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Abstract

In recent years with over 90% of car accidents attributable to human error, especially during intricate driving
manoeuvres, road safety remains a crucial challenge in the development of intelligent transportation systems. Current
frameworks for accident prediction frequently lack real-time flexibility and communication system integration. This
study uses a large dataset including environmental, temporal, and geospatial characteristics to present a machine
learningbased severity prediction framework for evaluating the risks of traffic accidents. To forecast severity levels,
the system uses a stacking ensemble model in conjunction with many classifiers, including Random Forest, Logistic
Regression, and XGBoost. Accuracy, F1-score, and ROC- AUC are used to assess performance; the ensemble model
achieved a ROC-AUC of more than 94%. Over 84% accuracy is still difficult to achieve, though, which motivates
feature engineering and hyperparameter optimisation for additional advancements. A new Severity Score is presented,
which measures the likelihood of collisions by dividing the number of high-impact severity predictions (classes 3 and
4) by the total number of recorded occurrences. In a connected environment, this score is further utilised to filter
messages and lower communication overhead between agents. By giving high- severity vehicles priority and maximising
message distribution, the suggested paradigm facilitates proactive risk-aware communication. The introduction of
scalable and secure autonomous mobility systems is supported by experimental results showing notable gains in
communication latency and decision-making efficiency.

Index Terms-Intelligent Transportation Systems, Machine Learning, Severity Scoring, Communication Filtering,

Collision Risk Prediction.

INTRODUCTION

Road traffic accidents remain a major global source of death, disability, and injury. The World Health
Organisation (WHO) estimates that every year, 1.35 million people die in traffic accidents, and millions
more are injured but not killed. The severity of these collisions depends on a number of variables,
including the time of day or day of the week , road infrastructure ,driver behavior, vehicle characteristics,
and environmental factors. For governments, urban planners, and boost the efficiency of emergency
response, the potential to correctly estimate accident severity has become vital in this context. This study
examines the application of machine learning techniques to predict the severity of traffic accidents. The
study uses the publicly available "US accidents (2016-2023)” dataset, which consists of a substantial
collection of accidents reports supplemented with time, location and environmental data. The weather,
visibility, humidity, accident duration and location are some examples of these attributes. One of the
main challenges is pre-processing and transforming this high- dimensional, semi-structured dataset to
enable effective model training and evaluation .In particular, methods for feature selection and
dimensionality reduction are essential for reducing redundancy and improving model generalizability.

Using common evaluation criteria like accuracy, Fl-score, and the Area Under the Receiver Operating
Characteristic Curve (ROC-AUC), a number of machine learning classifiers are developed and analysed,
including Logistic Regression, Decision Trees, Random Forest, K-Nearest Neighbours, and XGBoost.
The presence of noisy or poorly correlated characteristics and overlapping distributions within severity
classes make it difficult to achieve over 84% accuracy even while models show strong discriminatory
power,
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particularly in ROC-AUC. This calls for the application of strong feature engineering techniques like
SelectKBest, hyperparameter tuning, and ensemble methods. This work additionally presents a risk-
aware communication logic in addition to severity prediction. Severity values are calculated and then
combined over time to produce dynamic collision risk scores. Only high-risk or high- priority vehicles
(such as emergency responders) are permitted

Fig. 1: Severity-based message filtering and prioritization in a connected vehicle environment

to communicate thanks to the implementation of intelligent message filtering and communication delay
optimization algorithms based on these scores. In networked traffic contexts, this hybrid solution
improves communication effectiveness and road safety. By fusing severity prediction with practical, risk-
driven communication techniques appropriate for intelligent transportation systems, this study
concludes by highlighting the potential of machine learning to enhance road safety.

A. Research Objectives

This research’s main objective is to use machine learning and clever filtering techniques to create a risk-
aware communication system. The scope of the proposed effort is guided by the following goals:

1. To use a range of environmental, geographical, and temporal variables taken from real-world datasets
to train supervised machine learning models that predict the severity levels of possible occurrences.

2. In order to dynamically assess the risk level for each agent, a collision risk score is calculated for each
car by analyzing the frequency and distribution of projected severity classes over a specified time range.

3. To reduce communication congestion, a message filtering method based on collision scores should
be put into place, whereby only vehicles reaching a predetermined risk threshold are permitted to
communicate.

4. To minimize the amount of message exchanges and processing delay in order to optimize
communication delay and make sure the system is still effective even in situations with high traffic
density.

5. Identifying high-importance vehicles, like fire departments and ambulances, and making sure their
communication is always given priority regardless of their risk score can help to implement prioritization
reasoning.

2. Related Work

In traffic safety research, predicting the severity of traffic accidents with machine learning (ML) and deep
learning (DL) has been a major focus. Numerous research made use of real-world characteristics, such as
time, location, and vehicle information. Graph Neural Networks (GNN) were used in Paper [1] to
identify nonlinear crash patterns, surpassing RF and XGBoost. The US Accidents dataset was utilised
in [2], and Random Forest demonstrated excellent accuracy. The ensemble models used in papers (6]
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and [7] included interpretable features like surface conditions and airbags. RFCNN was proposed in
Paper [8] by combining CNN with RF to improve predictions. To improve emergency response, the
DHAN model in [10] made use of spatial- temporal data.

For intelligent transport systems, it is essential to quantify collision risk across time. To lessen collision
impact, studies such as [3] and [9] suggested injury-minimizing paths and real-time risk maps. Vehicle
proximity and severity data were merged in a paper [3] for dynamic risk grids, and simulated trajectories
were used for real-time severity minimization in [9]. Papers [1] and [5] examined emergency braking
scenarios and employed GNNs to identify crash patterns. In papers [14] and [15], real-time severity
models that facilitate score-based filtering were presented. Attention mechanisms and explainable Al
(e.g., CNN- BiLSTM, DeepSHAP) were used in [12], [18], and [19] approaches to estimate risk.
Calculating collision scores from time-based severity class aggregation is still absent from the majority of

tasks.

In high-density vehicular environments, effective communication is essential to preventing congestion.
Risk-aware filtering techniques are supported by certain studies. In order to initiate reactions in high-
risk areas, Paper [3] uses a risk grid that combines position and severity data. Priority-based filtering is
indirectly aligned with the injury-minimizing trajectories proposed in Paper [9]. Selective reactions based
on dynamic risk levels are made possible by the use of deep learning for risk prediction in Paper [19].
Real-time severity widgets are provided in Paper [14], which may initiate communication at crucial
thresholds. A multi- model method for early accident prediction is shown in Paper [18], which raises the
possibility of selective messaging. Few, though, actually put into practice a structured message filtering
mechanism that is correlated with collision score over time.

To avoid delays and congestion in connected vehicle networks, communication overhead must be kept
to a minimum. Paper [7] presents a cloud-edge framework that reduces on-board load using edge
computing and uses LLMs for risk prediction. To provide localized, severity-based messaging, a risk map
that combines injury and vehicle data is proposed in Paper [3]. Using a CNN-BiLSTM- Attention model,
Paper [19] only initiates communication when spatial-temporal risk criteria are satisfied. Paper [12]
reduces unnecessary notifications by using explainable Al to make high-confidence predictions. In Paper
[14], a real-time severity classifier that may be used for selective messaging is presented. Although these
studies improve efficiency, few of them control communication load by implementing a direct, dynamic,
severity-based message filtering mechanism.

Even with advancements in accident severity prediction, there is currently no mechanism that converts
severity scores into effective communication tactics. A specific technique for ranking, filtering, or
reducing vehicle communications according to dynamic danger levels is absent from the work that is
currently available. No methodology exists for calculating the frequency or timing of communication
based on per- vehicle collision scores over time. There are crucial functions lacking, such as prioritizing
emergency vehicles or silencing low-risk signals. This study closes that gap by proposing a risk-aware
communication model that dynamically modifies the flow of messages according upon vehicle
importance and severity rankings. With its scalable, priority-based architecture, it guarantees effective
bandwidth utilization and prompt notifications for intelligent and responsive vehicle communication
systems.

3. PROPOSED WORK

The proposed study presents a strong, machine learning- based system designed to forecast the severity
of traffic accidents based on accident data from the past and present. Ensemble learning techniques are
integrated into the framework to capture the intricate, nonlinear interactions between geographical,
temporal, and environmental data. Enhancing severity prediction accuracy and developing a scalable
architecture for real- world use in intelligent transportation systems (ITS) are the goals. The system uses
ensemble models, particularly stacking approaches, to combine the benefits of multiple classifiers in
order to improve generalization, reduce bias, and avoid overfitting. he system workflow begins with the
collection and preprocessing of the dataset. The study uses the publicly available "US Accidents(2016-
2023)” dataset, which includes a variety of attributes such as accident timestamps ,position coordinates,
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durations, visibility, humidity, temperature, city and state. Numerous cleaning techniques, including
label encoding for categorical variables, null-value imputation, and normalization of numerical features,
are part of preprocessing since real-world datasets usually contain outliers, duplicates, and missing values.
Additional engineering components like accident hour, weekday, and accident duration offer temporal
context. We then use a Random Forest Classifier to rank and keep the most informative qualities
through feature selection. In addition to reducing redundancy and increasing computation performance,
this process improves model interpretability. Then, using base learners like XGBoost, Decision Tree,
Naive Bayes, K-Nearest Neighbor’s, Random Forest, and Logistic Regression, a multi-level stacking
ensemble is built. The selection of each base model is based on its diversity and capacity to learn various
patterns in the data. Their out-offold predictions are sent into an optimized XGBoost meta-learner,
which generates the final output by learning from aggregated model predictions. Using Grid Search and
Randomized Search, hyperparameter tweaking is done to further optimize performance by modifying
variables like regularization terms, maximum tree depth, number of estimators, and learning rate.
Assessment criteria including accuracy, Fl-score, and ROC-AUC are employed to verify the performance
of the ensemble as well as of individual models. The finalized model’s outputs, or the anticipated severity
scores, are then added together over a period of time to create a "collision risk score” for every car.

Dataset

=

Severity Score
Calculation

Model
Evaluation

Data » >
Preprocessing | Training Testing | Accident Severity

Set Set

Predictions

l ) 3 Level{1-4)

R SAriig Trained Model
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Fig. 2: System architecture for severity prediction and risk- aware communication

The system then uses this score to apply communication filtering algorithms. By excluding vehicles with
low collision risk scores from vehicle communication, needless message transmission is reduced, and
network congestion is lessened. The framework furthermore includes a prioritization logic that permits
emergency vehicles, such fire engines and ambulances, to evade the filtering system, guaranteeing their
high-priority status in the communication pipeline. A useful, risk-aware solution for connected car
environments is provided by the proposed work’s main contribution, which is the combination of
machine learning prediction with communication filtering.

4. Implementation

A structured machine learning pipeline, comprising many essential phases, directs the implementation
of the accident severity prediction system: data loading, preprocessing, feature engineering, model
training, assessment, and deployment.

1. Exploration and Data Loading

More than 2 million records from accidents across the United States make up the extensive accident
dataset that was used. To gain an understanding of the feature distribution, missing values, and
categorical features, basic statistical summaries are produced. To make the dataset simpler, extraneous
columns and attributes like ID, source, or undesired identifiers are removed.

2. Preprocessing and Data Cleaning

Real-world accident databases may contain noise and missing variables. Mean/Median imputation is
used in the implementation to handle missing values for numerical properties such as visibility,
temperature, and humidity. Label encoding for ordinal features maps categorical variables to numerical
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representation. To facilitate feature engineering, timestamp columns (StartTime, EndTime) are
converted into date-time objects.

3. Feature Engineering

Only the most significant traits are chosen using the Random Forest Classifier. This procedure improves
model generalization, speeds up training, and reduces noise. The optimal trade-off between
dimensionality and accuracy is determined by experimenting with a variety of k values (numbers of top
features).

4. Development of Models

Several classification models are employed, including XG- Boost Classifier, Random Forest, and Logistic
Regression. To preserve class distribution, stratified train-test splits are used when training these models
on the preprocessed dataset. With the Sklearn ensemble, the stacking model is employed. To reduce
variance and avoid overfitting, use cross-validation with the stacking classifier.

5. Model Evaluation

Standard classification criteria, such as Accuracy, F1-Score, and the Receiver Operating Characteristic-
Area Under Curve (ROC-AUC), were used to assess the performance of all built models. The stacked
ensemble model performed the best out of all the models that were tested, with the following outcomes:

Accuracy: 84.5%

F1-Score: 83.2%

ROC-AUC: 94.8%
The trained ensemble classifier was used to forecast severity classes for fresh vehicle communication
events once the model was evaluated. Four classes were created from the severity levels: Class 1, Class 2,
Class 3, and Class 4. Classes 1 and 2 were considered non-critical and not included in risk scoring,
whereas Classes 3 and 4 were considered critical. The frequency of each severity class was calculated for
every test input, which represented a snapshot of the local vehicle activity. The percentage of critical
severity cases (Class 3 and Class 4) compared to the overall number of projected severity events was
known as the Severity Score. The total risk related to the current environment is measured by this score.
In linked vehicular networks, this score is then used to make dynamic communication decisions
including prioritization, delay optimization, and message filtering. The Severity Score is determined
using the following formula:

Severity Score (%) = count3 +count4 x 100
countl+count2+count3+count4 V. RESULT AND DISCUSSION

Several machine learning techniques were used to test the performance of the proposed accident severity
prediction model both singly and in combination. A stratified train-test split was used to evaluate the
performance, using 20% of the data for testing and 80% for training. The three most important
performance indicators used to assess the model were ROC AUC (Receiver Operating Characteristic-
Area Under Curve), F1 Score, and Accuracy. Particularly for multi-class classification jobs where class
skewness can distort raw accuracy figures, these metrics provide a fair evaluation of the model
performance.

A. Accuracy of Single Models

Before applying the stacking classifier, a few separate base models were examined separately and Random
Forest outperformed the base models on all three metrics, indicating that it is most capable of handling
high-dimensional, noisy, and non-linear outlier data.

NModel Accuracy (%) | F1 deore (%) [ ROC-AUC (%)
Fandom Forest B4.5 332 04,8
X GBRoost B3.0 BLE 03,5
[ecision Tres 5.3 i4.5 Bih
Logistic Begression 654 B35 Bl.2
ENMN 67.8 06, 2 B5.6
Nalve Baves 342 348 .3

Table 1: Performance Comparison of Machine Learning Models
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B. Ensemble Model Stacking Classifier Performance

A stacking classifier was created to enhance the predicted performance of accident severity classification
by utilizing the advantages of many base learners. The meta-learner was an optimized XGBoost classifier,
and the basic learners in the ensemble architecture were XGBoost, Random Forest, and Logistic
Regression. The passthrough is True parameter gave the meta-learner access to both the base model
predictions and the original input features, and cross-validation was used during training to reduce
overfitting. This hybrid setup improved the model’s ability to learn from a variety of data sources. The
final stacking model performed well in predicting the severity of traffic accidents, exhibiting high
reliability and generalizability with an accuracy of 85.1% , an Fl-score of 84.2% ,and a ROC-AUC of
95.4%.

C. Observations

The Severity Score is a dynamic risk indicator that is based on the frequency of critical severity
predictions over time. By transforming projected risk levels into. In connected transportation
environments, it enables intelligent decision marking through helpful communication responses. This
section explains the rationable behind message prioritizing and filtering according to determined severity
scores. In complex traffic circumstances, it is imperative to prioritize communication choices for critical
vehicles, such as fire engines or ambulances. Regardless of their determined Severity Score, the system
automatically increases the communication priority of such cars when they are found within a vehicle’s
interaction radius. For instance, if a car (such as V7) is near 20 agents and one of them is designated as
an emergency vehicles, The system allows for immediate contact and gets around the standard filtering
mechanism. This ensures that emergency services are prioritized for message delivery and response,

Severity Score Messages
Score < 30% Normal
31% = Score < 60% Caution
61% < Score < BO0% |Pc:tﬂntial Collision
Score > B0% Emergency Stop

allowing for safe and timely travel through crowded areas. Threshold are prohibited from exchanging
communications.

Table 2: Severity Score vs. Safety Message
Number of Messages with and without filtering

10 4

251

20 4

15 4

Count

10 4

w

0 4
Without Filter With Fiter

Mitmhar nf Maceanae

Fig. 3: Number of Messages with and without filtering
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Time Taken in seconds with and without filtering

200 A

175 A

150 A

125 A

100 A

Count

75 1

50 1

25

Without Filter With Filter
Time Taken to deliver the messages

Fig. 4: Both with and without filtering, the time in seconds

The Severity Score criteria are used to determine a filtering strategy that reduces network communication
overhead. Message exchange is prohibited for vehicles with scores below a crucial level, such as less than
60% , to avoid unnecessary contact. Messages can only be sent or received by cars with high severity
levels, indicating possible danger. Processing power and bandwidth are set aside for high-priority
transactions thanks to this chosen approach. Additionally, by lowering the total number of exchanges
every cycle, the communication delay is optimized. Reducing the number of participating cars directly
reduces the communication time needed for coordination, as each message transmission adds a delay.
Consequently, the system gains efficiency and responsiveness, enabling it to manage real-time situations
with greater scalability and reduce latency

CONCLUSION AND FUTURE SCOPE

This paper suggests a comprehensive machine learning - based framework for predicting the severity of
traffic accidents using a large-scale dataset composed of environmental, temporal and spatial elements.
The organized implementation pipeline of the proposed system includes phases such as feature
engineering, dimensionality reduction, data prepossessing and training multiple classification models.
More complex techniques like XGBoost and a specially designed stacking ensemble were contrasted with
more traditional algorithms like Random Forest and logistic Regression with an accuracy of about 85%
and a ROC- AUC of 95.4% , the ensemble model -which coupled base learners with a meta learner that
used XGBoost - displayed outstanding predictive ability. The proposed system offers severity prediction
along with a risk aware Communication logic. This includes filtering messages based on dynamic severity
levels and giving priority to emergency vehicles, which significantly reduces communication overhead
and enhances system responsiveness. Intelligent traffic systems become more scalable and effective when
communication is restricted to high-risk actors.

In the future, the model can be further enhanced by utilizing deep learning architecture, explainable Al
techniques like SHAP or LIME for transparency, and ordinal classification algorithms for a more
through severity environment using tools such as SUMO or CARLA, its real-time applicability can be
verified. Ultimately, integration with V2X(vehicle -to- everything) protocols and smart city infrastructure
may pro- vide a holistic decision- support ecosystem aimed at enhancing urban traffic safety and
emergency responsiveness.
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