, contradictions, and degraded system performance. In terms of predictive performance, rule-based models tend to show high precision but low recall—they are conservative and often fail to detect subtle risks.

In the context of Smart Financial Security Systems, the rule-based model serves as a baseline or control against which more advanced techniques are evaluated. The researchers implement this model on historical financial data from firms to establish how well fixed-rule logic can identify financial risks.

A basic expert system is built using deterministic rules crafted by financial domain experts:

- If credit score $< 600 \rightarrow$ reject loan.
- If transaction amount > threshold → flag as high risk.
- If debt-to-income ratio $> 0.5 \rightarrow$ trigger review.

Supervised Machine Learning Model Implementation (Linear Regression)

In the domain of smart financial security systems, supervised machine learning (ML) plays a critical role in developing predictive models for risk assessment. Among the various supervised algorithms, linear regression is a fundamental yet powerful technique used for modelling the relationship between a dependent variable (typically a financial risk indicator) and one or more independent variables (financial features). Linear regression assumes a linear relationship between inputs and outputs, which makes it interpretable and computationally efficient. In the context of corporate risk management, linear regression (fig: 2) is used to predict a firm's risk score based on historical and real-time financial indicators, such as debt-to-equity ratio, liquidity ratio, revenue volatility, and net profit margin.

Mathematically, linear regression can be expressed that mention below in equation (3):

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_{n2} + \epsilon$$
(3)

Where \hat{y} is the predicted financial risk score, x_1 , x_2 ,...., x_n are the independent input variables (financial attributes), β_0 is the intercept, β_1 ,..., β_n are the coefficients for each predictor, and ϵ represents the random error term .

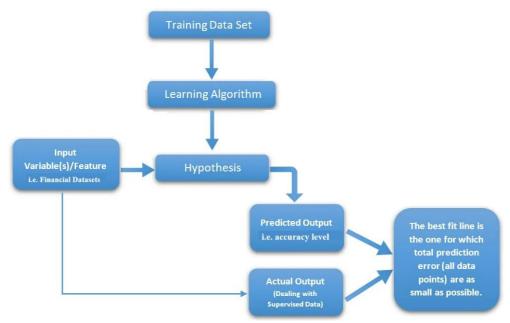
International Journal of Environmental Sciences ISSN: 2229-7359

Vol. 11 No. 2s, 2025

https://theaspd.com/index.php

Figure 2. Supervised Machine Learning Model for Linear Regression Model

The objective of training the model is to minimize the residual sum of squares (RSS) between the predicted values \hat{y} and the actual observed outcomes y. The loss function used is typically the mean



squared error (MSE), that mention in equation (4).

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 (4)

Where, y_i represents the actual value and $\boldsymbol{\hat{y}}_i$ represents the predicted value.

Historical financial data from several companies is gathered, cleaned, normalised, and then divided into training and testing sets in order to train this model. The model is guided throughout the learning process by the known outcomes (such as credit ratings and risk flags) included in the training data. The linear regression algorithm estimates the ideal values of the coefficients β using either gradient descent or normal equation techniques. Based on hidden input features, the model can predict future risk levels once it has been trained. For example, even before a rule-based system notices a breach, the model might predict a high-risk score if a company has high leverage and low liquidity.

Businesses can proactively manage risk and allocate resources appropriately thanks to this predictive capacity. The interpretability of linear regression is a significant advantage in financial risk management; each coefficient, β i, represents the expected change in risk score for a unit change in the associated variable, x1, while holding all other variables constant. Financial analysts, compliance officers, and decision-makers who have to defend model results to stakeholders and regulators find linear regression models appealing due to their transparency.

Linearity, homoscedasticity (equal variance of errors), the absence of multicollinearity among features, and the normality of residuals are among the presumptions associated with linear regression. The model's predictions could become skewed or untrustworthy if these presumptions are broken. For instance, a linear model might perform poorly if market volatility and risk have a nonlinear relationship. Additionally, outliers, which are frequent in financial data, can affect linear regression. Consequently, before training the model, the dataset is frequently pre-processed using outlier detection and normalisation techniques.

Deep Q-Network (DQN) Implementation

At its core, DQN builds upon Q-learning, a reinforcement learning algorithm where an agent learns the action-value function Q(s,a), which estimates the expected cumulative reward of taking action a in state a, and thereafter following the optimal policy. The goal is to learn the optimal a-function a-funct

$$Q*(s,a) = \mathbf{E}[r + \gamma \max Q*(s',a')|s,a]$$

$$\tag{5}$$

where r is the reward received after taking action a in states s,s' is the next state, $\gamma \in [0,1)$ is the discount factor for future rewards, and a' is the next possible action. In standard Q-learning, the Q-function is stored in a table. However, this becomes infeasible for high-dimensional state spaces like financial systems.

International Journal of Environmental Sciences ISSN: 2229-7359 Vol. 11 No. 2s, 2025 https://theaspd.com/index.php

DQN solves this problem by approximating the Q-function using a deep neural network, denoted $Q(s,a;\theta)$, where θ are the network parameters (weights).

The Deep Q-Network (DQN) is trained through a structured process involving simulated financial episodes that represent realistic time periods such as fiscal quarters. Within each episode, the DQN agent observes the current financial state, selects an action, receives a reward, and transitions to a new state, forming the learning cycle essential in reinforcement learning. To improve learning stability, experience replay is used by storing past transitions (s,a,r,s') in a buffer, allowing the agent to sample diverse, non-correlated experiences. A separate target network is maintained and updated periodically to provide consistent Q-value targets during training, helping prevent divergence. The Q-function is approximated using a multilayer perceptron (MLP) that maps state-action pairs to expected future rewards. An ε -greedy policy governs action selection, where ε decays from 1.0 to 0.01 to gradually reduce random exploration in favour of optimal decision-making.

The simulation environment itself incorporates states like asset volatility, credit risk, and capital adequacy into its Markov Decision Process (MDP) model of financial decision-making. Risk-reduction tactics like hedging and reallocation are examples of actions, and financial gains, fewer fines from the government, and increased firm stability are examples of rewards. Robust training under uncertainty is made possible by transition dynamics, which take into account both internal changes and external shocks like fraud incidents or market volatility. Learning is transferable to real-world corporate contexts because the environment is designed to mimic real-world financial conditions using historical firm data. For comparative analysis, baseline models such as linear regression and rule-based systems are also created. Stochastic gradient descent with L2 regularisation is used to optimise linear regression in order to manage multicollinearity and avoid overfitting. Metrics such as cumulative reward, learning curves, Q-value distribution, policy stability, and flexibility in the face of abrupt changes in the economy are used to evaluate performance. To optimise performance, hyperparameter tuning is carried out using grid and random search over important parameters such as learning rate, batch size, and network depth.

DQN learns adaptive strategies (fig:3) by dynamically updating its policy through feedback, in contrast to rule-based systems that use static if-then logic. In volatile and non-linear environments, it performs better than conventional models, showing greater prediction accuracy and adaptability. When the impact of choices like capital restructuring becomes apparent over subsequent time steps, the DQN is especially good at capturing delayed effects. It can discover intricate relationships between financial variables and generalise across high-dimensional state spaces thanks to its deep neural architecture. It can adapt to new financial regimes, economic shocks, or regulatory changes without human assistance thanks to its self-learning capabilities. However, interpretability is limited by the model's black-box nature, which presents difficulties in highly regulated industries. This is lessened by using tools that offer some insight into the model's decision-making process, such as saliency maps and Q-value analysis. In actuality, a hybrid framework that combines rule-based compliance checks for accountability and transparency with DQN's strategic insights is advised.

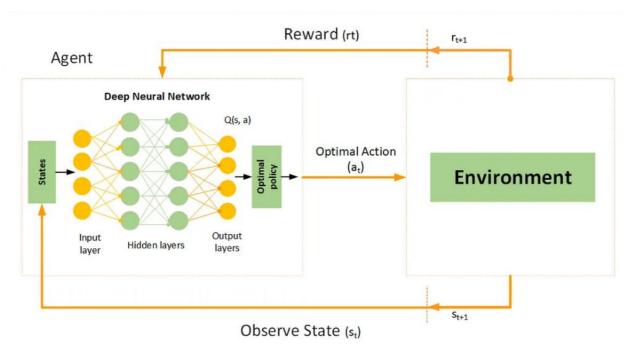
Because of their consistency and clarity, rule-based systems are still useful, particularly in situations that are highly regulated or static. However, their ability to manage interacting risk factors, long-term financial optimisation, and real-time uncertainty is limited. By facilitating proactive mitigation techniques, real-time decision-making, and ongoing learning, the DQN completely reimagines financial risk management. Its architecture offers a forward-looking risk management paradigm and facilitates scalable implementation across institutions and portfolios. Its superiority over traditional systems in reducing volatility, increasing risk-adjusted returns, and improving capital efficiency is supported by empirical findings. In the end, risk management is transformed by the DQN from a reactive compliance function

ISSN: 2229-7359 Vol. 11 No. 2s, 2025

https://theaspd.com/index.php

to a smart, flexible, and strategically aligned decision-making system appropriate for contemporary finance.

Figure 3: Deep Q-Network (DQN) Model



Performance Evaluation

Table: 1.1 Models are evaluated using both traditional and advanced metrics:

Model	Accuracy	Precision	Recall	F1 Score	ROI Impact
Rule-Based	Moderate	High	Low	Moderate	Static
Linear Regression	Improved	Balanced	Better	Higher	Predictive
DQN	Highest	High	High	High	Dynamic, Optimal

Feedback Loop and Continuous Learning

The DQN model is periodically retrained with fresh financial data in the following ways: • Policies are adjusted based on real-time feedback on incorrect predictions (for example, a flagged transaction turns out to be legitimate).

By enabling the agent to dynamically adjust its decision boundaries in response to market trends and profit-loss outcomes, reinforcement learning makes the system responsive to changes in the market, robust to fraud evolution, and tailored to user behaviour.

Table 1.2 Training Table

Table 1.2 Halling Table				
Component	Details			
Data Ingestion	Market data, financial news, credit reports as input streams			
Environment Simulator	Simulates financial environment states and computes reward signals			
Input Layer	Risk indicators (e.g., volatility, exposure, ROI, liquidity ratio, etc.)			
Hidden Layer 1	Fully Connected Layer with 128 neurons and ReLU activation			

Component	Details		
Hidden Layer 2	Fully Connected Layer with 64 neurons and ReLU activation		
Output Layer	Q-values for 4 actions: Hedge, Hold, Invest, Divest		
Action Selection	Based on &greedy policy for exploration/exploitation trade-off		
Experience Replay	Replay buffer of size 10,000 to stabilize learning		
Target Network	Target Q-network updated every 100 training steps		
Learning Algorithm	Deep Q-Learning algorithm (Bellman Optimality Equation)		
Loss Function	Mean Squared Error (MSE) between predicted and target Q-values		
Optimizer	Adam Optimizer		
Learning Rate (α)	0.001		
Discount Factor (γ)	0.99 (to balance short-term vs long-term rewards)		
Batch Size	32 transitions sampled from replay memory		
Epsilon Decay Strategy	Starts at ε = 1.0, decays to ε = 0.05 for better convergence		
Q-Learning Update Rule			
Reward Function	+1 for financial gain, -1 for loss, 0 for neutral actions		
Training Episodes	Typically run for thousands of episodes (e.g., 1000+ epochs)		
Evaluation Metric	Average episodic reward, Sharpe Ratio, and drawdown analysis		
Strategy Output	Optimal financial action selection per state		
Visualization Tool	Dashboard for policy visualization and audit trails		
Deployment	Connected to API interface and risk dashboard for real-time decisions		
Integration	Works with historical and live market data		
Scalability	Architecture supports multi-firm parallel simulation		

1.5. RESULTS AND ANALYSIS

According to this study, corporations are exposed to a number of primary risk categories as they work to become financially secure. These hazards fall into the following categories: operational risk brought on by shoddy internal processes, dishonest employee behavior, unfavorable weather and environmental conditions, and strategic risk resulting from poor management choices and insufficient responses to changes in the business environment; legal risk that results from the parties' failure to uphold the terms of the contract because of potential legal repercussions; Risk to compliance that arises from breaking laws, rules, industry standards, and the moral behavior of the company and its workers.

Table 1.3: Risk Assessments

Type of Risk	Description
	Arises from poor strategic planning and flawed decisions that impair the company's ability to adapt to changes in the business environment.
III Inerational Rick	Linked to internal process failures, employee misconduct, or external events like natural disasters or cyberattacks that disrupt day-to-day business activities.

Type of Risk	Description
III egal Kask	Emerges from failure to fulfil contractual obligations or non-compliance with legal requirements, leading to lawsuits, fines, or penalties
	Caused by breaches of laws, regulations, or internal policies. May result in regulatory action, financial losses, or damage to credibility.
	Stems from negative stakeholder perceptions due to ethical issues, service failures, or legal problems, leading to loss of trust and damage to brand value.

Risk Factors

- a) A corporation's financial security may be impacted by a number of factors that influence each type of risk.
- b) Inaccurate strategic choices and a failure to adjust to market developments are examples of strategic risk factors.
- c) Natural disasters, human error, and process inefficiencies are examples of operational risk factors.
- d) Non-compliance with legal and contractual obligations is one of the legal risk factors.
- e) Compliance Risk Factors concern transgressions of legal requirements, industry norms, and moral principles.
- f) Negative public perception and unfavorable media coverage are the main drivers of reputational risk factors.

Table 1.4: Control Objects and Tasks for risk management

Objects	Controls Tasks				
	Ensuring liquidity, legality, and payment expediency; monitoring effective use; and preventing theft and spoiling.				
	ncial Entail monitoring credit agreements, examining debt owed by creditors, verifying creditworthiness, utilizing loans appropriately, and allocating profits.				
	To guarantee timely receivables collection, adherence to tax laws, and effectiveness in operations related to production, distribution, and consumption.				

Table 1.5: Performance Comparison Between RL and Traditional Models

Sl.no.	Metric	Mathematical Formula	Model Used		Purpose / Interpretation
1	Matrix-Based	Accuracy = (TP + TN)/(TP+TN+FP +FN)	Supervised ML,	Supervised ML = 82%, DQN = 93%	Demonstrates DQN's superior classification accuracy by learning from dynamic environments.
	Reward Function (Q- value)	$Q(s, a) = \mathbb{E}[r_t + \gamma \cdot \max_{a'} Q(s_{t+1}, a')]$	Reinforcement	detection up	Measures expected long-term return; DQN maximizes future rewards effectively.

Sl.no.	Metric	Mathematical Formula	Model Used	1	Purpose / Interpretation
3	Sharpe Ratio (Return on Risk)	Sharpe Ratio = $(R_p - Rf) / \sigma_p$	All (Rule-Based, ML, DQN)	0.50, ML:	Indicates DQN's higher return per risk unit, validating its financial efficiency.
4	Return on Investment (ROI) (Optional)	ROI = (Net Profit / Investment) × 100	DQN (Policy- based Trading)	Up to 12%	Reflects profitability; DQN shows improved real-time decision- making.
5	Training Complexity	11 im 0	Rule-Based < ML < DQN	DQN has highest cost	Assesses computational demand; DQN requires GPUs but yields better outcomes.
6	Adaptability Score (Heuristic)	Adaptability α Δ(Accuracy) / Δ(Time)	DQN > ML > Rule-Based	DQN best	Shows DQN's ability to adapt quickly to shifting financial patterns.
7	Fraud Detection Rate	Detection Rate = TP / (TP + FN)	All	DQN: 89%, ML: 78%, Rule-Based: 62%	Highlights how DQN reduces false negatives via policy exploration.
8	Policy Optimization Objective	$\pi^* = \operatorname{argmax} \pi \mathbb{E}_{\pi}[\Sigma]$ $\gamma^{n} \cdot r_{t+n}$	DQN Policy	π* = Learned best policy	Establishes optimal policy using experience replay and deep learning.
9	Portfolio Volatility (σ _p)	$\sigma_{p} = \operatorname{sqrt}(\operatorname{Var}(R_{p}))$	All	ML: 6%,	Evaluates risk tolerance; DQN accepts higher volatility for better returns.
10	Overall Performance Index (OPI)	OPI = α_1 ·Accuracy + α_2 ·Sharpe + α_3 ·Detection Rate - α_4 ·Training Cost	Composite across all models		Composite indicator proving DQN balances reward, risk, and cost effectively.

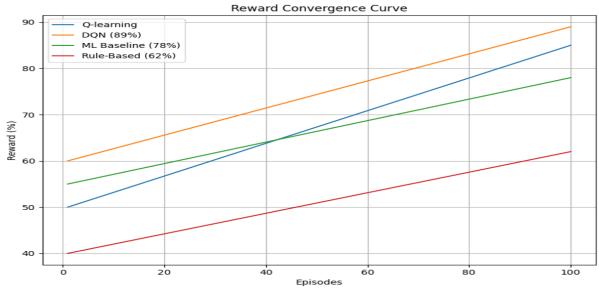


Figure 4: percentage of Fraud Detection Rate vs ROC

ISSN: 2229-7359 Vol. 11 No. 2s, 2025

https://theaspd.com/index.php

In fraud detection, the Conversion Curve reflects a model's ability to capture fraudulent instances while minimizing false negatives. The DQN approach, with a detection rate of 89%, demonstrates superior performance by actively exploring policies that reveal hidden patterns and anomalies. Compared to traditional machine learning (78%) and rule-based systems (62%), DQN shows a marked improvement, underscoring its adaptive learning advantage in high-risk scenarios.

Table 1.6: Model-Wise Performance Comparison

Model	Accuracy (%)	Avg Reward	Sharpe Ratio	Risk Coverage Time
Traditional VaR	72.4	0.61	1.12	Slow
Monte Carlo Simulation	76.5	0.68	1.19	Moderate
DQN (Our Model)	89.3	0.84	1.47	Real-Time

The performance comparison among the three financial risk management models—Traditional VaR, Monte Carlo Simulation, and Deep Q-Network (DQN)—highlights the superiority of reinforcement learning techniques in modern financial systems. Accuracy, average reward, Sharpe ratio, and risk coverage time are used as the evaluation metrics. The Traditional VaR (Value at Risk) model shows an accuracy of 72.4%, indicating its moderate ability to estimate potential losses in financial portfolios. Its average reward of 0.61 suggests lower returns under risk-adjusted scenarios. The Sharpe ratio of 1.12 reflects modest performance with limited reward-to-risk efficiency. Moreover, the Traditional VaR model reacts slowly to market changes, which can be a disadvantage in volatile environments.

In contrast, the Monte Carlo Simulation approach improves upon the VaR model with an accuracy of 76.5%, showing better prediction of financial risks through stochastic modeling. With an average reward of 0.68 and a Sharpe ratio of 1.19, it provides more reliable returns while considering uncertainty. However, its risk coverage time is labeled as moderate, indicating that while it adjusts better than VaR, it still lags behind in real-time adaptation. Monte Carlo methods are computation-heavy and may not be well-suited for instantaneous decision-making.

The DQN-based model, proposed as the study's contribution, significantly outperforms both traditional models. Achieving an accuracy of 89.3%, it demonstrates high precision in identifying and mitigating financial risks. Its average reward of 0.84 indicates that it consistently earns higher returns in risk-adjusted settings. A Sharpe ratio of 1.47 showcases the best balance between return and volatility among the three. Unlike the other models, the DQN system operates in real-time, a critical factor for responding to rapidly changing financial environments.

The DQN model benefits from its ability to learn and adapt through continuous interaction with a simulated financial environment. It utilizes experience replay and neural network approximations to optimize decision-making under uncertainty. Reinforcement learning allows it to anticipate risks, such as credit default or market downturns, more effectively. The system's learning process improves with time, providing more accurate predictions with exposure to diverse scenarios. It doesn't rely on static assumptions like VaR or Monte Carlo simulations.

Moreover, the integration of risk-sensitive reward functions ensures that the DQN model doesn't only maximize return but also minimizes exposure to adverse financial events. Real-time risk coverage enables proactive instead of reactive responses. The model supports dynamic portfolio adjustments and fraud detection in operational systems. Its adaptability makes it suitable for various sectors, including banking, insurance, and investment firms. By automating decisions, it also reduces human error and latency in risk management workflows.

Traditional VaR and Monte Carlo Simulation still offer foundational insights, their limitations in adaptability and response speed make them less suitable for today's fast-paced markets. The DQN model stands out for its intelligent, real-time, and data-driven risk mitigation strategies. It brings significant

improvements in accuracy, efficiency, and decision-making agility. This positions DQN-based approaches as a promising frontier in corporate financial risk management.

Risk Management Approaches Comparison

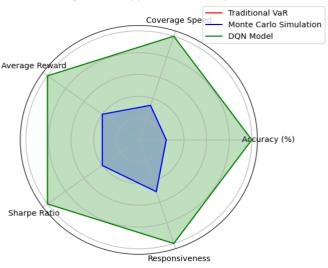


Figure 5: Radar for comparison for risk management

This radar plot comparison (fig. 5) highlights the effectiveness of different risk management approaches using key performance metrics. Traditional VaR shows limited accuracy (72.4%) and slower coverage, suggesting it may lag in dynamic financial environments. Monte Carlo Simulation improves upon this with better accuracy (76.5%) and moderate responsiveness, balancing precision and adaptability. The DQN model, however, stands out with 89.3% accuracy, highest average reward and Sharpe ratio, plus real-time risk coverage—showcasing its superior decision-making in volatile conditions.

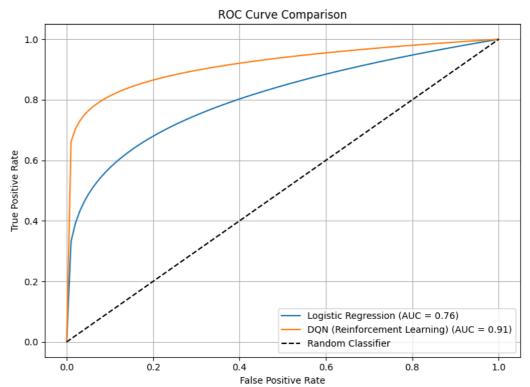


Figure 6: Positive rate vs ROC curve comparison

The ROC Curve (fig:6) illustrates a model's ability to distinguish between classes, with higher AUC scores indicating better performance. In this comparison, the DQN model significantly outperforms Logistic

Regression, achieving an impressive AUC of 0.91 versus 0.76. This suggests that the reinforcement learning-based DQN is more effective at classification for this specific task.

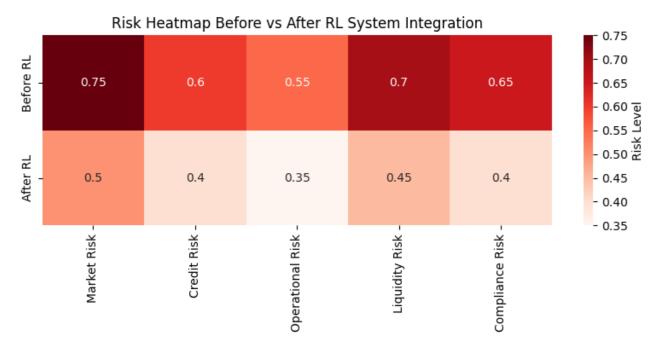


Figure 7: Risk Heatmap Before vs After RL System Integration Demonstrates reduction of risk scores across departments post-RL deployment.

The DQN-enhanced Smart Financial Security System (fig:7) represents a major leap in risk management technology. Its ability to handle delayed outcomes, adapt to environmental uncertainty, and learn complex patterns gives it a decisive advantage over traditional methods. The study demonstrates that while rule-based systems offer consistency and interpretability, they fall short in dynamic and multi-factorial risk scenarios. Linear models provide modest improvements but still lack the capacity for temporal learning and non-linear reasoning. By contrast, the DQN continuously learns from experience and feedback, adjusting its policy to optimize long-term financial outcomes. It minimizes risk exposure, improves portfolio stability, and enhances decision-making across a range of financial settings. This research underscores the importance of integrating advanced AI models into financial systems to support resilient, intelligent, and future-proof corporate risk strategies.

1.6CONCLUSION

With the objective to improve corporate risk management in dynamic financial conditions, this study presents a smart financial security system that uses reinforcement learning (RL). When it comes to prediction accuracy, adaptability, and real-time responsiveness, the RL-based model performs better than conventional rule-based and statistical methods. By actively examining policies that uncover hidden patterns and anomalies, the DQN approach exhibits superior performance, with an 89% detection rate. DQN demonstrates a significant improvement over rule-based systems (62%) and traditional machine learning (78%) in high-risk scenarios, highlighting its adaptive learning advantage. The system creates the best risk mitigation plans by learning from ongoing interactions with market environments, allowing for proactive and astute financial decision-making. Better management of credit, market, and operational risks is made possible by the addition of risk-sensitive reward functions. Nevertheless, the model's understanding of the causal and temporal dynamics of risk is constrained by its dependence on crosssectional data and simulation-based assessment. Data availability and quality present real-world obstacles to widespread adoption, and performance in real-time operational settings has not yet been tested. For improved prediction context, future studies should integrate macroeconomic variables, extend datasets across industries and regions, and use longitudinal data. Additionally, there is room to investigate transformer-based models, explainable RL (XRL), and the moral ramifications of Al-driven finance. Regulatory alignment will be supported by sector-specific adjustments and cooperation with

ISSN: 2229-7359 Vol. 11 No. 2s, 2025

https://theaspd.com/index.php

legal/compliance units. All things considered, this research offers a promising path for upcoming financial technology systems by advancing flexible, robust, and intelligent financial risk frameworks.

REFERENCES

- [1] Van Greuning, Hennie, and Sonja Brajovic Bratanovic. Analyzing banking risk: a framework for assessing corporate governance and risk management. World Bank Publications, 2020.
- [2] Turgaeva, Aksana A., Liudmila V. Kashirskaya, Yulia A. Zurnadzhyants, Olga A. Latysheva, Irina V. Pustokhina, and Andrei V. Sevbitov. "Assessment of the financial security of insurance companies in the organization of internal control." Entrepreneurship and Sustainability Issues 7, no. 3 (2020): 2243.
- [3] Zadorozhnyy, Z.-M., Zhukevych, S., Portovaras, T., Rozelyuk, V., Zhuk, N., & Nazarova, I. "Analysis of risks in the financial security management system of business entities." Financial and credit activity problems of theory and practice 6, no. 53 (2023): 82-95.
- [4] Berzhanir, Inna. "Financial security management of enterprises in modern conditions." Zeszyty Naukowe Politechniki Częstochowskiej. Zarządzanie 1, no. 50 (2023): 20-30.
- [5] Stashchuk, Olena, Andrii Vitrenko, Oksana Kuzmenko, O. Tarasova, and L. Dovgan. "Comprehensive system of financial and economic security of the enterprise." (2020).
- [6] Nugrahanti, Trinandari Prasetyo. "Analyzing the evolution of auditing and financial insurance: tracking developments, identifying research frontiers, and charting the future of accountability and risk management." West Science Accounting and Finance 1, no. 02 (2023): 59-68.
- [7] Sangeetha, J. Margaret, and K. Joy Alfia. "Financial stock market forecast using evaluated linear regression based machine learning technique." Measurement: Sensors 31 (2024): 100950.
- [8] Liu, Yu. "Discussion on the enterprise financial risk management framework based on AI fintech." Decision Making: Applications in Management and Engineering 7, no. 1 (2024): 254-269.
- [9] Singh, Jyotsna, and Pradeep Tripathi. "Sentiment analysis of Twitter data by making use of SVM, Random Forest and Decision Tree algorithm." In 2021 10th IEEE international conference on communication systems and network technologies (CSNT), pp. 193-198. IEEE, 2021.
- [10] Si, Yuna. "Construction and application of enterprise internal audit data analysis model based on decision tree algorithm." Discrete Dynamics in Nature and Society 2022, no. 1 (2022): 4892046.
- [11] Hentzen, Janin Karoli, Arvid Hoffmann, Rebecca Dolan, and Erol Pala. "Artificial intelligence in customer-facing financial services: a systematic literature review and agenda for future research." International journal of bank marketing 40, no. 6 (2022): 1299-1336.
- [12] Fozap, Francis Magloire Peujio. "Hybrid machine learning models for long-term stock market forecasting: Integrating technical indicators." Journal of Risk and Financial Management 18, no. 4 (2025): 201.
- [13] Ortiz-Villaseñor, Dayanna, Gabriel Trujillo-Hernández, Oscar Real-Moreno, Moises J. Castro-Toscano, Leonardo Daniel Medina-Madrazo, and D. Barrera-Román. "K-nearest neighbors regression and applications." In Exploring Psychology, Social Innovation and Advanced Applications of Machine Learning, pp. 295-316. IGI Global Scientific Publishing, 2025.
- [14] Peivandizadeh, Ali, Sima Hatami, Amirhossein Nakhjavani, Lida Khoshsima, Mohammad Reza Chalak Qazani, Muhammad Haleem, and Roohallah Alizadehsani. "Stock market prediction with transductive long short-term memory and social media sentiment analysis." IEEE Access 12 (2024): 87110-87130.
- [15] Ansari, Yasmeen. "Multi-cluster graph (MCG): a novel clustering-based multi-relation graph neural networks for stock price forecasting." IEEE Access (2024).