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Abstract

Randomisation is a fundamental principle for en- suring unbiased treatment effects in experimental designs across various
domains, including business, marketing, and information technology (IT) education. However, the choice between ran-
domised and systematic designs must align with the experiment’s goals, particularly in large-scale field trials. This study investi-
gates the suitability of these designs when mapping optimal input levels across a structured grid for educational interventions.
A simulation study employing Bayesian hierarchical models and geographically weighted regression (GWR) revealed that, for
extensive trials, randomised and systematic designs produce comparable results when fitting linear models or ignoring spatial
variation. Conversely, for quadratic models, especially when spatial variation is significant, systematic designs outperform
randomised designs in terms of achieving lower true mean squared errors (MSE) for coefficient estimation. These findings
suggest systematic designs may offer enhanced robustness and reliability for designing and analyzing large-scale interventions
in business, marketing, and IT education contexts, where precise spatial mapping and optimization are critical.

1. INTRODUCTION

The concept of incorporating randomisation within experi- mental designs has long been recognised as a critical
tool for enhancing the validity and reliability of statistical inference in agricultural research. Fisher (1934) was
among the first to systematically articulate the benefits of randomisation, demon- strating how its application,
within structured frameworks such as block designs or Latin squares, can control for extrane- ous sources of
variability and ensure unbiased estimation of treatment effects (Verdooren 2020). Over time, agricultural
researchers have adopted a variety of experimental designs that leverage these principles, including completely
randomised designs (CRD), randomised complete block designs (RCBD), split-plot arrangements, and Latin
square configurations (Pe- tersen 1994). These methodologies have proven indispensable for controlled field
experiments aimed at detecting treatment differences with minimal confounding.

In recent years, however, the context of agricultural experi- mentation has evolved significantly, particularly with
the emer- gence of on-farm experimentation (OFE). Unlike traditional small-plot trials conducted under highly
controlled research conditions, OFE empowers farmers to conduct large-scale field trials within the operational
realities of their own farms (Evans et al. 2020). This participatory approach is designed to help farmers evaluate
new management practices, optimise inputs, and reduce uncertainties by generating evidence specific to their
unique environmental, economic, and operational condi- tions (Cook et al. 2013).

When OFE trials are designed to compare categorical man- agement strategies or to identify superior-performing
vari- eties, conventional randomised designs remain highly effec- tive (Pringle et al. 2004; Selle et al. 2019).
Randomisation mitigates spatial biases and facilitates robust statistical tests, thereby ensuring reliable
conclusions. However, in the context of precision agriculture (PA), where the focus often shifts from comparing
discrete treatments to generating continuous spatial maps of optimal input levels (e.g., nitrogen application
rates), traditional randomised approaches may not be ideal (Pringle et al. 2004).

A key limitation arises from the operational constraints of variable-rate applicators (VRA), which require pre-
defined prescription maps prior to application (Piepho et al. 2011). When treatment levels are assigned
randomly across a field, the spatial distances between different treatment plots vary ir- regularly, complicating
interpolation of treatmentresponse re- lationships and introducing spatial uncertainty. Consequently,
systematic designs—where treatments follow a structured, pre- dictable spatial arrangement—offer a practical
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alternative by facilitating smoother interpolation and more reliable construc- tion of treatment response maps.
Despite these advantages, systematic designs have received relatively limited attention in the OFE literature,
with randomisation often regarded as a default requirement.

The statistical analysis of systematic designs for OFE presents unique challenges. The true optimal treatment
level at any given location is inherently unknown, and spatial heterogeneity in soil properties, microclimate,
and other en- vironmental factors can cause treatment effects to vary con- tinuously across the landscape. To
address this complexity, Cao et al. (2022) proposed a Bayesian spatial framework incorporating random
parameters that vary locally to capture spatial trends in treatment response. While this approach offers flexibility
and theoretical rigor, its computational demands and the prerequisite of advanced statistical expertise may limit
its accessibility to farmers and practitioners.

Alternatively, geographically weighted regression (GWR) has emerged as a more practical technique for
capturing spatially varying treatment effects in OFE (Rakshit et al. 2020). By applying localised regression models
within moving spatial windows, GWR can account for continuous spatial variation without the computational
overhead of full Bayesian approaches. Simulation studies by Evans et al. (2020) have shown that GWR effectively
distinguishes yield variability arising from applied treatments versus background environ- mental factors.
Nonetheless, many of these studies were lim- ited by their reliance on randomised designs and simplistic, often
linear, models of treatment response.

Other research efforts have explored the use of systematic designs, such as chessboard arrangements, to enhance
the spatial resolution of treatmentresponse mapping (Alesso et al. 2021). Findings suggest that systematic
designs often outper- form randomised designs in terms of spatial prediction ac- curacy, particularly when
treatments vary continuously across fields. However, practical considerations such as machinery- induced
smoothing of treatment boundaries and the oversim- plification of response functions (e.g., assuming linearity)
can introduce biases if not properly addressed (Pringle et al. 2004). Understanding the true nature of nutrient-
response relation- ships is also essential for improving OFE methodologies. Nu- merous studies have highlighted
that yield responses to inputs like fertilisers often follow non-linear patterns influenced by complex soil-plant
interactions, nutrient interactions, and site- specific factors (Marschner 2011; Glynn 2007). Linear models,
while convenient, may oversimplify these dynamics and fail to capture critical thresholds, plateaus, or
diminishing returns (Piepho and Edmondson 2018; Liben et al. 2019). Quadratic or higher-order polynomial
models provide a more realistic framework for representing these non-linearities but require careful application
to avoid overfitting, particularly in spatially complex OFE settings.

In this study, we investigate whether randomisation is es- sential for large-scale strip trials aimed at generating
treatment response maps for OFE. Using comprehensive simulation scenarios, we compare systematic and
randomised experi- mental designs across linear and quadratic treatmentresponse functions. We further
evaluate the ability of GWR to re- cover spatially varying treatment effects under different design configurations,
spatial correlation structures, and degrees of treatment-response complexity. Our simulations reveal that,
contrary to conventional wisdom, systematic designs often vyield superior spatial prediction performance,
particularly for non-linear responses. Moreover, we show that the commonly not always produce optimal results.
Instead, selecting a fixed bandwidth informed by the experimental design’s spatial struc- ture enhances the
accuracy of treatment effect estimation.

2. METHODS

This segment outlines the full and comprehensive systematic framework applied in the simulation-based inquiry
of spatially notified agricultural trials. It comprises of three primary com- ponents. First, Section ?? introduces
the basic and fundamental statistical model used to represent yield results across plots. Section ?? then details
the incorporation of spatial reliance into treatment effect modeling through ordered and methodical covariance
matrices. Lastly, Section 77 (described elsewhere) elaborates on the implementation of Geographically Weighted
Regression (GWR), a local modeling technique applied to approximate spatially varying coefficients.

104



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 22s,2025
https://theaspd.com/index.php

A. Fundamental Statistical Framework
In precision farming and field-based agronomic exper- iments, trial units are generally organized into a two-
dimensional array, commonly forming a grid with r rows and ¢ columns. This layout produces a total of n = r
*c unique empirical units or plots. Each unit is identified by a coordinate si R?, which signifies its spatial position
at the center of the plot.
Let y(si) represent the observed outcome (for instance, grain yield, biomass, or another trait of interest) at the
ith location. The observations are modeled applying a mixed- effects linear formulation:

Y=Xb+Zu+e, (1)
where Y is an n *1 vector of responses, X and Z are design matrices for the fixed and random effects, respectively.
Vectors b and u contain the corresponding coefficients, and e denotes residual noise capturing unexplained
variation.
The model assumes that random components u and e follow a multivariate normal distribution and are

mutually uncorrelated:

u ~N 0 ’ ZM/ 0 ’ (2)

e 0 0 )
where Xu and Xe denote the covariance matrices for random effects and error conditions, respectively. This
model serves as the statistical foundation upon which spatial dependencies and treatment heterogeneity are
later layered.

A. Modeling Spatial Correlation in Treatment Effects

Accurate analysis of field trial data in agricultural research necessitates the incorporation of spatial structures,
as envi- ronmental and management conditions typically vary across locations. To accommodate this, our model
directly integrates spatial dependence within the treatment effect parameters using a hierarchical framework
that allows for both fixed and location-specific influences.

The observed response at each spatial site si is modeled conditionally using the formulation:

= -_ R
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where xn(s:) and zi(s:) denote known covariates evaluated at site si associated with deterministic and random
effects, respectively. The corresponding coefficients are b,, for fixed effects and wu;(s;) for spatially varying
components. The random vector ui follows a multivariate normal distribution with mean zero and covariance
matrix Vu(8.), which is governed by the hyperparameter vector 6.. To capture correlations between treatment-
specific random components, we factor the covariance matrix Vu as:
V. = B(c.)R.B(0.), 4
where B(0.) is a diagonal matrix with standard deviations for individual treatment effects, and R, denotes the
inter- treatment correlation matrix. This correlation structure is sam- pled from the LK] distribution
(Lewandowski et al. 2009), which offers a flexible prior for modeling varying degrees of correlation. The shape
parameter € within the LK]J distribution controls the spread around the identity matrix; higher values encourage
near-independence among effects, whereas smaller values allow stronger associations.
To introduce dependence across spatial locations, the full covariance for all random effects across the grid is
expressed using the Kronecker product:

T.=V.QV., (5)
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where Vs is the spatial covariance matrix encoding location- to-location dependence. The Kronecker product
enables si- multaneous modeling of variation across treatment levels and spatial positions, resulting in a cohesive
representation that accounts for both types of heterogeneity.

a) Separable AR1 Spatial Structure.: A practical and ef- ficient method for modeling spatial autocorrelation is
through the use of a separable first-order autoregressive (AR1) struc- ture. This approach assumes that spatial
dependencies diminish geometrically as the physical distance increases along the row and column directions of
the grid (Butler et al. 2017). The spatial covariance matrix in this context is constructed as:

V. =AR1(p.) Q AR1(p,), (6)

where pc represents the decay parameter for correlation in the column-wise (horizontal) dimension, and pr
governs the decay in the row-wise (vertical) dimension. Each AR1() matrix captures the auto-dependence in its
respective axis.
The separability assumption simplifies computation consid- erably, especially when dealing with large spatial
grids, as it allows the overall matrix operations to be decomposed into lower-dimensional components.
Furthermore, this structure fits naturally with the typical plot arrangements used in field ex- periments, making
it a computationally viable and statistically appropriate model for representing spatial interactions across
agricultural plots.
b) Mate "rn Covariance Structure.: To capture more so- phisticated and multifaceted or less regular spatial
depen- dencies, the Mate "rn covariance model provides a extremely flexible alternative (Cressie and Huang
1999; Selle et al. 2019). The spatial covariance between two sites separated by a distance d is specified as

31-+ d” 5 d

Vild) =2 —— v '8 v
Nwv) r r

-

where 6% is the variance component, r is the scale (range) parameter dictating how quickly correlation decays,
and v is the smoothness coefficient. The function Kv() is the modified Bessel function of the second kind, and
I'() indicates the gamma function. The option of v determines the differentia- bility of the spatial process, with
smaller values permitting more irregular spatial surfaces.

The Mate 'rn model is especially beneficial in agricultural settings where spatial variability may arise from
complicated environmental gradients, soil shifts, or management zones. Its adaptability makes it appropriate for
both seamless and effortless and swiftly varying spatial fields.

By using either the ARl or Mate rn structures for Vs, this modeling approach permits for a realistic
representation of field-level heterogeneity, thereby enhancing inference on spatial treatment effects.

c) Interpretation and Implications.: Incorporating spatial correlation through structured covariance matrices
allows each plot’s response to benefit from surrounding observations. This “borrowing of strength” ensures
more stable and accurate estimation of treatment effects, even when treatments are not repeated within a local
neighborhood (Panten et al. 2010; Piepho et al. 2011). These spatial smoothing mechanisms are vital in
agricultural research, where spatial variation is inevitable due to natural and managementinduced field het-
erogeneity.

C. Geographically Weighted Regression (GWR)

Geographically Weighted Regression (GWR) is a powerful spatial analysis method designed to model spatially
vary- ing relationships between response and explanatory variables (Rakshit et al. 2020). Unlike traditional
global regression models that assume constant coefficients across space, GWR allows model parameters to vary
by location, thereby capturing local patterns and spatial heterogeneity in the data.

Formally, the GWR model for a response variable y(si) observed at spatial location si is defined as:

=
vis;) = Bols;) + 8:(s;)z/(s;) + &, (8)

= 1
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where zj(si) are the explanatory variables at location si, Bj(si) are the corresponding location-specific coefficients,
and the residual error term &i is assumed to follow a normal distribution N (0, ).
Parameter estimation in GWR is typically performed using locally weighted least squares:
B(s)=ZTWGEZ ZTW(E)Y, )

where W(s) is a spatial weighting matrix centered at location s, constructed using a kernel function that down-
weights observations farther from s. The design matrix Z contains the explanatory variables for all observations,
and Y is the vector of response values.
Several kernel functions are commonly used to define spatial weights, including Gaussian, exponential, bi-
square, and tri- cube forms (Gollini et al. 2015). In this study, we adopt the Gaussian kernel for its smooth decay
properties. Among all model tuning parameters, the kernel bandwidth—defining the spatial scale of influence—
is generally the most critical. A smaller bandwidth increases local sensitivity, while a larger bandwidth favors
smoother spatial estimates.
Bandwidth selection is typically guided by model fit criteria, with the corrected Akaike Information Criterion
(AICc) being a popular choice:

n + tr(S)

AICc = 2nlog(t?) + nlog2m) + n , (10)
n—2 —tr(S)
where S is the smoothing matrix, with its ith row computed as
Si =7 ZTW(Si)Z ZTW(Si). (11)

In practical field experiments, bandwidth may also be de- termined using prior knowledge of experimental
layout. For example, the window size can be fixed to ensure represen- tation of all treatment levels within the
local neighborhood, which enhances model interpretability and numerical stability (Rakshit et al. 2020).

All GWR analyses presented in this study were conducted using the GWmodel package in R (Lu et al. 2014;
Gollini et al. 2015), which offers comprehensive tools for spatial regression modeling in agricultural and
environmental applications.

3. SIMULATION STUDY

To rigorously assess the performance of Geographically Weighted Regression (GWR) under different
experimental designs, we conducted a comprehensive simulation study. This study aims to compare the
effectiveness of randomized and systematic (strip-based) designs for estimating spatially varying treatment effects.
By using simulated data, we gain full control over the data-generating process, ensuring that estimation
performance can be evaluated without interference from unknown or unmeasured confounders (Piepho et al.
2013).

A. Experimental Scenarios

The simulation study considers multiple factorial scenarios that vary key design and model parameters:

¢ Design Type: Randomized versus systematic (strip-wise)

* Response Function: Linear and quadratic forms of yield

¢ Coefficient Correlation: Low versus high correlation among spatially varying treatment coefficients.

e Spatial Covariance Structure: Identity (no spatial structure), separable autoregressive (AR1) structure, and
Mate "rn covariance.

e Bandwidth Configuration: Fixed bandwidths of 5 and 9, and data-driven bandwidth selected by AICc
minimiza- tion.

In the systematic layout, a fixed bandwidth of 5 ensures that all five nitrogen treatments (0, 35, 75, 105, 140
kg/ha) are represented in each local regression window. For randomized layouts, a wider window of size 9 is
used to maintain treatment diversity due to random clustering effects.

B. Simulation Setup and Spatial Configuration

The synthetic field was designed as a grid with 20 columns and 93 rows, yielding a total of 1860 plots. Nitrogen
treatments were assigned to plots either randomly or in a strip-wise (systematic) fashion, allowing for direct
comparison across design strategies. Simulated yields were generated using a predefined spatial model.
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C. Yield Models and Coefficient Structures
Two distinct forms of treatmentresponse relationships were considered:
a) Linear Response.: A linear yield model was specified using coefficients bO = 65 (intercept) and b1l = 0.05
(slope), consistent with empirical studies such as the Las Rosas maize trial (Rakshit et al. 2020; Cao et al. 2022).
Spatial variation in the coefficients was introduced with standard deviations ou0 = 5 and oul = 0.01, and the
residual error was modeled as €i (0, 1).
Spatial dependency was incorporated using either the AR1 model (Equation (??)) with correlation parameters
pc = 0.15 and pr = 0.5, or the Mate "tn model (Equation (7)) with 62 = 1, r = 1, and v = 1.5. The location-
specific coefficients were constructed as
Bo(s) = bo+ uo(sd), PLi(s) = by +u(s), (12)
where ug(s) and u,(s;) are spatially correlated random fields.
b) Quadratic Response.: To model non-linear yield re- sponses, a quadratic function was used with coefficients
b0 =65, b1l = 0.05, and b2 = —0.0003. Spatial variation in the quadratic term was modeled using cu2 = 0.0001.
The coefficients were generated as:
Bo(s) = by + uo(s),

Bi(s) = by + uy(s), (13)

Ba(s) = by + uy(sy).
D. Yield Computation
The yield for each plot was computed as:

(
vl g )= @j“‘;]; i g‘ﬁf'fﬁ T8 s v e e fgfrq:ﬁ';%ri{?::#édﬂ
i ; ; (14)

where Ni is the nitrogen level at location si. Examples of the resulting yield curves under each scenario are
presented in Figure 3.
E. Evaluation Criteria
The key objectives of the simulation were:
e To assess how effectively GWR recovers true, spatially varying treatment effects under varying spatial
dependen- cies.
* To evaluate the sensitivity of GWR to bandwidth selection under different experimental designs.
e To compare the statistical efficiency of systematic versus randomized trial designs for precision agricultural
infer- ence.
By maintaining constant spatial parameters across simula- tion runs, we ensure that observed differences in
model perfor- mance are attributable solely to design strategy and modeling choices, thereby enabling a rigorous
and fair assessment of best practices for spatially informed experimental design in on-farm trials.
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Fig. 1. Linear relationship between crop yield and nitrogen levels,

Where y = 65 + 0.05x

67.0

66.0

65.5

35

105

Fig. 2. Quadratic relationship between crop yield and nitrogen levels,
Where y = 65 + 0.05x — 0.003x2.

Fig. 3. Noise-free linear and quadratic relationships between crop yield and nitrogen levels.Sample preparation
4. RESULTS

The simulation study was repeated 100 times to methodi- cally evaluate the performance of randomised and
structured experimental designs under both linear and quadratic response conditions. This segment presents
the comparative analysis of the estimation accuracy for spatially varying coefficients ob- tained through GWR.
The evaluation is organized as follows: Subsection IV-A presents the Mean Squared Error (MSE) outcomes,
highlighting how estimation accuracy is affected by design option, bandwidth option, spatial correlation, and
parameter structure. Subsection IV-B reports results from an ANOVA assessing the significance of the
experimental aspects. Lastly, Subsection 7 inspects the effectiveness and behaviour of bandwidth choice via
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Fig. 5. Treatments are methodically designated into huge and massive strips in each replicate block
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Fig. 6. The nitrogen treatments with five levels (0, 35, 70, 105 and 140 kg/ha) randomly (??) and methodically
(77) allocated into strips in each replicate block
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Fig. 7. LogMSE boxplots for GWR estimates under linear response with varying bandwidths and spatial
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Fig. 8. Log-MSE boxplots for GWR estimates under quadratic response with varying bandwidths and spatial
covariance structures.

A. Mean Squared Error Analysis
To quantify estimation accuracy, we computed the true Mean Squared Error (MSE) of spatially varying

coefficients across all grid locations in the area. The MSE was calculated by comparing the true coefficients, f§ =
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b+u, to the calculated coefficients, §~ = “b + u~, squaring the difference for each plot, and averaging across the
whole and complete area. Results are visualised in Figures 7 and 77, where the term ‘ * NS “ signifies situations
without spatial variation (Vs = Inxn), ‘ * AR1 “ refers to the separable autoregressive structure with pc = 0.15and
pr =0.5,and * * Matern “ matches to the Mate "rn covariance structure with v = 1.5. Due to the generally small
magnitude of the coefficient MSEs, natural logarithmic transformations were applied to improve graphical
interpretation.

For situations supposing a linear response, GWR performed similarly under both randomised and structured
designs. As displayed in Figure 77, the estimation accuracy of the in- tercept (f0) and slope (1) exhibited no
notable difference between the two designs, regardless of bandwidth option or the presence of spatial covariance
structures. This discovery remained uniform and unchanging under both low (€ = 1) and high (¢ = 0.1)
parameter correlation situations (see Figure 7). Across all conditions, bandwidth choice established on AICc
produced the smallest MSEs, followed by corrected bandwidths of 9 and 5, respectively.

In contrast, under a quadratic response model, distinct performance differences appeared between the two
designs. As depicted in Figures 77 and ??, methodical designs demonstrated superior performance when
estimating Bland B2compared to randomised designs, especially when spatial correlation structures were
present. Notably, while AICc- selected bandwidths produced the minimum MSEs for the intercept 80, they did
not consistently yield the most exact and true estimates for the slope and quadratic conditions. In these
instances, corrected bandwidths; specifically bandwidth 9; delivered better performance for estimating spatially
varying treatment effects.

These outcomes highlight the interaction between band- width, spatial covariance structure, and response model
in- tricacy. When spatial variation was absent, AICc bandwidths consistently supplied the most exact and true
estimates across all coefficients. However, in the presence of spatial reliance, especially with AR1 AR1 or
Mate “rn structures, corrected bandwidths; especially bandwidth 9; were more effective for precisely estimating
spatially varying slopes and quadratic conditions. For the intercept, AICc-based bandwidth option remained
ideal in spatially associated settings.

Overall, these results demonstrate that structured and orderly designs linked with carefully selected bandwidths
im- prove estimation accuracy for non-linear treatment responses, especially when spatial reliance is present.
B. Analysis of Variance (ANOVA)

A complete and thorough ANOVA was conducted to further evaluate the influence of experimental design,
bandwidth, spatial covariance, coefficient type, and parameter correlation on GWR estimation accuracy. The
analyses were performed individually for the linear and quadratic response situations, considering both chief
effects and second-order interactions among the five primary aspects:

¢ Design type (randomised or structured)

¢ Bandwidth (corrected 5, corrected 9, or AICc-selected)

e Spatial covariance structure (Vs)

¢ Coefficient identity (B0, B1, or B2)

¢ Parameter correlation intensity (€)

The ANOVA outcomes are summarised in Table ??. For the linear response, no notable difference was noted
between randomised and methodical and organized designs, corrobo- rating the MSE results. In contrast, for
the quadratic response, design type and its interactions with bandwidth and coefficient conditions were
statistically notable (p < 0.001), confirming the benefit of structured and orderly designs in correctly estimating
non-linear treatment effects.

Interestingly, the intensity of parameter correlation (€) and its interactions did not considerably affect estimation
accuracy in either response situation, indicating that GWR performance is relatively insensitive to the
magnitude of correlation among spatially varying parameters.

Bandwidth option and its interactions were consistently no- table across both response models, stressing the
essential role of bandwidth in local regression performance. Furthermore, spatial covariance structure and its
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interaction with coefficient conditions considerably affected estimation accuracy, espe- cially in the quadratic
response situation.

C. Bandwidth Selection Using AICc

An additional aspect of the study investigated the behaviour of bandwidth selection via the AICc criterion. The
simulations revealed a consistent tendency for the AlCc-selected band- width to converge towards minimal
values (close to 1) when

TABLE 1
SUMMARY OF ANOVA RESULTS FOR LINEAR AND QUADRATIC
RESPONSES. SIGNIFICANT EFFECTS (p < 0.05) ARE HIGHLIGHTED IN BOLD.

Factor/Interaction Linear Quadratic
Df p- Df p
value value
Design 1 009 1 <0.0
4 01
Bandwidth 2 <0.0 2 <0.0
01 01
Covariance (Vs) 2 <00 2 <0.0
01 01
Coefficients () 1 <0.0 2 <0.0
01 01
Correlation (€) 1 017 1 0.898
1
Design x Bandwidth 2 021 2 <0.0
6 01
Design x Covariance 2 0.52 2 0.013
2
Design x Coefficients 1 009 2 <0.0
4 01
Bandwidth x 4 <0.0 4 <0.0
Covariance 01 01
Bandwidth x 2 <0.0 4 <0.0
Coefficients 01 01
Covariance x 27 <0.0 4 <0.0
Coefficients 01 01

spatial covariance was incorporated into the model, irrespec- tive of design type or response complexity. This
suggests that under spatially correlated conditions, GWR preferentially re- lies on highly localised information
for coefficient estimation. Conversely, in scenarios where spatial covariance was ex- cluded (i.e., Vs = Inxn), the
selected bandwidth expanded significantly, often encompassing nearly the entire row of the field (Figure 11).
This reflects the absence of spatial structure, prompting GWR to utilise broader spatial windows to improve
estimation stability.

These findings underscore the adaptive nature of AICc bandwidth selection and its sensitivity to underlying
spatial structures, highlighting its utility for optimising GWR perfor- mance in spatially heterogeneous
agricultural trials.
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5. DISCUSSION

Randomised designs have traditionally been favoured in agronomic and biometric research for on-farm
experimentation (OFE), due to their ability to mitigate biases and ensure statistical validity. However, the
findings of this simulation study indicate that systematic designs can offer comparable or superior performance
to randomised designs when the goal is to generate spatially varying treatment effect maps using GWR. The
relative performance of these designs was found to be influenced primarily by the nature of the treatment
response and the spatial covariance structure, while the corre- lation among treatment coefficients exhibited
negligible impact on estimation accuracy. Importantly, both response type and expected spatial structure are
factors that farmers can evaluate prior to trial implementation, providing practical guidance for design selection.
Systematic designs demonstrated a clear advantage when the underlying treatment-response relationship was
quadratic. In these scenarios, systematic layouts facilitated more reliable estimation of spatially varying
coefficients, particularly under spatially correlated conditions. Conversely, when the response was linear, both
designs performed similarly, suggesting that design choice is less critical in such cases. However, con- sidering
the inherent variability of treatment responses across
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Fig. 10. Histogram of optimal bandwidth for quadratic response.

Fig. 11. Histogram of optimal bandwidth found by AICc for linear and quadratic response.
large agricultural fields, as noted by Rakshit et al. (2020), a systematic design offers greater flexibility by
safeguarding against potential non-linear relationships.
The presence and nature of spatial covariance further influenced design performance. In scenarios devoid of
spatial au- tocorrelation, differences between randomised and systematic designs were minimal, as expected,
given that spatial independence negates the influence of plot arrangement. However, when spatial structure was
introduced—particularly through AR1 AR1 or Mate rn covariance models—systematic designs consistently
outperformed randomised counterparts, especially under quadratic response assumptions. The greatest design
advantage was observed under Mate "rn covariance conditions, where systematic layouts enhanced estimation
accuracy for both linear and quadratic responses. Given the scale and inherent heterogeneity of modern OFE
fields (add relevant ref- erence), the likelihood of negligible spatial variability is low, reinforcing the practical
recommendation to favour systematic designs in applied settings.
The simulation results also highlighted limitations in band- width selection via AICc. Although AICc-
minimising bandwidths are theoretically optimal in a likelihood framework, they frequently skewed towards
extreme values—either highly local (bandwidth 1) or overly broad (bandwidth 93, matching the number of rows).
In practice, these bandwidths produced higher MSEs compared to fixed bandwidths in- formed by experimental
design structure (e.g., 5 or 9). This suggests that AICc-based bandwidth selection is prone to over- fitting or
underfitting in the context of OFE, particularly when only one treatment observation per grid is available.
Fixed bandwidths, carefully chosen to encompass all treatment levels within a GWR window, offer a more
reliable alternative by ensuring complete representation of treatment effects in local regressions, a necessity for
accurate interpolation, especially under non-linear responses.
It is important to acknowledge that this study did not exhaustively explore all possible design structures or
sources of spatial heterogeneity. Alternative designs, such as che- querboard or wave patterns, which have been
proposed for OFE (Bramley et al. 1999), were not considered. Addition- ally, spatial zones defined by
topographical or environmental gradients were excluded from the analysis. While GWR in- herently adjusts for
localised spatial variation by estimating a global template model with location-specific refinements, pronounced
zonal effects may influence model performance in practice. Future research should investigate the interaction
between systematic designs, alternative layouts, and zone- based heterogeneity to provide more comprehensive
guidance for OFE implementation.
In summary, this study advocates for the broader adoption of systematic designs in OFE, particularly when
anticipating spatial correlation or potential non-linear treatment responses. Coupled with fixed, design-
informed bandwidth selection, this approach enhances the reliability of spatially varying treatment effect
estimation using GWR, offering practical benefits for both researchers and farmers engaged in precision
agriculture.

6. CONCLUSION

Randomised designs have traditionally been favoured by agronomists and biometricians for on-farm
experimentation (OFE), owing to their robustness against bias. However, this simulation study demonstrates
that systematic designs can of- fer superior performance under specific conditions, particularly when the
objective is to generate spatially varying treatment effect maps for large-scale strip trials.

The results indicate that systematic designs yield lower mean squared errors (MSE) for estimated coefficients
and pro- vide more robust inference, especially when spatial variation is present or when non-linear (quadratic)
treatment responses are expected. In contrast, when spatial variation is negligible or when a strictly linear
treatment-response relationship is assumed, the performance differences between systematic and randomised
designs are minimal, and either approach may be adopted without compromising estimation quality.

Given the scale and heterogeneity typical of modern OFE, coupled with the practical advantages of systematic
designs in implementation and their enhanced compatibility with spatial modelling techniques such as GWR,
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we recommend system- atic designs for large OFE strip trials aimed at constructing spatially varying treatment
maps. Systematic layouts offer greater flexibility for post-experiment statistical analysis while ensuring reliable
estimation of treatment effects across diverse spatial conditions.
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